

Ext JS 4 First Look

A practical guide including examples of the new
features in Ext JS 4 and tips to migrate from Ext JS 3

Loiane Groner

 BIRMINGHAM - MUMBAI

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Ext JS 4 First Look

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2011

Production Reference: 1081211

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-666-2

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

Credits

Author
Loiane Groner

Reviewers
Neil McCall

Olivier Pons

Paolo Tremadio

Acquisition Editor
Usha Iyer

Development Editor
Hyacintha D'Souza

Technical Editors
Pramila Balan

Merwine Machado

Copy Editor
Brandt D'Mello

Project Coordinator
Shubhanjan Chatterjee

Proofreader
Aaron Nash

Indexer
Rekha Nair

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Loiane Groner, Brazilian-born (and raised), lives in São Paulo and began her IT
career developing Java web applications. While at university, she demonstrated
great interest in IT. She worked as an assistant teacher for two and a half years,
teaching algorithms, data structures, and computing theory. She represented her
university at the ACM International Collegiate Programming Contest – Brazilian
Finals (South America Regionals) and also worked as a Student Delegate of SBC
(Brazilian Computing Society) for two years. She won a merit award in her senior
year for being one of the top three students with better GPAs in the Computer
Science department and also graduated with honors.

After three years of Java development, she got a job opportunity at IBM Brazil, where
she developed Java and Ext JS applications for an American company, for two years.
At IBM, she became the Team Leader and was responsible for training new hires
in Java, XML, and Ext JS technologies. Nowadays, she works as a Senior Software
Engineer at Citibank Brazilian Technology Solutions Center, where she develops
overseas solutions. She also works as an independent Ext JS consultant and coach.

Loiane is passionate about Ext JS and Java, and she is the CampinasJUG (Campinas
Java Users Group) Leader and ESJUG (Espirito Santo Java Users Group) coordinator;
both are Brazilian JUGs.

Loiane also contributes to the software development community through her blogs,
http://loianegroner.com (English) and http://loiane.com (Portuguese-
BR), where she writes about careers in IT, Ext JS, Spring Framework, and general
development notes.

I would like to thank my parents for giving me education, guidance,
and advice, through all these years, and helping me to be a better
human being and professional. A very special "thank-you" to my
lovely husband, for being patient and supportive and giving me
encouragement. Also, thanks to my friends for all the support.

http://loianegroner.com
http://loiane.com

About the Reviewers

Neil McCall graduated from University of Wales, Aberystwyth, with a degree in
Software Engineering. Having already based his dissertation on Usability in User
Interface Design, he then pursued his interest in GUI development and usability,
through projects ranging from e-commerce websites to enterprise applications,
employing bleeding-edge technologies over a variety of frameworks. Ext JS is Neil's
first choice for client-side coding with JavaScript, which can be read about on his
blog, http://neiliscoding.blogspot.com/, and also in his contributions to the
Sencha site guides and forums.

Olivier Pons is a programmer and web developer who's been building websites
since 1997. In 2011, he left a full-time job as a Delphi and PHP developer to
concentrate on the development of his own websites. He currently runs a number
of web sites, including http://www.papdevis.fr and http://olivierpons.fr,
his own web development blog. He sometimes works as a consultant; he is
specialized in website quality overview and is also a teacher at the University
of Sciences of Aix-en-Provence, France, where he teaches C++, advanced VIM
techniques, and Eclipse environment.

Paolo Tremadio is an Italian web developer and web designer, who is passionate
about User Interface and User Experience. He grew up in a family of advertisers,
who inspired him to take courses in principles, visual design, enhancing creativity,
and understanding web technology. A few years before jQuery came out, he took
JavaScript, and he loved JS from the first line of code.

He has the 1000 ideas syndrome; currently, he works at a startup in London, while
being a consultant for various companies in the UK as well as Italy. His passion is to
use technology every day in order to enhance the quality of life.

http://neiliscoding.blogspot.com/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: What's New in Ext JS 4? 7

Getting started with Ext JS 4 7
Package and namespace updates 8
Upgraded documentation 9
Ext JS 4 SDK quick look 11

What is the difference between ext.js and ext-all.js? 13
Deploying Ext JS locally 14

The new Ext JS 4 class system 14
Class definition and creation 15

Creating a new class 15
Extending a class 15

Mixins 17
Config (auto setters and getters) 19
Dynamic class loading 21
Statics 26

Migrating from Ext JS 3 to Ext JS 4 28
Adapters 28
JavaScript compatibility file 30
Sandbox mode 30
Sencha platform 35
Data package 36
Draw package and charts 37
Layouts 37
Grids 38
Forms 38
Accessibility 39
Theming 39

Summary 39

Table of Contents

[ii]

Chapter 2: The New Data Package 41
Broad overview 41
The new model class 43

Declaring fields 43
Validating the model 48
Loading/saving data with proxies and stores 51
Linking models through associations 54

Proxies 63
Client proxies 63

LocalStorageProxy 65
SessionStorageProxy 67
MemoryProxy 68

Server proxies 70
AjaxProxy 71
Rest proxy 78
JsonP proxy 80

Stores 82
Readers 83
Writers 86

JsonWriter 87
XmlWriter 89

Sorting 90
Filtering 94

Summary 95
Chapter 3: Upgraded Layouts 97

Ext JS 4 layouts 97
Container layouts 99

Auto layout 99
Anchor layout 101
Absolute layout 104
HBox layout 105
VBox layout 107
Accordion layout 108
Table layout 110
Column layout 111
Fit layout 113
Card layout 114
Border layout 116

Component layouts 119
Dock layout 119
Tool layout 131
Field layout 133

Table of Contents

[iii]

TriggerField layout 139
Summary 142

Chapter 4: Upgraded Charts 143
Ext JS 4 chart upgrades 144
Ext draw package 144

Applying transformations to a draw 150
Putting it all together 151

Ext chart package 154
Legend 158
Axis 159

Category, Numeric, and Time axes 160
Gauge axis 162
Radial axis 163

Series 163
Bar chart 164

Grouped bar chart 167
Stacked bar chart 169

Column chart 171
Line Chart 173

Customizing a Line Chart 175
Grouped Line Chart 177

Area Chart 180
Grouped Area Chart 182

Scatter Chart 183
Grouped Scatter Chart 185

Pie Chart 186
Donut Chart 188

Radar Chart 189
Grouped Radar Chart 191

Gauge Chart 192
Customizing a Chart 194
Summary 199

Chapter 5: Upgraded Grid, Tree, and Form 201
Grid panel 201

Columns 203
Feature support 206

Ext.grid.feature.Grouping 206
Ext.grid.feature.GroupingSummary 209
Ext.grid.feature.Summary 211
Ext.grid.feature.RowBody 212

Grid plugins 214
Ext.grid.plugin.CellEditing 214
Ext.grid.plugin.RowEditing 216

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Table of Contents

[iv]

Saving the data to the server 217
Infinite scrolling 219

Tree panel 222
Drag-and-drop and sorting 223
Check tree 225
Tree grid 226

Form 228
Form fields 229
Validation 234
Form label 238
Actions 238

Summary 240
Chapter 6: Ext JS 4 Themes 241

Getting started with Ext JS 4 themes 241
Installing Ruby 242

Windows and Mac OS 242
Linux 242

Ubuntu and Debian 243
Red Hat Enterprise and Fedora 243

Installing Sass and Compass 243
Setting up an Ext project 246
Creating a new theme 248

Variables 252
Bugs in earlier versions of Ext JS 4.1 254

Creating new Ext JS Component UIs 255
Complete my-ext-theme.scss file 258

Supporting legacy browsers 259
Missing custom images 264
Summary 264

Chapter 7: MVC Application Architecture 265
The new MVC application architecture 265
Creating a sample application the old-fashioned way 266
Migrating/creating an app using the MVC architecture 272

Project directory structure 273
Ext.ComponentQuery 274

Ext.container.Container functions: query, child, down, and up 278
Query function 278
Child function 279
Down function competency 279
Up function 280

Table of Contents

[v]

Creating the MVC application 280
Creating the book-mvc application 280
Creating the controller class 283
Controlling a view in the controller class 285
Creating the model and store classes 287
Adding the book details panel 291
Controller getter methods 295
Useful tips to develop an MVC application 296
Nested models and MVC 296

Building your application for production 301
Summary 305

Appendix A: Ext JS 4 Versus Ext JS 3 Class Names 307
Index 313

Preface
Ext JS 4 introduces major changes compared to Ext JS 3. There is a new data package,
new charts, and new, updated layouts. The framework was completely rewritten to
boost performance.

This book covers all the major changes and new features of Ext JS 4 using code
examples, explanation, and screenshots of the result of the code. This book will help
you understand the framework changes and you will be able to easily migrate Ext JS
3 applications and develop new Ext JS 4 applications using the presented examples.

What this book covers
Chapter 1, What's New in Ext JS 4, provides an introduction to all major changes
between Ext JS 3 and Ext JS 4. Ext JS 4 presents a vast improvement in all packages;
the framework was completely rewritten to boost performance and make learning
and configuring easy. This chapter covers all these changes, from class system, to an
overview, to the new Sencha platform.

Chapter 2, The New Data Package, covers all the changes in the data package,
which is shared with Sencha Touch framework now. This chapter introduces the
new Model class, associations, proxies, operations, batches, and the new features of
the Store class.

Chapter 3, Upgraded Layouts, covers the changes made to the existing layouts, and the
new component layout engines, such as dock, toolbar, field, and trigger field layouts.
It also covers the changes made to the container layouts, such as fit, border, table,
anchor, card, accordion, and so on.

Preface

[2]

Chapter 4, Upgraded Charts, presents the new JavaScript-powered Ext JS 4 charts. No
flash is required anymore. This chapter introduces the new draw package, which
is the base package for the new chart package. It also covers how to configure chart
axis, legend, customized themes, and Ext JS 4 chart series, such as Bar, Column, Line,
Area, Scatter, Pie, Radar, and Gauge.

Chapter 5, Upgraded Grid, Tree, and Form, presents and demonstrates the upgraded
Ext JS Components. The Components enable faster performance and more developer
flexibility. Some new features and plugins for Components covered in this chapter
are: grid, tree, and forms.

Chapter 6, Ext JS 4 Themes, presents a step-by-step approach on how to customize and
create new themes using the new CSS architecture, which uses Sass and Compass.

Chapter 7, MVC Application Architecture, provides an overview about the new MVC
architecture applied to Ext JS 4 applications. This chapter covers how to structure an
application using the MVC pattern and how to create and organize the components
and files in an Ext project structure. This chapter demonstrates a step-by-step
approach on how to create an MVC Ext JS 4 application.

Appendix A, Ext JS 4 Versus Ext JS 3 Class Names, presents a comparison list between
Ext JS 3 classes and Ext JS 4 class names. In this new version of Ext JS, the names
of some classes have changed, and this list can help you find the new Ext JS 4 class
names easily, while migrating an application from Ext JS 3 to Ext JS 4 Beta.

What you need for this book
The source code listed in this book uses the Ext JS 4 SDK, available from the Ext
JS website http://www.sencha.com/products/extjs/download. You need to
download and install the SDK in order to run the code presented in this book.

Some chapters of this book present some tips and tricks that require Sencha SDK
Tools. You can download it at http://www.sencha.com/products/sdk-tools/.

To create new themes, you need to have Ruby installed. Mac OS and some Linux
distributions already come installed. If you are using Windows, you need to install it
from http://rubyinstaller.org/. This book will also provide more details about
how to install and use it.

It is recommended that you use a JavaScript debugger, such as Firebug or Chrome
Developer Tools, when running the code.

http://www.sencha.com/products/sdk-tools/
http://rubyinstaller.org/

Preface

[3]

Who this book is for
This book is written for web developers who are familiar with Ext JS 3 and want
to have detailed insights into the new features of Ext JS 4. And even if you are
migrating an application from Ext JS 3 to Ext JS 4, this book is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "For example, in Ext JS 3, classes such as,
PagingToolbar, Toolbar, and Spacer, are grouped under the package widgets
(along with other classes)."

A block of code is set as follows:

MyApp.NewClass = Ext.extend(Object, {
 //class functionalities here
});

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Ext.define('MyApp.MyWindow', {
 extend: 'Ext.Window',

 title: 'Welcome!',

 initComponent: function() {

 this.items = [{
 xtype: 'textfield',
 name: 'tfName',
 fieldLabel: 'Enter your name'
 }],

 this.callParent(arguments);
 }
});

var win = Ext.create('MyApp.MyWindow');
win.show();

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If user
clicks on the Next Step button, we will increase the active index because we want
to navigate to the next page, and decrease the active index otherwise."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

What's New in Ext JS 4?
Ext JS 4 is the biggest overhaul that has been made to the Ext framework. These
changes include a new class system, introduction of a new platform, many API
changes and enhancements, and new components, such as the new charts and new
draw components. Ext JS 4 is faster, more stable, and easy to use.

In this chapter, you will learn the following:

•	 How to get started with Ext JS 4
•	 How the Ext JS platform is now organized
•	 The new Ext JS 4 class system
•	 Ext JS 4 SDK
•	 Ext JS 3 versus Ext JS 4 compatibility
•	 Migrating from Ext JS 3 to Ext JS 4
•	 A quick overview of new components

Getting started with Ext JS 4
Ext JS is a cross-browser RIA (Rich Internet Application) framework, easy to use with
rich UI components, used by one million developers around the world.

The change from Ext JS 1.x to Ext JS 2.x was a major refactoring, including the
Component model creation, along with refactoring of many of the existing
components. The Ext JS 3.x is backward-compatible with Ext JS 2.x.

Until Ext JS 3, the layout was what expanded most of the time while rendering the
application. Ext JS 4 has a vast improvement in this area. The generated HTML was
also updated in branch 4.x.

What's New in Ext JS 4?

[8]

Sencha also created more than 4000 unit tests to provide a more stable framework
with 90% code coverage. If a new change is made, they know if anything breaks far
before it is released.

Some API improvements include standardized API with name conventions and a
simpler configuration (you write fewer lines of code to achieve the same results as
with previous versions).

Package and namespace updates
Some API improvements include standardized API with a name convention.

For example, in Ext JS 3, classes such as PagingToolbar, Toolbar, and Spacer are
grouped under the package widgets (along with other classes). These classes are also
defined directly on the Ext global object, which means you can access them through
Ext.PagingToolbar, Ext.Toolbar, and so on.

In Ext JS 4, every class has been placed into packages and namespaces, based on its
functionality. For example, PagingToolbar, Toolbar, Spacer and other toolbar-
related classes are now grouped into the new toolbar package and are grouped into
a new Ext.toolbar namespace. Some of the classes were also renamed based on the
new namespaces.

Other packages, such as button, view, picker, slider, tab, window, tip, tab, and
menu (along with many others), follow this new package name and namespace
update as well. A full list of these changes is provided in Appendix A, Ext JS 4 Versus
Ext JS 3 Class Names.

All the classes that were reorganized are still available via the new
alternateClassName property, so Ext JS 3 class names will still work under Ext
JS 4. For example, the alternative class name of Ext.toolbar.PagingToolbar is
Ext.PagingToolbar. You can read the list of all Ext JS 4 alternative class names in
Appendix A, Ext JS 4 Versus Ext JS 3 Class Names.

Although we are using the new alternate class name property, it
is recommended that you migrate to the new convention names in
your code. For example, in Ext JS 3, we have the Ext.PagingToolbar
component. In Ext JS 4, we can create a new instance declaring Ext.
create(Ext.PagingToolbar), using PagingToolbar (Ext JS 3
name). But, it is highly recommended not to use the alternative class
name (Ext JS 3 name), since we have a new name for this class in Ext
JS 4 (Ext.create(Ext.toolbar.PagingToolbar)).

Chapter 1

[9]

Upgraded documentation
The Ext JS 4 documentation is one of its most-used resources, because it is easy to
use. The Ext documentation has always been good, with a clean and easy to use UI
(User Interface). We will learn how to access the documentation offline, but we can
also access it online at http://docs.sencha.com/ext-js/4-0.

The documentation from previous versions was a little vague, with some examples
that sometimes were not very useful. When you first open the documentation, you
will see a welcome page. At the top-left corner, we will see the following tabs: Home,
API Documentation, Guides, Videos, and Examples.

When we click on the API Documentation tab, we will see the list of all packages on
the left side and the center portion. There will be a list of the most relevant classes
organized in the following topics: Base, View, Components, Data, and Utilities.

We can visualize the list of Ext JS classes by package or by inheritance.

When you click on a class, its documentation will get opened in the center
portion of the screen. All the content is loaded via AJAX, as we can see in the
following screenshot:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

What's New in Ext JS 4?

[10]

On the top of the page, you will see an icon indicating whether the class you have
opened is a singleton class or a component, followed by the class name. If it is a
component, the xType (when available) will be displayed as well.

Below the class name, you will see a menu with the following options: Configs,
Properties, Methods, Events, Super Classes, and Sub Classes (depending on the
class, some of these items will be not available), followed by a search field, where
you can easily find a particular property, config, method, and so on.

Then there is a description of what the class does, and, when available, an example
showing how to use it. Some of the portions of code available in the documentation
have a preview option, so we can see what the code would output if we executed it.

On the right side of the Document tab we have opened, we can see the ALTERNATE
NAMES of the current class, the HIERARCHY, and the list of the MIXINS of this
class. Ext JS 4 documentation also has added support for deprecated members.

There is also a Print button we can click on, by which a print version of the class
documentation will be presented.

On the top-right corner of the Ext JS 4 API documentation, we can see a Search
box, where we can search for any Ext JS class name, method, configuration option,
property, event, and mixins. This update is very useful for daily work. Ext JS 3
allowed searching for class names only.

The new documentation also includes official Ext JS 4 guides to some of the most
relevant features of the framework.

As you can see, the Ext JS 4 documentation is improved and is more user-friendly.
But is the usage of the API easier to use? Let's take a look at it.

Chapter 1

[11]

Ext JS 4 SDK quick look
When we download the Ext JS 4 SDK from the Sencha website, we get a zip file.
After downloading it, uncompress it to a folder, preferably named extjs.

This is how the Ext JS 4 SDK should look:

First, let's take a look at the JavaScript files located in the root folder (extjs):

•	 ext-all.js: This file contains the entire Ext JS framework, everything we need
•	 ext.js: This file contains the minimum Ext JS code (Ext JS base library)

What's New in Ext JS 4?

[12]

If we take a closer look at the previous screenshot, we will see there are
more than three versions of the ext-all.js file and two versions of the
ext.js file. How and when do we use these files? What is the difference
between them?
ext-all.js or ext.js: These are minified files; recommended for use in
production environments.
*-dev.js: This file is not minified and contains the debug code;
recommended for use in development or testing environments.
*-debug.js or *–debug-w-comments: These are not minified and do not
contain the debug code; recommended for use in testing environments.
The file *-debug-w-comments is bigger than the *-debug.js file and
we should avoid using it if the editor is having memory issues.

The SDK also includes the documentation, examples, and the complete source code:

•	 docs: This contains the complete documentation (you need to deploy it on
a local server to be able to run it). You can also access it online at http://
docs.sencha.com/ext-js/4-0/.

•	 examples: This contains examples of how to use Ext JS components.
•	 overview: This contains a quick overview file with the list of new features, a

commented release note.
•	 pkgs: This contains the Ext JS modules, packaged up.
•	 resources: This contains the CSS and image files used by the Ext themes.
•	 src: This is the complete Ext JS source code.
•	 welcome: This contains image files used by the index.html file, located in

the root folder.
•	 builds: This contains additional Ext JS files.
•	 jsbuilder: This contains the files for JSBuilder, a project building tool.

For more information about JSBuilder, please go to
http://www.sencha.com/products/jsbuilder.

Chapter 1

[13]

Inside the builds folder, we will find the following files:

•	 ext-all-sandbox.js: Ext JS 4 is sandboxed and this is the file that replaces ext-
all.js and ext-base.js in sandbox mode

•	 ext-core.js: This is Ext JS core library
•	 ext-foundation.js: This is the foundation library for Ext JS 4
•	 These files also have the debug and dev versions.

Note that the adapter folder is no longer
in the Ext JS 4 SDK.

What is the difference between ext.js and ext-all.js?
When we start the development of a new Ext JS project, the first thing we have to do
is to add the imports of Ext JS files on the HTML page. If we choose a version of the
ext-all file, the browser will load the entire Ext JS framework. If we choose a version
of the ext.js file, the browser will load the minimum code required to execute the
application, and we can make use of the new dynamic loading feature.

For development and testing, we can use ext.js, because it will use only the required
Ext JS code to run the application; but, we cannot forget to add the src folder to the
application extjs directory. For production, we can use the ext-all.js file, because it
already contains the entire Ext JS framework and has good performance.

There is also a file named bootstrap.js; instead of importing ext-all.js
into your HTML page, you can import bootstrap.js. The only thing that
this file does is import ext-all.js or ext-all-debug.js, depending on the
environment you are using. It will load ext-all-debug.js in the following
cases:
1. Current hostname is localhost.
2. Current hostname is an IP(v4) address.
3. Current protocol is a file.
4. Otherwise, bootstrap will load the ext-all.js file.

What's New in Ext JS 4?

[14]

Deploying Ext JS locally
Some examples and the documentation use Ajax calls to load their content. If we try
to load these examples locally, they will not work. To see them in our local computer,
we have to deploy extjs on a local server. To do so, we simply need to place the
extjs folder inside the web root folder of the local web server. Depending on the
operating system you are using your web root directory will be located at:

•	 Windows: C:\Program Files\Apache Software Foundation\Apache2.2\
htdocs

•	 Linux: /var/www/
•	 Mac OS X: /Library/WebServer/Documents/

After doing that, we can access Ext JS locally at the URL http://localhost/extjs/
index.html.

In the next topic, we will start showing some code snippets of the new
Ext JS 4 features. As we deployed Ext JS 4 locally, we will also create
the example code in a web server. To do so, we will create a folder
named ext4firstlook to host the code presented in this book. And, as
we are on Chapter 1, we will place the code in ext4firstlook/chapter01.

The new Ext JS 4 class system
Ext JS has always provided a class system of its own; this enables developers to write
code with a more object-oriented approach, since JavaScript has no classes of its own.
Ext JS 4 introduces a new class system to make development easier and more flexible
and also introduces some new features. These changes are backward-compatible
with the Ext JS 3 class system. The new features are as follows:

•	 Class definition and creation
•	 Mixins
•	 Automatic getters and setters
•	 Dynamic class loading
•	 Statics

http://localhost/extjs/index.html

Chapter 1

[15]

Class definition and creation
Ext JS 4 introduces the Ext.define and Ext.create functions to define and create
new classes.

In this topic, we will see how to create a new Ext JS class from scratch and how to
instantiate it using the new capabilities of Ext JS 4.

Creating a new class
To define a new class using Ext JS 3, we have to extend the Object class as follows:

MyApp.NewClass = Ext.extend(Object, {
 //class functionalities here
});

Downloading the example code
You can download the example code files for all Packt books you have
purchased using your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

In Ext JS 4, we define a new class as follows:

Ext.define('MyApp.NewClass', {
 //class functionalities here
});

The Ext.extend is deprecated; it is recommended to use Ext.define instead.

Extending a class
Let's compare the code between Ext JS 3 and Ext JS 4 to create the following
customized window (extending Ext.Window):

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

What's New in Ext JS 4?

[16]

This is how we do it in Ext JS 3:

Ext.namespace('MyApp');

MyApp.MyWindow = Ext.extend(Ext.Window, {

 title: 'Welcome!',

 initComponent: function() {
 Ext.apply(this, {
 items: [
 {
 xtype: 'textfield',
 name: 'tfName',
 fieldLabel: 'Enter your name'
 }
]
 });

 MyApp.MyWindow.superclass.initComponent.apply(this, arguments);
 }
});

var win = new MyApp.MyWindow();
win.show();

There is nothing wrong with the code above, right? Correct. But, if you forget to
declare the namespace, you will get the error MyApp is not defined; if, when you
are loading your application, Ext.Window is not defined as well, you will also get an
error and your application will crash.

In Ext JS 4, these problems are resolved with the use of Ext.define:

Ext.define('MyApp.MyWindow', {
 extend: 'Ext.Window',

 title: 'Welcome!',

 initComponent: function() {

 this.items = [{
 xtype: 'textfield',
 name: 'tfName',
 fieldLabel: 'Enter your name'
 }],

Chapter 1

[17]

 this.callParent(arguments);
 }
});

var win = Ext.create('MyApp.MyWindow');
win.show();

We can refer to Ext classes using string, which means we will not get the errors
mentioned previously. Ext JS 4 class manager will check if Ext.Window has been
defined already, and if not, will defer the creation of MyApp.MyWindow until it is
defined. This way, we do not have to maintain a load order in our applications; the
Ext framework will manage everything.

Another difference we can see in the code is the simplified call to the superclass
to apply the subclass arguments. Instead of calling MyApp.MyWindow.
superclass.initComponent.apply(this, arguments), we simply call this.
callParent(arguments).

And instead of instantiating the MyApp.MyWindow class using the keyword new, we
use the Ext.create function.

We can still use the new keyword to instantiate Ext JS classes instead of Ext.create,
but then we will not have all the benefits of Ext JS 4 class system features; we will
talk about these features in the next topic.

The Ext.define is an alias of Ext.ClassManager.create, and Ext.create is an
alias of Ext.ClassManager.instantiate.

Another benefit of using Ext.define is that it will automatically detect and create
new namespaces, as needed.

Note that we do not have to specify the MyApp namespace in Ext JS 4.
The framework will detect that it has not been created and will create it.

Mixins
The mixins configuration is a brand new concept for Ext JS. Mixins define reusable
sets of behavior and configuration that can be 'mixed in' to a class. In other words, it
allows merging new capabilities (functions or properties) to the class prototype.

For more information about the mixins concept, please
read http://en.wikipedia.org/wiki/Mixin.

What's New in Ext JS 4?

[18]

It is very similar to the Ext.override function, but it does not replace (override) the
existing methods.

The mixin can be as simple as follows:

Ext.define('MyApp.mixins.Log', {
 startLogging: function() {
 console.log('called funcion startLogging');
 }
});

And this is how we configure the mixin in a class:

Ext.define('MyApp.MyWindow', {
 extend: 'Ext.Window',

 mixins: {
 console: 'MyApp.mixins.Log'
 },

 ...
});

Note that we referenced all class names by string, thus we do not get any errors if the
mixins are not loaded on the page yet.

When we instantiate the MyApp.MyWindow, we can call the startLogging function:

var win = Ext.create('MyApp.MyWindow');
win.startLogging();

And the following screenshot shows the output (simply writes called funcion
startLogging on the console):

Chapter 1

[19]

You can have as many mixins in a class as you want; it is a great way to get
multiple inheritance.

Config (auto setters and getters)
Ext JS 4 introduces the config declaration. There are some classes in Ext JS; you can
pass some configuration parameters and you can change these parameters at runtime
using getter and setter methods. When you configure properties in the config
declaration, Ext JS 4 will automatically generate four methods: getter, setter, reset,
and apply.

Let's apply the config declaration on the MyApp.MyWindow class:

Ext.define('MyApp.MyWindow', {
 extend: 'Ext.Window',

 config: {
 title: 'Welcome!'
 }

});

In the preceding code, the default value for title is Welcome!.

Note that now that we have configured the title property inside the config, the
framework will create the following methods automatically for you:

•	 getTitle: This returns the current title.
•	 setTitle: This will set a new value for title.
•	 resetTitle: This will set the title to its default value.
•	 applyTitle: This method is called every time setTitle is called. You can

implement a custom code for it.
After we instantiate the MyApp.MyWindow class, we can call any of these methods:

var win = Ext.create('MyApp.MyWindow');
win.setTitle('I changed the title');
win.show();

What's New in Ext JS 4?

[20]

The following screenshot shows our output:

In Ext JS 3.3, we had to manually create it:

Ext.namespace('MyApp');

MyApp.MyWindow = Ext.extend(Ext.Window, {

 title: 'Welcome!',

 getTitle: function() {
 return this.title;
 },

 resetTitle: function() {
 this.setTitle('Welcome!');
 },

 setTitle: function(newTitle) {
 this.title = this.applyTitle(newTitle) || newTitle;
 },

 applyTitle: function(newTitle) {
 this.title = newTitle;
 }
});

Chapter 1

[21]

If you need to override any of these methods for any reason, it is very simple. You
just need to add the code to your class declaration:

Ext.define('MyApp.MyWindow', {
 extend: 'Ext.Window',

 config: {
 title: 'Welcome!'
 },

 applyTitle: function(newTitle) {
 this.title = 'Updated to: '+newTitle;
 }
});

This automatic generation of code will save a lot of development time, save some
lines of code (and this means your code will be smaller), and add a name convention,
resulting in a more consistent API.

Dynamic class loading
The dynamic class loading system is another new feature for Ext JS 4. It also provides
an integrated dependency management system.

This new feature is optional and you should avoid using it in production, though it
is very useful for the development environment. We are going to learn why it is so
useful:

In previous versions of Ext JS, if you wanted to use the following code, you had to
wait until the entire framework was loaded, correct? If you tried to use it before the
framework was loaded, you would probably get an error:

var win = new Ext.Window({
 title : 'Hello!',
 width : 100,
 height: 50
});
win.show();

This behavior changes in Ext JS 4. We can ask Ext JS to load the classes that we need
to use and then call a function when it is finished loading. For example:

Ext.require('Ext.Window', function() {
 var win = new Ext.Window({
 title : 'Hello!',
 width : 100,

What's New in Ext JS 4?

[22]

 height: 50
 });
 win.show();
});

When we use Ext.require, we are telling Ext JS we need Ext.Window before
calling the function. The framework will also resolve any dependencies that the
loaded class has.

To use this feature, you have to use Ext.define and define the dependencies in the
code using two new class properties:

•	 Requires: This declares the class dependencies required for a class to work.
These classes are going to be loaded before the current class gets instantiated.

•	 Uses: This declares the optional class dependencies, but is not required.
These classes do not have to be available before the current class gets
instantiated.

The Loader is recursive. If any class has dependencies that are not yet loaded,
it will keep loading all the required classes until all of them are ready. All these
dependencies are managed internally. This means you do not need to manage all
those script tags in the HTML page, because the class loader will do it for you. This
kind of flexibility is very useful in the development environment, when this is more
important than page speed.

You have to be careful with deadlocks. When you declare your own classes, make
sure there is no deadlock; otherwise, your application may crash. For example,
let's say we have the following classes: A, B, and C. Class A extends class B, class B
extends class C, and class C extends class A, as shown in the following code:

Ext.define('deadlock.A', {
 extend: 'deadlock.B'
});

Ext.define('deadlock.B', {
 extend: 'deadlock.C'
});

Ext.define('deadlock.C', {
 extend: 'deadlock.A'
});

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[23]

Now, we are going to try to execute a function that requires class A:

Ext.Loader.setConfig({
 enabled: true,
 paths: {'deadlock':'deadlock'}
});

Ext.onReady(function(){

 Ext.require(['deadlock.A'], function() {
 alert("Loaded: " + Ext.Loader.history.join(" => "));
 });

});

In the HTML file, we are not going to import the files A, B, and C. That is because we
are using the Ext.Loader. In this configuration, we can point to a directory where
the files we need are located All the three files belong to the deadlock package, so
they are located in the deadlock folder, as shown in the following screenshot:

This way, we can configure as many package names as we need. Note that we are
only importing the basic Ext JS files in the HTML:

<html>
<title>Ext JS 4</title>
</head>

 <link rel="stylesheet" type="text/css" href="../extjs/resources/
css/ext-all.css" />
 <script type="text/javascript" src="../extjs/ext-all-debug.js"></
script>

What's New in Ext JS 4?

[24]

 <script type="text/javascript">
 //our code here
 </script>
<body>
</body>
</html>

And if you try to execute the preceding code, you will get the following error:

Uncaught Error: [Ext.Loader] Deadlock detected! 'deadlock.C' and
'deadlock.A' mutually require each others. Path: deadlock.C ->
deadlock.A -> deadlock.B -> deadlock.C

Uncaught Error: [Ext.Loader] The following classes are not declared
even if their files have been loaded: deadlock.A, deadlock.B,
deadlock.C. Please check the source code of their corresponding files
for possible typos:
deadlock/A.js,
deadlock/B.js,
deadlock/C.js

Because of the dependencies, the Ext management system will try to load C
for the first class. But C needs class A, and so on. This will lead us to a loop,
causing a deadlock.

Now let's take a look at another example. We have three classes: A (which extends
B and has a mixin named Mixin), B (which extends C), and C (which uses A).
Remember the keyword uses does a reference to the classes that are not required to be
loaded before the class is instantiated. In this case, we will not have a deadlock:

Ext.define('noDeadlock.A', {
 extend: 'noDeadlock.B',

 mixins: {
 console: 'noDeadlock.Mixin'
 }
});

Ext.define('noDeadlock.B', {
 extend: 'noDeadlock.C'
});

Ext.define('noDeadlock.C', {
 uses: 'noDeadlock.A'
});

Chapter 1

[25]

Ext.define('noDeadlock.Mixin', {
 log: function() {
 console.log('called function log');
 }
});

In the HTML page, we are going to import only the necessary files to load our code.
We are not going to include the classes A, B, C, and Mixin.

<html>
<head>
<title>Ext JS 4</title>
</head>

 <link rel="stylesheet" type="text/css" href="../extjs/resources/
css/ext-all.css" />
 <script type="text/javascript" src="../extjs/ext-all-debug.js"></
script>

 <script type="text/javascript">
 //our code here
 </script>

<body>
</body>
</html>

To import the classes which are in the js/myApp folder, we are going to use the Ext.
Loader class, which will take care of everything for us:

Ext.Loader.setConfig({
 enabled: true,
 paths: {'noDeadlock':'noDeadlock'}
});

Ext.onReady(function(){

 Ext.require(['noDeadlock.A'], function() {
 alert("Loaded: " + Ext.Loader.history.join(" => "));
 });

});

What's New in Ext JS 4?

[26]

And when we execute this code, we have the following output:

Loaded: noDeadlock.Mixin => noDeadlock.C => noDeadlock.B =>
noDeadlock.A

This new class system is 100% backward-compatible.

Statics
In Ext JS 4, any class can define static methods, which means you do not need to
instantiate the class to call the method; you can call ClassName.methodName().

To declare a static method or property, simply define it as statics in its
class property.

Let's take a look at the following example:

Ext.define('MyApp.Math', {

 statics: {
 count: 0,
 appName: 'Math',

 sum: function(number1, number2) {
 return number1 + number2;
 }
 },

 constructor: function() {
 this.statics().count++;
 console.log('You instantiated the class: ' + this.self.
appName);
 console.log('App Name: ' + this.statics().appName);
 console.log('Count is: ' + this.statics().count);
 }

});

The class MyApp.Math contains two static properties—count and appName. This
means we can access the value of these properties without instantiating the class as
follows:

MyApp.Math.count;
MyApp.Math.appName;

Chapter 1

[27]

We can also access the method sum:

MyApp.Math.sum(1,2); //output is 3

Now let's take a closer look at the constructor code to see how we can access these
properties outside the statics declaration. When you use this.statics() you have
access to any static property or method inside the class. When you use this.self.
propertyName, it depends on which instance you are referring to. It is important if
you work with inheritance.

For example, let's declare a class named MyApp.MoreMath, extending MyApp.Math:

Ext.define('MyApp.MoreMath', {
 extend: 'MyApp.Math',

 statics: {
 appName: 'MoreMath',

 multiply: function(number1, number2) {
 return number1 * number2;
 }
 },

 constructor: function() {
 this.callParent();
 }

});

Note, we also declared (override) a static property called appName with a different
value from the super class. Also note that when we instantiate, we call the super class
constructor. In this case, this.statics().appName does a reference to the MyApp.
Math.appName (which is Math) and the this.self.appName does a reference to the
current object, which is MyApp.MoreMath.appName (with value equals to MoreMath).

Execute the following code:

var math1 = new MyApp.Math();
var math2 = new MyApp.Math();
var moreMath = new MyApp.MoreMath();

What's New in Ext JS 4?

[28]

We will have the following output:

You instantiated the class: Math
App Name: Math
Count is: 1
You instantiated the class: Math
App Name: Math
Count is: 2
You instantiated the class: MoreMath
App Name: Math
Count is: 3

If you try to execute MyApp.MoreMath.sum(), you will get the error MyApp.
MoreMath.sum is not a function. The static methods from superclass are not
public in the subclass.

Migrating from Ext JS 3 to Ext JS 4
Ext JS 4 introduces major changes in its architecture, core system, and widgets. Most
classes were refactored. We already know how the new class system works. We are
going to introduce you to the new changes and new widgets. Also, there are some
changes that are not compatible with Ext JS 3. To help you to migrate from Ext JS 3 to
Ext JS 4, there are some tools that can help you.

Adapters
In previous versions of Ext JS, you were able to use Ext JS along with other third-
party frameworks, such as jQuery, Prototype, and YUI, and Ext provided a special
adapter so you could use these frameworks.

For example, if you want to use Ext along with jQuery, you have to import jQuery
files, then ext-jquery-adapter.js, and then ext-all.js; only then would you be able to
implement Ext code along with jQuery code, on the same page.

Chapter 1

[29]

The following diagram illustrates how adapters worked until Ext JS 3:

ext-all.js OR ext-debug.js

ext-yui-adapter.js ext-jquery-adapter.js
ext-prototype-

adapter.js

ext-base.js yui-utilities.js
jquery.js

jquery-plugins.js

prototype.js

scriptaculous.js?load=

effects

In Ext JS 4, the adapter support has been discontinued. However, this does not mean
you cannot use third-party libraries along with Ext JS anymore. They are no longer
supported as base library dependencies for Ext JS, but you can still use them in
addition to Ext JS files.

The following diagram illustrates how to use third-party libraries with Ext JS 4:

yui-utilities.js
jquery.js

jquery-plugins.js

prototype.js

scriptaculous.js?load=

effects

(ext-all.js OR ext-debug.js) OR (ext.js OR ext-debug.js)

For example, until Ext JS 3, if we wanted to use jQuery along with Ext JS on the same
page, this is how we would do it:

<script type="text/javascript" src="adapters/jquery.js"></script>
<script type="text/javascript" src="http://extjs.cachefly.net/ext-
3.3.1/adapter/jquery/ext-jquery-adapter-debug.js"></script>
<script type="text/javascript" src="http://extjs.cachefly.net/ext-
3.3.1/ext-all-debug.js"></script>

To keep compatibility with your legacy code is very simple; you have to remove the
ext-jquery-adapter:

<link rel="stylesheet" type="text/css" href="../extjs/resources/css/
ext-all.css" />
<script type="text/javascript" src="../extjs/ext-all-debug.js"></
script>
<script type="text/javascript" src="adapters/jquery.js"></script>

What's New in Ext JS 4?

[30]

JavaScript compatibility file
This JavaScript file contains the aliases and necessary overrides to make most of the
Ext JS 3 code run under Ext JS 4.

You can use this file while you migrate all your Ext JS 3 code to Ext JS 4. It is
recommended that you do not use this file as a permanent solution; use it only until
you finish migrating to Ext JS 4.

You can read how to properly use the JavaScript
compatibility file in Appendix A, Ext JS 4 Versus
Ext JS 3 Class Names.

Sandbox mode
Ext JS 4 is sandboxed, which means you can run Ext JS 4 alongside with previous
versions of Ext JS on the same page.

The distributed release comes with the following sandbox mode files:

•	 ext-all-sandbox.js

•	 ext-all-sandbox-debug.js

•	 ext-all-sandbox-dev.js

To use Ext JS 4 in the sandbox mode, you need to import the ext-all sandbox files
and the ext-sandbox.css file as well. To make the Ext JS 4 code work along with
code from previous versions, you need to alias the global Ext object to a different
name (for example, Ext4) and it will be isolated from the previous version's code.

Let's say you have the following page implemented with Ext JS 3:

Chapter 1

[31]

The following is the HTML code used to render the grid. As you can see, we are
importing the default Ext JS 3 files ext-all.css and ext-all.js:

<html>
<head>
<title>Ext JS 3 + Ext JS 4 = sandbox</title>

 <link rel="stylesheet" type="text/css" href="http://extjs.cachefly.
net/ext-3.3.1/resources/css/ext-all.css" />
 <script type="text/javascript" src="http://extjs.cachefly.net/ext-
3.3.1/adapter/ext/ext-base-debug.js"></script>
 <script type="text/javascript" src="http://extjs.cachefly.net/ext-
3.3.1/ext-all-debug.js"></script>

 <script type="text/javascript" src="sandbox/grid-ext3.js"></script>

</head>
<body>
 <table border="1">
 <tr>
 <td>Ext JS 3 Grid</td>
 </tr>
 <tr>
 <td><div id="grid3"></div></td>
 </tr>
 </table>
</body>
</html>

We are also importing the grid-ext3.js file, which contains the Ext JS 3 code to
render the grid— a very simple grid:

Ext.onReady(function(){

 // static data for the store
 var myData = [
 ['Learning Ext JS', 'Packt',
'November 2008'],
 ['Learning Ext JS 3.2', 'Packt',
'October 2010'],
 ['Ext JS 3.0 Cookbook', 'Packt',
'October 2009'],
 ['Oracle Application Express 4.0 with Ext JS', 'Packt', 'March
2011']
];

What's New in Ext JS 4?

[32]

 // create the data store
 var store = new Ext.data.ArrayStore({
 fields: [
 {name: 'book'},
 {name: 'manufacturer'},
 {name: 'published', type: 'date', dateFormat: 'F Y'},
]
 });

 // manually load local data
 store.loadData(myData);

 // create the Grid
 var grid = new Ext.grid.GridPanel({
 store: store,
 columns: [
 {
 id :'book',
 header : 'Book',
 width : 250,
 sortable : true,
 dataIndex: 'book'
 },
 {
 header : 'Manufacturer',
 width : 75,
 sortable : true,
 dataIndex: 'manufacturer'
 },
 {
 header : 'Published',
 width : 100,
 sortable : true,
 renderer : Ext.util.Format.dateRenderer('F Y'),
 dataIndex: 'published'
 }
],
 stripeRows: true,
 height: 140,
 width: 430,
 title: 'Ext JS Books - Ext 3',
 stateId: 'grid'
 });

 grid.render('grid3);
});

Chapter 1

[33]

Now, we want to add another grid using Ext JS 4 on the same page, right besides the
Ext JS 3 grid, because we want to take advantage of new features such as the Model
(new class from the new data package). To make the HTML page support Ext JS 4,
we have to add the sandbox mode files, instead of the default Ext JS 4 files (ext-all.
css, ext-all.js, and ext-core.js):

<html>
<head>
<title>Ext JS 3 + Ext JS 4 = sandbox</title>

 <link rel="stylesheet" type="text/css" href="http://extjs.cachefly.
net/ext-3.3.1/resources/css/ext-all.css" />
 <script type="text/javascript" src="http://extjs.cachefly.net/ext-
3.3.1/adapter/ext/ext-base-debug.js"></script>
 <script type="text/javascript" src="http://extjs.cachefly.net/ext-
3.3.1/ext-all-debug.js"></script>

 <script type="text/javascript" src="sandbox/grid-ext3.js"></script>

 <link rel="stylesheet" type="text/css" href="../extjs/resources/
css/ext-sandbox.css" />
 <script type="text/javascript" src="../extjs/builds/ext-all-
sandbox-debug.js"></script>

 <script type="text/javascript" src="sandbox/grid-ext4.js"></
script>
</head>
<body>
 <table border="1">
 <tr>
 <td>Ext JS 3 Grid</td>
 <td>Ext JS 4 Grid</td>
 </tr>
 <tr>
 <td><div id="grid3"></div></td>
 <td><div id="grid4"></div></td>
 </tr>
 </table>
</body>
</html>

What's New in Ext JS 4?

[34]

The HTML page is now ready to support Ext JS 3 and Ext JS 4 on the same page. Let's
take a look on the grid code made with Ext JS 4; we are going to put this code into
the grid-ext4.js file:

Ext4.require([
 'Ext.grid.*',
 'Ext.data.*'
]);

Ext4.onReady(function(){

 Ext4.regModel('Book', {
 fields: [
 {name: 'book'},
 {name: 'manufacturer'},
 {name: 'published', type: 'date', dateFormat: 'F Y'}
]
 });

 // Array data for the grids
 Ext4.grid.dummyData = [
 ['Drupal 7 Module Development','Packt', 'December 2010'],
 ['PHP 5 Social Networking','Packt', 'October 2010'],
 ['Object-Oriented Programming with PHP5','Packt','December
2007'],
 ['Expert PHP 5 Tools','Packt','March 2010']
];

 var store = new Ext4.data.ArrayStore({
 model: 'Book',
 data: Ext4.grid.dummyData
 });

 var grid2 = new Ext4.grid.GridPanel({
 store: store,
 columns: [
 {text: "Book", width: 250, dataIndex: 'book'},
 {text: "Manufacturer", width: 75, dataIndex:
'manufacturer'},
 {text: "Published", width: 100, dataIndex: 'published',
 renderer: Ext4.util.Format.dateRenderer('F Y')}
],
 columnLines: true,
 width: 430,
 height: 140,
 title: 'PHP Books - Ext 4',
 renderTo: 'grid4'
 });
});

Chapter 1

[35]

Note that we are not using Ext namespace, as we were in
the Ext JS 3 code. Instead, we are using Ext4 namespace. An
alias is required—you cannot use the same namespace (Ext);
otherwise, your code will not work.

If you try to load the page, the following is the result you will get—Ext JS 3 and Ext
JS 4 working together on the same page:

Remember, it is recommended that you migrate all your code to
Ext JS 4. This file can help you to add new Ext JS 4 functionalities
into your legacy application, but it is not supposed to be used as a
permanent solution.

Sencha platform
Ext JS always provided a class system and architecture of its own—component-
oriented, with satellite packages for layout, state, utilities, and data. Ext JS 4
architecture looks much the same as Ext JS 3 architecture:

Data Layout State Utilities

Components

What's New in Ext JS 4?

[36]

In 2010, Sencha was born and Ext JS got a new brother called Sencha Touch. Sencha
Touch is a mobile JavaScript framework. Sencha Touch is to mobile devices, what Ext
JS is for desktops. The Sencha Touch architecture is different from Ext JS 3 architecture.
For the Ext JS 4 release, they decided to combine Sencha Touch's architecture with Ext
JS's. So, the Sencha platform was born, providing some common code shared between
Sencha Touch and Ext JS 4. This includes the data package, layouts, most of the utility
functions, and the new charting and animation packages. This way, the Sencha team
can provide stable code for a product and will be also available for others, creating
and maintaining a stable platform. This is also an advantage for developers, because
all the knowledge and experience with Ext JS can be easily channeled into developing
mobile applications with Sencha Touch, and vice-versa. Plus, a large amount of code
can be reused and also increase the community size for platform-based extensions by
including web and mobile developers:

Data package
The data package is one of the packages that Ext JS 4 now shares with Sencha
Touch. This package contains the classes that are responsible for loading and
saving the data, and it has a large number of changes. Let's briefly discuss
some of these changes:

•	 Store is the class for which you no longer need to set the data format that
you are loading on the Store; in other words, you do not need to specify if
you are loading JSON or XML (JsonStore or XmlStore), as the Store will
automatically detect the data format. The Store API is now capable of sorting
and filtering, and the new Reader can read nested data from the server.

•	 Model is a new class in Ext JS 4, similar to Record, with new capabilities. The
new Model class supports associations and validations.

•	 Proxy is the class responsible for loading and saving the data now, and
it receives the Reader and Writer instances. You can attach the proxy to a
Store or to a Model, so you don't need to use a Store anymore. There is a
new proxy in Ext JS 4: LocalStorageProxy, and it persists the data into an
HTML5 local storage. There is also a new proxy that persists the data into
session storage.

Chapter 1

[37]

These changes are not 100% backward-compatible. If you are migrating your code
from Ext JS 3 to Ext JS 4, you will need to use the Ext JS 3 compatibility file, but you
will still have to change some of your code.

We will take a deeper look at all the data package changes and how to use them in
the next chapter.

Draw package and charts
Ext JS 4 introduces the new draw package, which provides custom drawing
capabilities, based on HTML5 standards. We can draw basic shapes, such as squares,
circles, and also texts. It also provides an engine to draw complex shapes using SVG
paths. The new draw package is the base package for the new chart API.

Ext JS 3 introduced charts as newly-available components, but they required Flash
to work. In Ext JS 4, you don't need Flash to use charts anymore; now, charts are
completely javascript-driven. The charts now use SVG (Scalable Vector Graphics),
Canvas, and VML (Vector Markup Language).

With Ext JS 4, you can plot any chart as desired; all charts are customizable. Some of
the options are: Bar/Column, Line/Area, Scatter, Radar, or you can also mix any of
these charts to create a customized one, according to your needs.

We will dive into the draw and chart packages in Chapter 4, Upgraded Charts.

Layouts
Layout is one of the most important and powerful features of Ext JS. In Ext 2, layouts
were very fast, but not flexible enough. In Ext JS 3, the flexibility was improved,
but it cost some performance. In Ext JS 4, the layout engine was rewritten and now
it is faster and more flexible than ever. There are also some new layouts, such as
DockLayout, ToolbarLayout, and FieldLayout.

We will take a closer look at the new layout in Chapter 3, Upgraded Layouts.

What's New in Ext JS 4?

[38]

Grids
The grid is the widget that is most used for sure and it is one of the most important
components of Ext JS. In Ext JS 4, the grid has been completely rewritten and now it
is faster, easier to customize, and has better performance.

In Ext JS 3, when you wanted to display thousands of records in the grid without
paging, you had to be very careful, because it was a very heavy rendering. The solution
to this issue was to use a plugin to support buffering. In Ext JS 4, the grid natively
supports buffering, and now you do not have to worry about this issue anymore.

Ext JS 4 also improved editing capability for grids. In Ext JS 3, if you wanted to use
a grid to edit information, you would have to use the EditorGrid, a specialized
grid, or a plugin called RowEditor. In Ext JS 4, there is an editing plugin that can be
applied to any grid easily, and RowEditor has become a class component supported
by the API; it is not an extension anymore.

In Ext JS 3, if you wanted to add any new functionality to a grid you would create a
customized grid (create a new class extending the default grid component) or you
would create a plugin, correct? Ext JS 4 introduces a new class called Ext.grid.
Feature, which provides all the basic features to create new grid features. Now there
is a standard way to create new grid functionalities and this makes the grid a more
consistent component.

In previous Ext JS versions, when the page rendered the grid, it created an HTML
markup to handle all the customizations the grid supported, such as editing, row
expansion, and so on, even if you were not using these features. In Ext JS 4, there is
a reduction of the HTML markup. Now it renders only what the grid is going to use,
only the features you enabled, and this is a great performance boost, making the grid
even faster and lighter than the ListView component (in Ext JS 3, the ListView is a
lighter version of the grid, used only to visualize the information you display).

We will take a closer look at the Grid component, its new features, and how to use
them in Chapter 5, Upgraded Grid, Tree, and Form.

Forms
Forms are another very used component in Ext JS. In Ext JS 4, there are some new
features that are going to make our lives easier when configuring a form. The first
update is that you can use any Layout within a form now. The FormLayout has been
removed; it no longer exists.

Ext JS 4 introduces a new class called FieldContainer for managing layouts within
forms. Now, you can add any component to a form, such as a grid. There is also a
huge improvement in regards to validation.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

[39]

We will take a closer look at forms, its new features, and how to use them, in Chapter
5, Upgraded Grid, Tree, and Form.

Accessibility
Making an application accessible using JavaScript is always difficult. Ext JS 4
introduces three new features that make it easy to do so:

•	 Ext JS 4 comes with ARIA (Accessible Rich Internet Application) support. All
components have attributes to support ARIA.

•	 Ext JS 4 also supports keyboard navigation on any application.
•	 There is a new theme with high contrast (dark background and text in a

light color).

Theming
If you have already tried to customize a theme for Ext JS 3, you know how painful it
can be. Theming in Ext JS 4 is much easier than in previous versions. You can change
the color scheme for all components by changing a single variable. That is because
Ext JS 4 themes use Sass and Compass, two powerful tools to create CSS easily. Any
component can be easily customized now.

We will build and customize a new theme using Sass and Compass in Chapter 6, Ext
JS 4 Themes.

Summary
In this chapter, we have covered the new Ext JS 4 SDK, learned how to use its new
files, the new way to use adapters, and how to use Ext JS 3 (or older versions) along
with Ext JS 4. We also covered a very quick overview of the new components and
what has changed in the existing ones. We also learned how to use the overhauled
documentation and how the packages are organized.

We learned, through examples, how to use the new features from the new class
system—for example, how to define a class without using the new keyword; how to
use mixins; the config declaration to auto generate methods, getters, and setters;
the statics declaration; and how the dynamic class loading works.

In the next chapter, we will learn about the new Ext JS 4 data package—what has
changed, what is new, and how to use it.

The New Data Package
Ext JS 4 introduces big changes to the data package. There are new classes, and
some of the old classes have been refactored to improve performance. With all these
changes, the data package is more powerful and easier to use.

In this chapter, you will learn about the following:

•	 A broad overview of the new features
•	 Models
•	 Associations
•	 Validations
•	 Store API: sorts and filters
•	 Proxies (server proxies and client proxies)
•	 Operations and batches

We will take a look at the new classes of the data package and learn how to use them
with real-world examples. In this chapter, you will also learn which features from
Ext JS 3 are still compatible with Ext JS 4, so that you can migrate your code easily.

Broad overview
The Ext JS 4 data package introduces some new interesting features, such as the new
Model class. There are also some changes related to the Store and Proxy classes.
Most of these changes are backward-compatible; the biggest changes are related to
the Record, Store, and Proxy classes. The Ext JS 4 data package is also one of the
packages that are now shared with Sencha Touch.

The New Data Package

[42]

The following diagram shows how the data package is organized:

Ext.data package

Ext.data.Field

Ext.data.Association

Ext.data.validations

Ext.data.Model

Ext.data.proxy.Proxy

Ext.data.Store

Ext.data.proxy.Client

Ext.data.proxy.Server

Ext.data.reader.Reader

Ext.data.writer.Writer

Ext.util.Sorter Ext.util.Filter Ext.util.Grouper

The Model class is one of the most important classes from the data package; it is the
new version of the Record class. Now, you can represent your real entities with the
Model class, including associations and validations. The following table lists the
differences between the Model and Record classes:

Feature Record (Ext JS 3) Model (Ext JS 4)
Fields Yes Yes
Functions Yes Yes
Validations No Yes
Associations No Yes
Load/Save data directly (Proxy) No Yes

The proxy can be directly attached to a Model or to a Store. It receives the Reader
and Writer instances, which are responsible for reading/writing and decoding the
data from/to a server. Ext JS 4 introduces client- and server-side proxies. The Store
also has new capabilities, such as sorting, filtering, and grouping.

Chapter 2

[43]

The new model class
A Model represents an entity, an object; it is a set of functions and fields to operate
the data. This new class is very similar to the Record class (Ext JS 3 and previous
versions), which allowed us to create fields and functions to operate the data. The
Model class is more powerful; you can create several models and link them through
Associations, you can use Validations to validate your data, and you can also load
the data directly using a Proxy inside a Model. The following diagram exemplifies all
the capabilities of the Model class:

Ext.data.Model

Ext.data.Field Ext.data.Proxy

Ext.data.Association Ext.data.validations

String

Integer

Float

Boolean

Date

Client Proxies

Server Proxies

HasMany

Belong To

Presence

Length

Format

Inclusion

Exclusion

Declaring fields
To create a Model, you simply need to use Ext.define to define a new class, extend
the Ext.data.Model class, and declare all the Model fields you need, as follows:

Ext.define('Patient', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'name'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'gender', type: 'string'},
 {name: 'birthday', type: 'date', dateFormat: 'd/m/Y'},
 {name: 'alive', type: 'boolean', defaultValue: true},
 {name: 'weight', type: 'float'},
 {name: 'weightKg', type: 'float',
 convert: function(value, record) {
 var weightPounds = record.get('weight');
 return Math.round(weightPounds * 0.45359237);
 }
 }
]
});

The New Data Package

[44]

We are declaring a Model for an entity named Patient with eight fields. Each field is
an instance of the Ext.data.Field class. Each field has a name and a type. The name
is how you are going to call the attribute. The type is used to convert the data to a
specific format. The type can be:

•	 auto (when it is not specified)
•	 int
•	 float
•	 string
•	 date
•	 boolean

The first field we declared is called name, and we did not specify a type for it.
In this case, the type is auto, which means the data is not going to be converted.
Going further in the Patient fields declaration, we have a field named age with
type int and two string fields named phone and gender. Then, we have a field
named birthday of type date. When we declare a date field, we can also specify a
dateFormat to convert the date, but it is optional. This date format has to follow the
PHP date format rules.

Please read http://docs.sencha.com/ext-js/4-0/#/
api/Ext.Date for further information about Ext JS date
format information.

The next field declaration is named alive and is of type boolean. Another optional
field configuration is the defaultValue, which is the default value that is going
to be used if the item does not exist in the object (that is, undefined); when
not specified, the default value is ""(empty string). Next, we have a float field
named weight.

We have explained seven of a total eight fields declared so far. In the last field,
named weightKg, we are using a function; we did not use this in the previous
fields. Sometimes, just declaring the field is not enough—we need to do something
else with the data to manipulate it, and, in this case, we can do it using the function
convert. This function will convert the data from the Reader into an object and
into the Model instance. It receives two parameters: the data from the Record (if it
is undefined, it will use the defaultValue) and the Model instance that is being
read. Note that the Model is not fully populated yet; the Reader populates it in the
order the fields are declared. So, if you want to refer to another field, it has to be
declared before. In the Patient example, we want to convert the weight (originally
in pounds) to kilo (kg) and store this value in the weightKg field. It is ok to make a
reference to the weight, because it was declared before weightKg.

Chapter 2

[45]

The compatible Record declaration in Ext JS 3 (and previous versions) would be
as follows:

var Patient = Ext.data.Record.create([
 {name: 'name'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'gender', type: 'string'},
 {name: 'birthday', type: 'date', dateFormat: 'd/m/Y'},
 {name: 'alive', type: 'boolean', defaultValue: true},
 {name: 'weight', type: 'float'},
 {name: 'weightKg', type: 'float',
 convert: function(value, record) {
 var weightPounds = record.get('weight');
 return Math.round(weightPounds * 0.45359237);
 }
 }
]);

There are not many differences between the Model and Record declarations, so far,
except for the Model/Record declaration itself. The Ext.data.Field class from Ext
JS 3 is compatible with Ext JS 4, except for the allowBlank field configuration, which
is no longer present in Ext JS 4. We will show you how to use this validation when
we talk about Validations. For now, if you are using this allowBlank config in your
Ext JS 3 code, you have to remove it from the field declaration when you migrate to
Ext JS 4.

Ext JS 4 no longer supports the Record class. Remember
to convert your legacy code to the new Model class.

Although Ext JS 4 no longer supports the Record class, there are some functions on
the Ext JS 4 classes that still use Record on the method name. So, if you are migrating
your code from Ext JS 3 to Ext JS 4, remember to check the documentation to see if
the method still exists. For example, on the class Ext.data.Store, the following
methods still work:

•	 findRecord

•	 getNewRccords

•	 getPageFromRecordIndex

•	 getRemovedRecords

•	 getUpdatedRecords

•	 loadRecords

•	 purgeRecords

The New Data Package

[46]

For more information about these functions, please go to
http://docs.sencha.com/ext-js/4-0/#!/api/Ext.data.Store.

To instantiate a Model is very simple. There are two ways you can do it. The first
one is to simply instantiate the object (using Ext.create) and populate the fields,
as follows:

var patient = Ext.create('Patient',{
 name: 'Loiane Groner',
 age: 25,
 phone: '9876-5432',
 gender: 'F',
 birthday: '05/26/1986',
 weight: 150
});

The second one is to use the Model Manager class through the method create and
pass the parameters. The first parameter is the data, in other words, the fields; the
second parameter is the name of the Model to be created, and the third one is the
unique id of the Model instance, which is optional. The following is an example of
how to create a Patient instance using the Ext.ModelMgr class:

var patient = Ext.ModelMgr.create({
 name: 'Loiane Groner',
 age: 25,
 phone: '9876-5432',
 gender: 'F',
 birthday: '05/26/1986',
 weight: 150
}, 'Patient');

Now that we have an instance of the Patient Model created, we can access its
methods:

patient.get('name'); //outputs Loiane Groner
patient.get('alive'); //outputs true
patient.get('weightKg'); //outputs 68

Note that we did not specify the alive field, but we set a
default value to it; when we try to get its value, the output will
be true. Another field we did not specify when we instantiated
the Patient object is the weightKg field, but, as we used the
convert function, we can get the weight value in kilo (kg).

Chapter 2

[47]

As you can see, there are only six types of Fields you can use. There is also another
way you can refer to them, that is, by referencing a member of the Ext.data.Types
class. The following table lists the Field types; it is equivalent to the Ext.data.
Types class and the default value, if none is specified:

Field Type Ext.data.Types equivalent Default Value
auto Ext.data.Types.AUTO ""
string Ext.data.Types.STRING ""
int Ext.data.Types.INT or Ext.data.Types.INTEGER 0
float Ext.data.Types.FLOAT or Ext.data.Types.

NUMBER
0

boolean Ext.data.Types.BOOL or Ext.data.Types.
BOOLEAN

null

date Ext.data.Types.DATE null

So, if we simply create an empty Patient Model, we will get the following output:

Here is the Patient Model declaration, using the Ext.data.Types members:

Ext.define('Patient', {
 extend: 'Ext.data.Model',''
fields: [
 {name: 'name'},
 {name: 'age', type: Ext.data.Types.INT},
 {name: 'phone', type: Ext.data.Types.STRING},
 {name: 'gender', type: Ext.data.Types.STRING},
 {name: 'birthday', type: Ext.data.Types.DATE, dateFormat:
'd/m/Y'},
 {name: 'alive', type: Ext.data.Types.BOOLEAN, defaultValue:
true},
 {name: 'weight', type: Ext.data.Types.FLOAT},
 {name: 'weightKg', type: Ext.data.Types.FLOAT,
 convert: function(value, record) {
 var weightPounds = record.get('weight');

The New Data Package

[48]

 return Math.round(weightPounds * 0.45359237);
 }
 }
]
});

In a Model, you can declare fields, as you used to do in a Record, and you can also
declare functions to manipulate the Model information, just like you used to do in a
Record, as well:

Ext.define('Patient', {
 extend: 'Ext.data.Model', ''
 fields: [
 ...
],
 getBasicInfo: function() {
 var info = 'Name: ' + this.get('name');
 info += ' - Gender: '+ this.get('gender');
 info += ' - Age: '+ this.get('age');
 return info;
 }
});

The function you created can be accessed by using the following code:

patient.getBasicInfo();

The output will be the following:

Name: Loiane Groner - Gender: F - Age: 25

Validating the model
Validations are one of the new Model capabilities in Ext JS 4. You can validate the
Model data against some rules, which you define in the validations declaration inside
a Model. The Record class in Ext JS 3 does not have this feature.

A validation declaration (Ext.data.validations) follows the same structure
as a field declaration: you need to specify a type (there are five types of
validations) and the name of the field you want to validate. There are some optional
configurations for some validations. You can specify more than one validation for a
field. The following is an example of some validation rules for the Patient Model:

Ext.define('Patient', {
 extend: 'Ext.data.Model',''
 fields: [

Chapter 2

[49]

 ...
],
 validations: [
 {type: 'presence', field: 'age'},
 {type: 'presence', field: 'name'},
 {type: 'length', field: 'name', min: 2, max: 60},
 {type: 'format', field: 'name', matcher: /([a-z]+)/},
 {type: 'inclusion', field: 'gender', list: ['M', 'F']},
 {type: 'exclusion', field: 'weight', list: [0]}
]
});

•	 The presence validation verifies if the value is present (0 (zero) is a valid
value, but an empty string is not).

•	 The length validation verifies if the length of the given value is between the
min and the max values. The min and max configurations are optional.

•	 The format validation verifies if the given value matches the given regular
expression.

•	 The inclusion validation verifies if the given value matches with one of the
given values of the list.

•	 The exclusion validation verifies if the given value does not match with one
of the given values of the list.

To validate the Patient Model, we need to call the validate method. These
methods return a Ext.data.Errors object:

var patient = Ext.create('Patient',{
 name: 'L',
 phone: '9876-5432',
 gender: 'Unknown',''
 birthday: '05/26/1986'
});

var errors = patient.validate();
errors.isValid();
errors.items;

The method isValid returns true or false; true if the Model is valid, false
otherwise. In the preceding example, some of the information is not valid, so in this
case it will return false.

The New Data Package

[50]

Let's check the Patient validation:

•	 The field age is not present, so we have an invalid value.
•	 The field name is present; it is different from an empty string, so this

validation is ok.
•	 The min length of name must be 2 and the max length must be 60. The length

of name is 1, so the validation will fail.
•	 The name must have only letters (in lowercase); this validation fails.
•	 The gender must be F or M, the model value is 'Unknown','' (empty string)

this validation fails.
•	 The weight can be any value, except zero. It is not zero, so this validation

is ok.

The property items returns a list of all errors. It will return the following errors:

[
 {field: "age"
 message: "must be present"},
 {field: "name"
 message: "is the wrong length"},
 {field: "name"
 message: "is the wrong format"},
 {field: "gender"
 message: "is not included in the list of acceptable values"}
]

You can also get the errors for a specific field:

errors.getByField('name');

And the output will be:

[
 {field: "name"
 message: "is the wrong length"},
 {field: "name"
 message: "is the wrong format"},
]

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

[51]

Loading/saving data with proxies and stores
Until now, we covered some examples using a Patient Model and we created some
instances to exemplify it. But in real-world applications, you usually load the data
from a server. We will take a look at how to set up a proxy inside a Model—one of
the new features in Ext JS 4.

All the loading and saving data can be done inside a proxy in Ext JS 4. Unlike Ext JS
3, in Ext JS 4 you can perform all these actions from the Model, with no need to use a
Store.

Ext.define('Blog', {
 extend: 'Ext.data.Model',
''
 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'},
 {name: 'url', type: 'string'}
],
 proxy: {
 type: 'rest',
 url : 'data/blogs',
 format: 'json',
 reader: {
 type: 'json',
 root: 'blogs'
 }
 }
});

In the preceding example, we have a Model called Blog with three fields: id, name, and
url. We also configured a proxy, RestProxy, which will load the data using RESTFul
URLs (with base data/blogs/). We also set up the proxy to use a JsonReader.

With a proxy configured, we can perform some actions directly from the Model.
For example:

Blog.load(1, {
 success: function(blog) {
 console.log("blog: " + blog.get('url'));
 }
});

The New Data Package

[52]

The preceding code loads (the GET request) the data from the URL js/chapter02/
data/blogs/1; 1 is the id we passed as parameter manually to the load method.
The response will be a json object, as follows:

{
 "blogs": [
 {
 "id": 1,
 "name": 'Loiane Groner',
 "url": 'http://loianegroner.com'
 }
]
}

Using the same blog reference you loaded the previous code, you can also perform
an update on the Model. The following code will make a PUT request to js/
chapter02/data/blogs/1:

blog.set('name','' 'Loiane');

blog.save({
 success: function() {
 console.log('The blog was updated');
 }
});

Another action you can perform is a delete. The following code will make a DELETE
request to js/chapter02/data/blogs/1:

blog.destroy({
 success: function() {
 console.log('The blog was destroyed!');
 }
});

And, if you want to create a new Blog and save it, here is how you can do it:

var blog = Ext.ModelMgr.create({
 name: 'Loiane Groner - Pt-BR',
 url: 'http://loiane.com'
}, 'Blog');

blog.save();

Chapter 2

[53]

As we are creating a new blog, we do not have an id yet. That is why the previous
code will make a POST request to data/blogs. The server should return a json object
with the blog information plus the id created. Let's say the next id is 2; the server
should return something like the following:

{
 "id": 2,
 "name": 'Loiane Groner - PT-BR',
 "url": 'http://loiane.com'
 }

Setting the proxy to a Model will allow you to reuse the proxy information. This
way, you do not need to specify the proxy every time you declare a record. In Ext JS
4, you can also reuse the Model in as many Stores as you want. In Ext JS 3, a Record
could only belong to one Store at a time; if you needed to reuse, you would have to
make a copy of it. The following is an example of how to use a Model inside a Store;
we will use the Blog Model that we declared earlier in this topic:

var store = Ext.create('Ext.data.Store',{
 model: 'Blog'
});

store.load(function(records) {
 Ext.MessageBox.alert('Testing Ext JS 4 Models', "Loaded " + store.
getCount() + " records");
});

But if you want to declare the Proxy inside the Store, you can do that as well:

Ext.define('Blog', {
 extend: 'Ext.data.Model',''
 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'},
 {name: 'url', type: 'string'}
]
});

var store = Ext.create('Ext.data.Store',{
 model: 'Blog',
 proxy: {
 type: 'rest',
 url : 'data/blogs',
 format: 'json',
 reader: {
 type: 'json',

The New Data Package

[54]

 root: 'blogs'
 }
 }
});

This can be useful when you use the same Model, but will retrieve the data from
different URLs.

For now, this is what you need to know. We will take a look at Model Associations in
the next topic, and then we will go back and explore proxies and stores in greater detail.

Linking models through associations
When we develop real-world applications, we usually have several Models. Most
of the time, these Models are related to each other. Until Ext JS 3, each Record was
a standalone model; in Ext JS 4, you can express relationships between the Models
through Associations (Ext.data.Association).

There are two types of Associations between Models:

•	 belongsTo: This represents a many-to-one association with another Model
•	 hasMany: This represents a one-to-many relationship between two Models

To exemplify how to use associations in a Model, let's consider the following diagram:

As you can see, we have three tables: Author, Book, and Chapter. An author can
write many books and books can have many chapters.

The first step is to create the Models with the fields declaration. We will also
declare the association we described previously:

Ext.define('Author', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},

Chapter 2

[55]

 {name: 'name', type: 'string'},
],

 hasMany: {model: 'Book', foreignKey: 'authorId'}
});

Ext.define ('Book', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'pages', type: 'int'},
 {name: 'numChapters', type: 'int'},
 {name: 'authorId', type: 'int'}
],

 hasMany: {model: 'Chapter', foreignKey: 'bookId'}
});

Ext.define ('Chapter', {

extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'number', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'bookId', type: 'int'}
]
});

Here are some options you can configure when you declare a hasMany association:

•	 model: This is the name of the model that is being associated with.
•	 name: This is the name of the function to be created in the owner model; the

default is to add an s at the end of the associated model name (in lowercase),
as we are going to demonstrate in the next example.

•	 primaryKey: This is the name of the primary key of the owner model; the
default value is id.

•	 foreignKey: This is the name of the foreign key of the associated model
that links to the owner model. Defaults to owner model name plus _id
(in lowercase).

The New Data Package

[56]

•	 filterProperty: This optionally overrides the default filter that is set up
on the associated Store. If this is not set, a filter is automatically created and
filters the association based on the configured foreignKey.

In the previous example, the Author Model is declaring a hasMany association with
the Book model. The model is Book, the name of the function to be created is books
(default value), the primary key is also id (Book.id, is default value), and the foreign
key is authorId (the default value would be author_id). The same rules apply to
Book -> Chapter association. If we were using the default values for all the options,
we could declare the Author -> Book hasMany association, as follows:

hasMany: 'Book'

As we mentioned, when you create an association, a function will be created on the
owner model, so you can access the associated data:

Author.load(1, {
 success: function(author) {

 var books = author.books();

 console.log("Author "+ author.get('name') + " has written " +
books.getCount() + " books");

 books.each(function(book) {

 var title = book.get('title');
 var chapters = book.chapters();

 console.log("Book " + title + " has " + chapters.getCount()
+ " chapters");

 chapters.each(function(chapter) {
 console.log(chapter.get('number') + " " + chapter.
get('title'));
 });
 });
 }
});

In the preceding example, the functions author.books() and book.chapters() will
be created. The author.books() function will return all the books where authorId
equals the id of the Author instance (in this case, 1). The function book.chapters()
will return all the chapters where bookId equals the Book instance. The Store of the
associated model will filter the data though the specified primary key (owner model)
and foreign key (associated model).

Chapter 2

[57]

The filterProperty object can be useful when we want to filter the associated
data. For example, let's say we have declared filterProperty as the filter in the
Blog Model:

hasMany: {model: 'Book', foreignKey: 'authorId', filterProperty:
'filter'}

And we want to load only the books written by Loiane Groner. To do so, we have to
execute the following code:

var store = Ext.create('Author',{filter: 'Loiane Groner'}).books();

The code above is equivalent to the following code:

var store = Ext.create('Ext.data.Store', {
 model: 'Book',
 filters: [
 {
 property: 'filter',
 value : 'Loiane Groner'
 }
]
});

We will look into filters in further topics. For now, you only need to know that you
have this option available in the hasMany association.

We can also add a new book object to the author object through the add method;
when we call the sync() method, it is going to save the new book to the store:

var author = Ext.ModelMgr.create({
 id: 2,
 name: 'Loiane Groner'
}, 'Author');

var books = author.books();

books.add({
 title: 'Ext JS 4: Fisrt Look',
 pages: 250,
 numChapters: 7
});

books.sync();

The New Data Package

[58]

In the preceding example, we first create an Author instance, and then we get the Book
Store reference through the books() function. As we have a Store, we can use any
function of it, such as the add() function, which we can use to add a new object to the
Store. When we call the books.add() function, the Store will automatically set the
authorId to 2, before saving it. And, when we call the sync() function, we are asking
the Store to save the changes. Similarly, we can add a new chapter to a book.

The Store also can decode nested data. So, we can load an Author and all its
associated data at once. It would be something like this:

{
 "authors": [
 {
 "id": 1,
 "name": 'Shea Frederick',
 "books": [{
 "id": 11,
 "title": 'Learning Ext JS 3.2',
 "pages": 432,
 "numChapters": 17,
 "chapters": [
 {
 "id": 111,
 "number": 1,
 "title": 'Getting Started'
 },
 {
 "id": 112,
 "number": 2,
 "title": 'The Staples of Ext JS'
 }
]
 },
 {
 "id": 12,
 "title": 'Learning Ext JS',
 "pages": 324,
 "numChapters": 14,
 "chapters": [
 {
 "id": 123,
 "number": 3,
 "title": 'Forms'
 },

Chapter 2

[59]

 {
 "id": 124,
 "number": 4,
 "title": 'Buttons, Menus, and Toolbars'
 }
]
 }
]
 }
]
}

This way, we can access all the books that belong to an author and all the chapters
that belong to a book. What if you want to access the author that the book belongs
to? What if you want to have access in both ways, that is, access "books by a specific
author" and "author of a specific book"? You can access all the books an author has
written, and you can find out which author wrote that book. To do so, we will add a
belongsTo association to the Book and Chapter models. Let's update our models:

Ext.define('Author', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'},
],

 hasMany: {model: 'Book', foreignKey: 'authorId'}
});

Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'pages', type: 'int'},
 {name: 'numChapters', type: 'int'},
 {name: 'authorId', type: 'int'}
],

 hasMany: {model: 'Chapter', foreignKey: 'bookId'},

 belongsTo: {model: 'Author', foreignKey: 'authorId'}
});

Ext.define('Chapter', {

The New Data Package

[60]

 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'number', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'bookId', type: 'int'}
],

 belongsTo: {model: 'Book', foreignKey: 'bookId'}
});

Another way to declare an association is through the associations declaration.
It is very helpful when a Model has many associations declared. As in the hasMany
association, the belongsTo association also has some configuration options:

•	 model: This is the name of the model that is being associated with.
•	 primaryKey: This is the name of the primary key of the owner model. The

default value is id.
•	 foreignKey: This is the name of the foreign key of the associated model that

links to the owner model. It defaults to the owner model name and _id (in
lowercase).

•	 getterName: This is the name of the getter function that will be added to the
owner model. It defaults to get and the name of the associated model.

•	 setterName: This is the name of the setter function that will be added to the
owner model. It defaults to set and the name of the associated model.

In the previous example, we declared two belongsTo associations, one in the Book
Model and another one in the Chapter Model. In the Book Model, we specified
that the Book belongs to an Author, so the name of the model is Author. The Book
primary key is id, which is the default value, so we do not need to explicitly declare
it. The Author foreign key is authorId, which is not the default value (author_id),
so we need to declare it. The belongsTo association will create two functions in the
Book model—getAuthor and setAuthor (default values):

Book.load(11, {
 success: function(book) {

 book.getAuthor(function (author){
 console.log("The author of this book is " author.
get('name'));''
 });
 }
});

Chapter 2

[61]

The preceding example shows how to use the getter function created in the Book
model. This function will use the Author configured proxy to load its data, and that
is why the getter function is asynchronous. There are also success, failure, and
callback properties you can configure:

book.getAuthor({
 callback: function(author, operation) {},
 success : function(author, operation) {},
 failure : function(author, operation) {},
 scope : this
});

The callback function will always be called. It is the one we used when we called
the book.getAuthor() function. The success function will be called if the load
was completed successfully. The failure function will be called if the load was not
completed successfully. The scope is optional; it is the scope object in which the
callbacks are going to get executed.

In each case above, the callbacks are called with two arguments—the associated
model instance (in the previous example, it would be author) and the operation
object that was executed to load that instance. The Operation object is useful when
the instance could not be loaded.

We can also call the setter function:

book.setAuthor(1);

book.set('authorId',1);

The functions above are equivalent. As we did for the getter function, we can also
use a second argument and get the result from the callback function:

book.setAuthor(1, function(book, operation) {
 console.log(book.get('authorId')); //outputs 1
});

Like the getter function, there are also some other functions you can configure:

book.setAuthor(1, {
 callback: function(book, operation){},
 success : function(book, operation){},
 failure : function(book, operation){},
 scope : this
});

The New Data Package

[62]

The callback function will always be called. It is the one we used when we called
the book.setAuthor() function. The success function will be called if the update
was completed successfully. The failure function will be called if the update was
not completed successfully. The scope is optional; it is the scope object in which the
callbacks are going get executed.

We have learned how to declare the hasMany or belongsTo config declarations.
Another way to declare them is through the associations declaration:

Ext.define('Author', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'},
],

 associations: [
 {type: 'hasMany', model: 'Book', foreignKey: 'authorId'}
]
});

Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'pages', type: 'int'},
 {name: 'numChapters', type: 'int'},
 {name: 'authorId', type: 'int'}
],

 associations: [
 {type: 'hasMany', model: 'Chapter', foreignKey: 'bookId'},
 {type: 'belongsTo',model: 'Author', foreignKey: 'authorId'}
]
});

Ext.define('Chapter', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'number', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'bookId', type: 'int'}

Chapter 2

[63]

],

 associations: [
 {type: 'belongsTo', model: 'Book', foreignKey: 'bookId'},
]
});

The preceding code is equivalent to the declaration we made earlier in this topic.
The difference is that we can declare more dependencies of the same type at the
same time.

Proxies
Proxies are responsible for loading and saving the data in Ext JS. They are used by
Stores and they can also be used directly in a Model.

In Ext JS 3, we used to load and save data only in a server. Ext JS 4 introduces three
new proxies, which can be used to store data locally, at the client side (browser).

Basically, in Ext JS 4, we have two types of proxies—client proxies and server proxies.
The client proxies are: LocalStorageProxy, SessionStorageProxy, and MemoryProxy.
The server proxies are: AjaxProxy, ScriptTagProxy, DirectProxy, and RestProxy.

In the following diagram, you can see the structure of how proxies are organized in
Ext JS 4. We will look at each proxy closely in this topic:

Ext.data.proxy.Proxy

Ext.data.proxy.Client Ext.data.proxy.Server

LocalStorageProxy

SessionStorageProxy

MemoryProxy

Ext.data.proxy.Ajax

Ext.data.proxy.Rest

Ext.data.proxy.JsonP

Ext.data.proxy.Direct

Client proxies
Client proxies are used for local storage (by local, we mean the browser). Client-side
storage is one of the new features of HTML5, and unfortunately not all browsers
support it, only the newest versions:

•	 Internet Explorer 8.0+
•	 Firefox 3.5+
•	 Safari 4.0+

The New Data Package

[64]

•	 Chrome 4.0+
•	 Opera 10.5+
•	 IPhone 2.0+
•	 Android 2.0+

The HTML5 storage is a way for web pages to store named key-value locally, within
the client browser. It works like cookies—you can navigate away from the website,
exit your browser, and when you open your browser again, the data will be there.
The difference between HTML5 storage and cookies is that the data you store locally
is never transmitted to the web server (unless you do it manually).

For further reading on HTML5 and local storage, please read
http://dev.w3.org/html5/webstorage/.

The advantage of client-side storage is that you need not make a
server request every time you need to load or save some data. The
disadvantage is that it does not work on every browser.

The following diagram illustrates the Ext JS 4 client proxies:

Ext.data.proxy.Client

Ext.data.proxy.Memory Ext.data.proxy.WebStorage

Ext.data.proxy.LocalStorage Ext.data.proxy.SessionStorage

•	 Ext.data.proxy.Client is the base class for every client proxy
•	 Ext.data.proxy.Client is the superclass for Ext.data.proxy.Memory and Ext.

data.proxy.WebStorage, and is not used directly
•	 Ext.data.proxy.WebStorage is the superclass for Ext.data.proxy.LocalStorage

and Ext.data.proxy.SessionStorage, and is also not used directly
This leaves us with three client proxies that we can instantiate:

•	 Ext.data.proxy.LocalStorage
•	 Ext.data.proxy.SessionStorage
•	 Ext.data.proxy.Memory

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

[65]

LocalStorageProxy
The LocalStorageProxy uses the new HTML5 localStorage API to load and
save data into the client browser. The localStorage sets the fields on the domain;
this means you can close the browser and reopen it, and the data will be in the
localStorage. The localStorage is used for long-term storage; it is also accessible
in all browser tabs/windows.

The HTML5 storage is a set of key-value; and you can store any data supported
by JavaScript, such as string, integer, float, and boolean. JSON (JavaScript
Object Notation) is not supported, but you do not need to worry about it, because
LocalStorageProxy does all the work to serialize and deserialize it.

LocalStorageProxy is useful for storing user-specific information without needing
to make a server request. For example, consider we want to save some user
information, so we are going to create a User Model to represent this information
and we will also set the proxy as LocalStorageProxy:

Ext.define('UserPreference', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'description', type: 'string'}
],

 proxy: {
 type: 'localstorage',
 id : 'userpreference'
 }
});

Our UserPreference Model contains two fields—id and description. We
configured the proxy as LocalStorageProxy and we also used an id. By setting an
id to the proxy, we enabled it to mange the saved data, and this is very important.

Now let's set up a Store, add some UserPreferences to it, and save it:

var store = Ext.create('Ext.data.Store',{
 model: 'UserPreference'
});

store.load();

store.add({description: 'Blue theme'});
store.add({description: 'Loiane Groner'});

store.sync();

The New Data Package

[66]

And, if we take a look at the localStorage of the browser (Chrome), we will see the
saved data— note the id we created for the proxy:

Remember, we can also manage the data directly from the Model:

var userPref = Ext.ModelManager.create({
 description: 'Favorite JS Framework: Ext JS'
}, 'UserPreference');

userPref.save();

Let's try closing the browser and reopening it. Now, we are going to try retrieving
the data:

store.load(function(records, operation, success) {

 var userPref,i;

 for (i=0;i<records.length;i++){
 userPref = records[i].data;
 console.log(userPref.id + " " + userPref.description);
 }
});

The output will be:

1 Blue theme
2 Loiane Groner
3 Favorite JS Framework: Ext JS

Chapter 2

[67]

Works fine! If you try to use the LocalStorageProxy in a browser without HTML5
support, such as IE 7, the constructor will throw an error:

SessionStorageProxy
The SessionStorageProxy uses the new HTML5 sessionStorage API to load and
save data into the client browser. sessionStorage sets the fields on the window; this
means that all the data will be lost when you close the browser, even if the website
remains open in another browser window. The sessionStorage data is confined to
the browser window that it was created in.

Let's modify our UserPreference Model to a SessionStorageProxy:

Ext.define('UserPreference', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'description', type: 'string'}
],

 proxy: {
 type: 'sessionstorage',
 id : 'userpreference'
 }
});

Remember to always create an id to the proxy. If you do not
specify any, it will use the store's one. If you do not specify an id
for the store and the proxy, it will throw an error.

Let's use the same Store we used in the previous topic to save some data:

var store = Ext.create('Ext.data.Store',{
 model: 'UserPreference'
});

store.load();

The New Data Package

[68]

store.add({description: 'Blue theme'});
store.add({description: 'Loiane Groner'});

store.sync();

As you can see, the data is stored locally:

But, if we close the window and try to retrieve the data we saved, we will get
nothing, because the data is no longer available.

MemoryProxy
MemoryProxy is a helper proxy. Usually, it is used to load some inline data into a
store. The MemoryProxy contents are lost in every page refresh. It can be useful to
load temporary data.

For example, let's say we have to load a Gender model to populate a field in a form.
A gender can be female, male, or unknown. You can use a MemoryProxy to load
this data:

Ext.define('Gender', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'}
]
});

var data = {
 genders: [
 {

Chapter 2

[69]

 id: 1,
 name: 'Female'
 },
 {
 id: 2,
 name: 'Male'
 },
 {
 id: 3,
 name: 'Unknown'
 }
]
};

var store = Ext.create('Ext.data.Store',{
 autoLoad: true,
 model: 'Gender',
 data : data,
 proxy: {
 type: 'memory',
 reader: {
 type: 'json',
 root: 'genders'
 }
 }
});

//ComboBox using the data store
var comboBox = Ext.create('Ext.form.field.ComboBox', {
 fieldLabel: 'Gender',
 renderTo: 'genderCombo',
 displayField: 'name',
 width: 200,
 labelWidth: 50,
 store: store,
 queryMode: 'local',
 typeAhead: false
});

The New Data Package

[70]

This will be the output for the preceding code:

While the page is opened, the data will be stored in the Store and you can
manipulate it. The moment you navigate away from the current page, or refresh the
page, the data will be lost.

Server proxies
Server proxies are used for loading and saving data from/to a web server through
HTTP requests. The diagram below illustrates the Ext JS 4 server proxy structure:

Ext.data.proxy.Server

Ext.data.proxy.JsonP Ext.data.proxy.Ajax

Ext.data.proxy.Rest

Ext.data.proxy.Direct

•	 Ext.data.proxy.Server is the base class for every server proxy
•	 Ext.data.proxy.Server is the superclass for Ext.data.proxy.JsonP, Ext.data.

proxy.Ajax, and Ext.data.proxy.Direct, and it is not used directly
•	 Ext.data.proxy.Rest is an extension of Ext.data.proxy.Ajax

This leaves us with four server proxies we can instantiate:

•	 Ext.data.proxy.Ajax
•	 Ext.data.proxy.Rest
•	 Ext.data.proxy.JsonP
•	 Ext.data.proxy.Direct

Chapter 2

[71]

AjaxProxy
The AjaxProxy is the most-used proxy. It uses Ajax requests to load and save the
data from/to a web server. It used to be the Ext.data.HttpProxy in Ext JS 3.

To set up an Ajax proxy, you simply need to use ajax as the type. For example, let's
set up a model with an Ajax proxy:

Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'pages', type: 'int'}''''''''
],

 proxy: {
 type: 'ajax',
 url : 'data/books.json'
 }
});

The previous code is equivalent to the following:

var ajaxProxy = Ext.create('Ext.data.proxy.Ajax',{
 url: 'data/books.json',
 model: 'Book',
 reader: 'json'
});

Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'pages', type: 'int'}
],

 proxy: ajaxProxy
});

Note that, in the first example, we only specified the type and the URL from where
we are going to retrieve the data. In the second example, we are using two extra
configurations—model and reader. When we write the code, as in the first example,
these two configurations are default, because the Store already knows which Model
it is going to use and the default Reader is JsonReader.

The New Data Package

[72]

When we make a read request to the server, the proxy sends a GET request to the
specified URL, and if we make any write request (update, insert, delete), it will send
a POST request.

For an example, we will try to load some data; to do so, we will create a store and list
all the loaded data:

var store = Ext.create(Ext.data.Store',{
 model: 'Book'
});

store.load(function(records) {

 var book,i;

 for (i=0;i<records.length;i++){
 book = records[i].data;
 console.log(book.id + " " + book.title);
 }
});

If you open the books.json file, you will find the following JSON object:

[
 {
 "id": 11,
 "title": 'Learning Ext JS 3.2',
 "pages": 432,
 "numChapters": 17
 },
 {
 "id": 12,
 "title": 'Learning Ext JS',
 "pages": 324,
 "numChapters": 14
 }
]

If you specify any filter, grouping, paging, or sorting options, they will be
appended to the request as parameters. The following are the options:

•	 filterParam: This is the name of the filter parameter that is sent to the
server to filter data. The default value is filter.

•	 groupParam: This is the name of the group parameter that is sent to the
server to group data. The default value is group.

Chapter 2

[73]

•	 pageParam: This is the name of the page parameter that is sent to the server
to select a specified page. The default value is page.

•	 startParam: This is the name of the start Model parameter that is sent to the
server (used in paging). The default value is start.

•	 limitParam: This is the name of the limit Model parameter that is sent to the
server (used in paging). The default value is limit.

•	 sortParam: This is the name of the sort parameter sent to the server for
sorting. The default value is group.

•	 extraParams: This gives the names of the parameters that are going to be
sent in every request to the server. If you send any other parameter with the
same name as any of these ones, they will be overridden.

The benefit of using parameters is limiting the number of records to be loaded; this
way, the browser memory for JavaScript is not overloaded.

Ext JS 4 introduces the Ext.data.Operation, which is every single read or write
operation executed by a proxy. The following are some options you can configure in
an Operation, though you will rarely be using it directly:

•	 action: Any of the actions you want to perform—read, create, update, and
destroy (delete)

•	 batch: This operation is part of the Ext.data.Batch object (optional config)
•	 filters: This is an array of filters
•	 group: This is for group configuration
•	 limit: This is is the number of Model instances you want to load from the

server
•	 sorters: This is an array of sorters
•	 start: This is is the number is the initial Model to be loaded used by paging

The filters, group, limit, sorters, and start options can be only used for
read requests.

We will create a proxy that will be used in the following examples:

var proxy = Ext.create(E'xt.data.proxy.Ajax',{
 url : '/books',
 model: 'Book'
});

The New Data Package

[74]

For example, we will create an Operation to load five books from the server and, for
that, we will use the start and limit parameters; then, we will use a proxy to load
this data from the server:

var operation = Ext.create('Ext.data.Operation',{
 action: 'read',
 start : 0,
 limit : 5
});

proxy.read(operation);

When we call the read function, the proxy makes a request to the URL /
books?start=0&limit=5, appending the parameters we set in it.

As mentioned earlier, we can customize the name of these parameters:

var operation = Ext.create('Ext.data.Operation',{
 action: 'read',
 startParam: 'firstRecord',
 limitParam: 'limitOfRecords',
 start : 0,
 limit : 5
});

proxy.read(operation);

And when we call the read function again, the URL makes the proxy request: /books
?firstRecord=0&limitOfRecords=5

We can also create an operation to load a specific page from the server:

var operation = Ext.create('Ext.data.Operation',{
 action: 'read',
 page : 5
});

proxy.read(operation);

And, when we call the read function, the proxy will make the following request: /
books?page=5

Chapter 2

[75]

We can also configure a sorter in an operation:

var operation = Ext.create('Ext.data.Operation',{
 action: 'read',
 sorters: [
 Ext.create('Ext.util.Sorter',{
 property : 'pages',
 direction: 'DESC'
 }),
 Ext.create('Ext.util.Sorter',{
 property : 'numChapters',
 direction: 'DESC'
 }),
 Ext.create('Ext.util.Sorter',{
 property : 'title',
 direction: 'ASC'
 })
]
});

proxy.read(operation);

The sorter configuration is not a simple value such as the page, start, or limit
options; it is a JSON object. When we call the load function, the proxy will encode it
and call the URL /books?sort=[{"property":"pages","direction":"DESC"},{"
property":"numChapters","direction":"DESC"},{"property":"title","dire
ction":"ASC"}]. Then, on the server side, you will have to decode it.

The filter option works in the same way:

var operation = Ext.create('Ext.data.Operation',{
 action: 'read',
 filters: [
 Ext.create('Ext.util.Filter',{
 property: 'pages',
 value : '250'
 })
]
});

proxy.read(operation);

And it is going to call the following URL: /books?filter=[{"property":"pages",
"value":"250"}]

The New Data Package

[76]

If we decide to put it all together in a single Operation, this is what we get:

var operation = Ext.create('Ext.data.Operation',{
 action: 'read',
 start : 0,
 limit : 5,
 sorters: [
 Ext.create('Ext.util.Sorter',{
 property : 'pages',
 direction: 'DESC'
 }),
 Ext.create('Ext.util.Sorter',{
 property : 'numChapters',
 direction: 'DESC'
 }),
 Ext.create('Ext.util.Sorter',{
 property : 'title',
 direction: 'ASC'
 })
],
 filters: [
 Ext.create('Ext.util.Grouper',{
 property: 'pages',
 value : '250'
 })
]
});

If we call the read function, the proxy will append all config options at the end of
the URL, separated by &:

/books?start=0&limit=5&sort=[{"property":"pages","direction":"DESC
"},{"property":"numChapters","direction":"DESC"},{"property":"titl
e","direction":"ASC"}]&filter:[{"property":"pages","value":"250"}]

The AjaxProxy also has two functions that can be used to customize how the sorters
and filters are sent to the server; in other words, if you want to encode them in a
different format, you can.

The web server accepts the sorters and filters in the format
sort=theme,ASC;title,DESC, or filter=theme:extjs. To do so, we can customize
the functions encodeSorters and encodeFilters. Both will receive an array of
objects, sorters and filters, respectively.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

[77]

We will apply the changes to our AjaxProxy instance:

var proxy = Ext.create('Ext.data.proxy.Ajax',{
 url : '/books',
 model : 'Book',

 encodeSorters: function(sorters) {
 var length = sorters.length;
 var sortStrs = [];
 var sorter, i;

 for (i = 0; i < length; i++) {
 sorter = sorters[i];

 sortStrs[i] = sorter.property + ',' + sorter.direction;
 }

 return sortStrs.join(";");
 },

 encodeFilters: function(filters) {
 var length = filters.length;
 var filterStrs = [];
 var filter, i;

 for (i = 0; i < length; i++) {
 filter = filters[i];

 filterStrs[i] = filter.property + ',' + filter.value;
 }

 return filterStrs.join(";");
 }
});

The following URL will be executed when we call the read function. It is much easier
to read now:

/books?start=0&limit=5&sort=pages,DESC;numChapters,DESC;title,ASC&fil
ter:pages,250

The AjaxProxy has a limitation: you can only call URLs from the same domain
where your application is deployed. For example, if your application is deployed
at http://sencha.com you can only call URLs from sencha.com. This is a browser
limitation, which means you cannot make Ajax calls to a different server.

The New Data Package

[78]

Rest proxy
The Rest proxy is a subclass of AjaxProxy, but all the CRUD (create, read, update,
delete) actions are made to RESTful URLs.

The basic principle of RESTful URLs is to have a base URL to the service, exchange
data using JSON, XML, or YAML (YAML Ain't Markup Language); only JSON and
XML apply to Ext JS and the CRUD operations are supported by the HTTP methods
GET, POST, DELETE, and PUT.

Consider http://packtpub.com/books as the base URL. The table below shows the
mapping URL and the CRUD operations:

URL Create Read Update Delete
http://packtpub.com/books POST GET all books
http://packtpub.com/
books/26

GET book
with id=26

PUT book
with
id=26

DELETE
book with
id=26

For further information about RESTful URLs, please read
http://microformats.org/wiki/rest/urls.

To create a Rest proxy, you simply need to specify rest as the type of proxy:

Ext.define('Book', {
 Extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'},
 {name: 'author', type: 'string'}
],

 proxy: {
 type: 'rest',
 url : '/books'
 }
});

Chapter 2

[79]

When we create a book and call the save method, the proxy will make a POST
request to the URL /books, as we defined in the proxy. Consider that the server
returned 26 for the id when the save was completed.

var book = Ext.ModelManager.create({
 name: 'Ext JS 4: First Look',
 author: 'Loiane Groner'
}, 'Book');

book.save(); //POST /books

Now, we will try to load the book we created, from the server. The proxy will make a
GET request to /books/26:

Ext.ModelManager.getModel('Book').load(26, {//GET /books/26
 success: function(book) {
 console.log(book.getId()); //outputs 26
 }
});

Using the same book reference we created, if we want to update the name of the
book, we can call the setter function and then call the save method again; but, this
time, as we already have a book id, it is going to make a PUT request to the URL /
books/26:

book.set('name', 'Ext JS 4');
book.save(); //PUT /books/26

Still using the same book reference, we can also try to delete it; for that, we can call
the method destroy. When we do it, the proxy will make a DELETE request to /
books/26:

book.destroy({ //DELETE /books/26
 success: function() {
 console.log('The Book was deleted');
 }

});

In the following code, we will try to load the data (all books) from the server. To do
so, we will create a store and call the method load from the store:

var store = Ext.create('Ext.data.Store',{
 model: 'Book'
});

store.load(); //GET /books

The New Data Package

[80]

When we load all the books, the proxy will make a GET request to /books.

As the Rest proxy is a subclass of AjaxProxy, the proxy's call (in the URL) has to be
in the same domain, protocol, port, and subdomain as your application. For example,
if your application is deployed at loiane.com, you can only call URLs that belong to
loiane.com, not from loianegroner.com. If you need to call a URL from a different
domain, you have to use JsonPProxy.

For more information about the same origin policy, please go to
http://en.wikipedia.org/wiki/Same_origin_policy.

JsonP proxy
The JsonP proxy is a useful proxy when you need to make requests to a different
domain, on which your application is not deployed. It was known in Ext JS 3 as Ext.
data.ScriptTagProxy. The name is self explanatory; this proxy injects a script tag
into the DOM every time the request is made.

For example, your application is deployed on http://loiane.com, but you want to
retrieve some data (books) that is on http://loianegroner.com.

The script tag that would be injected looks like this:

<script src="http://loianegroner/books?callback=someCallback"></
script>

To set up JsonP proxy, you simply need to set the type as jsonp, which is
as follows:

Ext.define('Blog', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'lang', type: 'string'},
 {name: 'url', type: 'string'},
],

 proxy: {
 type: 'jsonp',
 url : 'http://loianegroner.com/extjs/blogs.php'
 }
});

The proxy will take care of everything; you do not need to worry about anything else.

Chapter 2

[81]

Now, we will try to load some data. Let's create a store:

var store = Ext.create('Ext.data.Store',{
 model: 'Blog'
});

store.load(function(records) {

 var blog,i;
 for (i=0;i<records.length;i++){
 blog = records[i].data;
 console.log(blog.id + " : " + blog.url);
 }
});

The output of the preceding code will be as follows:

1 : loianegroner.com

We loaded the data from http://loianegroner.com/extjs/blogs.php. The
blogs.php file looks like this:

<?php
$callback = $_REQUEST['callback'];

// Create the output object.
$output = array('id' => 1, 'url' => 'loianegroner.com');

//start output
if ($callback) {
 header('Content-Type: text/javascript');
 echo $callback . '([' . json_encode($output) . ']);';
} else {
 header('Content-Type: application/x-json');
 echo json_encode($output);
}

The preceding code is a php file that processes JsonP and Ajax proxy calls. If it is a
jsonp call, the content type of the response will be a JavaScript, and if the request is
from an ajax proxy, the content type will be JSON.

The New Data Package

[82]

You cannot simply return a JSON object from the server when the request is made by
a JsonP proxy. You have to add the callback function in it. If you inspect the return
of this file using Chrome developer tools or Firebug (a Firefox add-on) this is what
you will see:

Ext.data.JsonP.callback1([{"id":1,"url":"loianegroner.com"}]);

Remember that JsonPProxy proxy is supposed to be used only
when you need to call a URL that is in another domain; if your
data is in the same domain where your app ID is deployed, you
can use AjaxProxy.

Stores
The Store is responsible for encapsulating the Model and can also configure a proxy
to load and/or save the data. It is also capable of sorting, filtering, and grouping. The
following is the class hierarchy of the Store:

Ext.data.AbstractStore

Ext.data.Store

Ext.data.ArrayStore

Ext.data.BufferStore

Ext.data.JsonStoreExt.data.JsonPStore

Ext.data.XmlStore

Some changes were made from Ext JS 3 to Ext JS 4 and some classes were added to
Ext JS 4. In Ext3, the Store class was a subclass of the Observable class. In Ext JS 4,
there is a new class named AbstractStore, which is the super class of all Store classes.
There is a TreeStore, which represents the data for a Tree and the Store class. The
Store class is the superclass of several stores: ArrayStore, BufferStore, JsonStore,
XmlStore, DirectStore, and JsonPStore. Each of these stores is automatically
associated with its proxy.

Chapter 2

[83]

Readers
Reader classes are responsible for decoding the raw data from a server that is to
be loaded into a Model instance or Store. The main difference between Ext JS 3 and
Ext JS 4 is that, in Ext JS 4, readers are not coupled into a Store but are coupled
into a proxy. Another difference is that, in Ext JS 3, all the reader classes belong to
the Ext.data package, and in Ext JS 4, the reader classes belong to the Ext.data.
reader package.

The configuration options are still the same in Ext JS 4; this means the code is
backward-compatible. The following diagram illustrates how readers are organized
in Ext JS 4:

Ext.data.reader.Reader

Ext.data.reader.Json

Ext.data.reader.Array

Ext.data.reader.Xml

The Ext.data.reader.Reader is the superclass of Ext.data.reader.Json and
Ext.data.reader.Xml.

The Ext.data.reader.Json is the superclass for Ext.data.reader.Array.

Some properties of the Reader class (that also extend to other reader classes) are
as follows:

•	 idProperty – This is the name of the identifier property of the Model. The
default value is the id property of the Model.

•	 messageProperty: This is the name of the property that contains a response
message.

•	 croot: This is the name of the property that contains the array of objects.
•	 successProperty: This is the name of the property that contains the success

attribute. The default value is success.
•	 totalProperty: This is the name of the property that contains the total of

the records of the dataset. It is used when the whole dataset is not passed at
once, as in paging. The default value is total.

The New Data Package

[84]

Consider that we want to load data for a Blog model; first, we will declare the
Model:

Ext.define('Blog', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'string'},
 {name: 'url', type: 'string'},
]
});

Now we will try to load the data from an array. Each element of the array represents
a blog. We will also declare an ArrayStore and map the data option to the array
data we created. For this example, we do not need to declare a proxy:

var blogData = [
 [1, 'http://loianegroner.com'],
 [2, 'http://loiane.com']
];

var store = Ext.create('Ext.data.ArrayStore', {
 model: 'Blog',

 data: blogData
});

store.load(function(records) {

 var blog,i;
 for (i=0;i<records.length;i++){
 blog = records[i].data;
 console.log(blog.id + " : " + blog.url);
 }
});

Now, we will try to load the same data, but from a JsonReader:

var store = Ext.create('Ext.data.Store',{
 model: 'Blog',
 proxy: {
 type: 'ajax',
 url : 'data/blogs.json',
 reader: {
 type: 'json',
 root: 'blogs',
 messageProperty: 'message'
 }
 }
});

Chapter 2

[85]

We are using a proxy that will load the data from the blogs.json file; we also
declared a JsonReader (reader type = json), and we also specified blogs as the
root. We have also declared the messageProperty config option. We can show this
message to the user in an alert box saying that the data was loaded successfully. This
means that the json file looks like this:

{
 "blogs": [
 {
 "id": 1,
 "url": 'http://loianegroner.com'
 },
 {
 "id": 2,
 "url": 'http://loiane.com'
 }
],
 "message": 'Data was load successfully!'
}

If the data you expect to receive looks like the following (you can remove the root
config option from the reader declaration):

[
 {
 "id": 1,
 "url": 'http://loianegroner.com'
 },
 {
 "id": 2,
 "url": 'http://loiane.com'
 }
]

Next, we will try to load the data from an XML file. We will need to declare a xml
reader inside a proxy:

var store = Ext.create('Ext.data.Store',{
 model: 'Blog',
 proxy: {
 type: 'ajax',
 url : 'data/blogs.xml',
 reader: {
 type: 'xml',
 record: 'blog'
 }
 }
});

The New Data Package

[86]

The XML this store is expecting looks like the following:

<blog>
 <id>1</id>
 <url>http://loianegroner.com</url>
</blog>
<blog>
 <id>2</id>
 <url>http://loiane.com</url>
</blog>

You can also receive an XML file that looks like this:

<blogs>
 <blog>
 <id>1</id>
 <url>http://loianegroner.com</url>
 </blog>
 <blog>
 <id>2</id>
 <url>http://loiane.com</url>
 </blog>
</blogs>

To recognize the XML format in the preceding code, you need to make a simple
change in the reader declaration, which is adding the root config option, as follows:

reader: {
 type: 'xml',
 record: 'blog',
 root: 'blogs'
 }

Ext JS 4 also introduced a new capacity for the reader, which is to load nested data,
as we already discussed in a previous topic.

Writers
The writer is responsible for sending data to the server. As with readers, writers
are also coupled to a proxy in Ext JS 4. In Ext JS 4, all the writers belong to the Ext.
data.writer package and not to the Ext.data package, as in Ext JS 3.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

[87]

The following diagram illustrates how writers are organized in Ext JS 4:

Ext.data.writer.Writer

Ext.data.writer.Xml Ext.data.writer.Json

The Ext.data.writer.Writer is the superclass of Ext.data.writer.Json and
Ext.data.writer.Xml.

Some Writer options you can configure (common for all writers) are as follows:

•	 nameProperty – This property is used to read the key for each value that will
be sent to the server.

•	 writeAllFields: The value of this property is set to true if you want to
send all the fields to the server, or false if you want to send only the fields
that were modified. The default value is true.

JsonWriter
To declare a JsonWriter we first need a proxy. We will declare an AjaxProxy. As
we are declaring an AjaxProxy, we need to specify a URL for each CRUD Operation:
create, read, update, and destroy. To do so, we will use a config option called api.
As we are also reading data from the server, we also need to declare a store. Since
we are using a JsonWriter, a JsonStore makes more sense. Then, we will declare
the JsonWriter, and we will set two config options: writeAllFields as false (we
want to send only modified fields to the server) and the root name, which will be
data. There is one config option that we also set in the store, called autoSync. If we
set it to true, it means that every time we make a modification in one of the records
of the Store, it will automatically synchronize with the proxy, saving the data right
after we change it. The default value is false, which means we have to call the
method sync of the store to save all the modifications at once.

var store = Ext.create('Ext.data.Store',{
 model: 'Blog',

 proxy: {
 type: 'ajax',

 api: {
 read: 'data/blogs/read',''

The New Data Package

[88]

 create: 'data/blogs/create',
 update: 'data/blogs/update',
 destroy:'data/blogs/delete'
 },

 reader: {
 type: 'json',
 root: 'blogs'
 },

 writer: {
 type: 'json',
 writeAllFields: false,
 root: 'data'
 }
 }
});

If we try to load some data, the proxy will call the read URL, which is /data/blogs/
read.

Next, we will try to create a new record and insert it to the store, at the first position:

var blog = Ext.ModelManager.create({
 url: 'http://loiane.com'
}, 'Blog');

store.insert(0, blog);

The proxy will make a POST request to the create URL, passing the following as
request body—note that it is a JSON object that you will have to decode on the
server:

{"data":{"id":"","url":"http://loiane.com"}}

Consider that when we saved the blog, it was saved with id = 2. Now, we will
modify this blog instance. Let's try and change the URL to something else (adding a
.br at the end of it):

blog.setUrl('http://loiane.com.br');

The proxy will make a POST request to the updated URL, passing the following as
request body:

{"data":{"id":"2","url":"http://loiane.com.br"}}

Chapter 2

[89]

Next, we will try to delete this blog instance from the store:

store.remove(blog);

The proxy will make a POST request to the destroy URL, passing the following
request body:

{"data":{"id":"2","url":"http://loiane.com.br"}}

If you set a RestProxy, you will only need to set the default URL config option.

XmlWriter
Now, we will do the same thing that we did in the previous topic, but by using
XmlWriter. To do so, just change the reader and writer type to xml and add the
record: blog to the proxy:

var store = Ext.create('Ext.data.Store',{
 model: 'Blog',

 proxy: {
 type: 'ajax',

 api: {
 read: 'data/blogs/read',
 create: 'data/blogs/create',
 update: 'data/blogs/update',
 destroy:'data/blogs/delete'
 },

 reader: {
 type: 'xml',
 root: 'blogs'
 },

 writer: {
 type: 'xml',
 writeAllFields: false,
 documentRoot: 'data'
 }
 }
});

The New Data Package

[90]

Now, we will follow the same steps as we did while working with JsonWriter.
When we try to insert a new record into the store, the proxy will make a POST
request to the create URL, passing the following parameters:

<xmlData><record><id></id><url>http://loiane.com</url></record></
xmlData>

Consider, the server returned 2 as the id. Now, we will try to change the blog url.
The proxy will make a POST request to the update URL, passing the following as
the parameter:

<xmlData><record><id>2</id><url>http://loiane.com.br</url></record></
xmlData>

If we try to delete this blog instance, the proxy will make a POST request to the
destroy URL, passing the following as the parameter:

<xmlData><record><id>2</id><url>http://loiane.com.br</url></record></
xmlData>

Remember that you will have to decode the XML or the JSON object in the server.

The writer is only used with server proxies. For local storage, you don't need to use
it; the proxy will take care of the reading and writing automatically.

Sorting
Stores are capable of sorting the data. In Ext JS 4, we have the sorter's config option,
known as sortInfo in Ext JS 3, in the Store class. The sorting can be done locally or
remote. Each sort object in Ext JS 4 is an instance of Ext.util.Sorter. Even if you
declare an initial config in the store, you can change it at any time. Let's see some
examples to understand how it works.

For the following examples, we will use the following Model and Proxy as common:

Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'id', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'pages', type: 'int'},
 {name: 'numChapters', type: 'int'},
 {name: 'subject', type: 'string'}
],

 proxy: {
 type: 'ajax',

Chapter 2

[91]

 url : 'data/books/books.json'
 }
});

The books.json file contains the following JSON object, also common for the
examples that follow:

[
 {
 "id": 11,
 "title": 'Learning Ext JS 3.2',
 "pages": 432,
 "numChapters": 17,
 "subject": 'Ext JS'
 },
 {
 "id": 12,
 "title": 'Learning Ext JS',
 "pages": 324,
 "numChapters": 14,
 "subject": 'Ext JS'
 },
 {
 "id": 13,
 "title": 'Ext JS 3.0 Cookbook',
 "pages": 376,
 "numChapters": 10,
 "subject": 'Ext JS'
 },
 {
 "id": 14,
 "title": 'Spring Security 3',
 "pages": 396,
 "numChapters": 13,
 "subject": 'Java'
 },
 {
 "id": 15,
 "title": 'WordPress Top Plugins',
 "pages": 252,
 "numChapters": 10,
 "subject": 'PHP'
 },
 {
 "id": 16,

The New Data Package

[92]

 "title": 'PHP Programming with PEAR',
 "pages": 250,
 "numChapters": 5,
 "subject": 'PHP'
 }
]

Now, we will declare a store with a couple of Sorters:

var store = Ext.create('Ext.data.Store',{
 model: 'Book',

 sorters: [
 {
 property : 'pages',
 direction: 'DESC'
 },
 {
 property : 'numChapters',
 direction: 'ASC'
 }
]
});

We want to sort the data first by pages (books with more pages first—we like big
books!) and then by number of chapters. When we load the data from the store, this
will be the output (book id + title):

11 : Learning Ext JS 3.2
14 : Spring Security 3
13 : Ext JS 3.0 Cookbook
12 : Learning Ext JS
15 : WordPress Top Plugins
16 : PHP Programming with PEAR

We can also change the sort information anytime we want, through the sort
function:

store.sort('subject','ASC');

All the existing sorters will be removed when you change the sorting property of
the store.

Chapter 2

[93]

You can also pass an array of sorters to the sort method:

store.sort(
 {
 property : 'subject',
 direction: 'ASC'
 },
 {
 property : 'title',
 direction: 'ASC'
 }
);

If you prefer to, you can also change the preceding config to the following:

Ext.create('Ext.util.Sorter',{
 property : 'subject',
 direction: 'ASC'
}),
Ext.create('Ext.util.Sorter',{
 property : 'title',
 direction: 'ASC'
})

These examples show the sorting capability on the client side. But, if you have a large
dataset or do not want the sorting to be performed on the client side, you can also
configure for the server side. You simply need to set the remoteSort store option to
true (default value is false):

var store = Ext.create('Ext.data.Store',{
 model: 'Book',
 remotSort: true,
 sorters: [
 {
 property : 'pages',
 direction: 'DESC'
 },
 {
 property : 'numChapters',
 direction: 'ASC'
 }
]
});

The New Data Package

[94]

In this case, the store will only be a helper, in the load request; the proxy will make
a GET request to the specified URL and will also send the sort object as parameter:

sort:[{"property":"pages","direction":"DESC"},{"property":"numChapters
","direction":"ASC"}]

The server will be responsible for decoding the sort parameter and sort the data
as specified.

Filtering
In Ext JS 4, Stores are capable of filtering the data, and are also capable of sorting the
data. The filter engine works in a similar way to the sorting. The filtering can be done
locally or remote. Each filter object in Ext JS 4 is an instance of Ext.util.Filter.
If you declare an initial config in the store, you can change it any time. Let's see
some examples to understand how it works.

Consider the same Model and data we used for the Sorting examples.

We will declare a Store with some filter options:

var store = Ext.create('Ext.data.Store',{
 model: 'Book',

 filters: [
 {
 property : 'subject',
 value: 'JAVA'
 },
 {
 property : 'numChapters',
 value: '13'
 }
]
});

When we load the Store, the following is the output we will get:

14 : Spring Security 3

We can also change the filter option anytime through the method filter:

store.filter('numChapters',10);

Chapter 2

[95]

And, if you need to filter on the server side, you can set the remoteFilter to true
(default value is false) and the proxy will pass the filter object as the parameter:

filter:[{"property":"subject","value":"JAVA"},{"property":"numChapters
","value":13}]""""""""""""""

The server will be responsible for decoding the JSON object and process the filter
into the data.

Summary
In this chapter, we have covered the capabilities of the new Ext JS 4 data package
through examples. We introduced the new Model class with its new capabilities,
such as Associations and Validations. We learned there are two model associations—
hasMany and belongsTo. We also learned the validation types.

We covered the three new client proxies—LocalStorage, SessionStorage, and
Memory. We also covered the server proxies—Ajax, Rest, and JsonP. We learned
how to declare proxies inside Models (and perform CRUD actions directly from the
Model) or inside Stores.

We learned new Store capabilities, such as Sorting and Filtering, through examples,
and we presented how readers and writers are now organized in Ext JS 4 and
covered some examples.

In the next chapter, we will dive into the upgraded and new Component Layouts and
will learn how to use them.

Upgraded Layouts
The layout defines how a container sizes its child items. In an application, the layout
is one of the most important components, because it defines how your container will
be organized. Will it be a single item? Will it have several items organized vertically
or horizontally? It is also what takes most time to render in an application. Layouts
were improved in Ext JS 4; we will learn what has changed and get acquainted with
the new layouts in this chapter.

In this chapter, we will cover:

•	 Ext JS 4 layouts
•	 Component layout
•	 Dock layout
•	 Toolbar layout
•	 Field layout
•	 TriggerField layout
•	 An overview of the existing layouts

Ext JS 4 layouts
Layouts have been vastly improved in EXT JS 4. The whole layout engine was
rewritten, although the API is still the same; in other words, layouts are backward-
compatible. The generated HTML was also updated in Ext JS 4.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Upgraded Layouts

[98]

Layouts were introduced in Ext JS 2, and it was a major feature. It had good
performance and speed, but lacked flexibility. Sencha (still called Ext JS at that time)
improved the flexibility but lost the speed; in Ext JS 4, the layout engine became
slower. They investigated to find what was causing the issue and they finally found
a way to improve speed, performance, and flexibility. The Ext JS 4 layout engine is
now much faster and flexible than any other previous version of Ext. The following
chart compares performance/speed and flexibility between Ext JS versions 2 to 4:

Besides the performance and flexibility improvements, Ext JS 4 also introduces two
types of layouts: Container Layout and Component Layout. The Component Layout
is responsible for organizing the HTML elements for a Component. The Container
Layout is responsible for organizing the elements in their parent Container and
managing the size of all Container's children.

Among the Container layouts, we can mention the ones you are probably familiar
with—Border Layout, Box Layout, Fit Layout, and so on.

Among the Component layouts, we can mention the Dock Layout, Toolbar Layout,
Field Layout, and TriggerField Layout.

The AutoLayout replaced the ContainerLayout from Ext JS 3 onwards. The
ContainerLayout class in Ext JS 4 is a base class for all layouts that can be
applied to containers.

The Form Layout is no longer supported in Ext JS 4. It has been replaced by Field
Layout, to improve flexibility. We will take a closer look at the new Field Layout in
this chapter.

Chapter 3

[99]

Container layouts
Before we get started with the Component layouts, we will take a quick look at the
existing Container layouts—Auto, Anchor, Absolute, Hbox, Vbox, Accordion,
Table, Column, Fit, Card, and Border. The following diagram exemplifies the
Container layout's hierarchy. We will take a closer look at each one of these layouts
in the following sections:

Auto layout
The Auto Layout is the default layout manager applied to a Container when no
layout is specified.

For example, consider we have four panels and we want to organize these panels
into an outer container (for example, a window):

var panel1 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 1',
 html: 'Panel 1',
 height: 60,
 width: 100
});

var panel2 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 2',
 html: 'Panel 2',

Upgraded Layouts

[100]

 height: 80,
 width: 60
});

var panel3 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 3',
 html: 'Panel 3',
 height: 65,
 width: 100
});

var panel4 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 4',
 html: 'Panel 4',
 height: 70,
 width: '90%'
});

var auto = Ext.create('Ext.window.Window', {
 title: 'Auto Layout',
 width: 100,
 height: 320,
 layout:'auto',
 defaults: {
 bodyStyle: 'padding:15px'
 },
 items: [panel1, panel2, panel3, panel4]
});

In the preceding code, we have four simple panels; each one has a title, HTML
content, height, and width. Then, we have a Window object called auto, which has a
title, height, and width. We also specified the layout as auto, but you do not need
to specify a layout at all. We want every child Panel (panels we declared before)
content to have a padding of 15 pixels. The defaults option applies all the config
settings to all added items: panel1, panel2, panel3, and panel4 (whether added to
the items config or via the add and insert methods). The auto panel contains four
children (the panels we declared before)—panel1, panel2, panel3, and panel4.

Chapter 3

[101]

If we try to execute the preceding code, the following will be the output:

Note that the child panels were added to the main Window (auto) in the order as they
were declared; in other words, you must append children to the window in a specific
order to use the auto layout correctly. If we try to resize the Window, the panel will
not change its size, even if we declared the last panel's (panel4) width to 90% of the
Window's width, because of the properties of Auto Layout.

Anchor layout
The Anchor Layout allows anchoring the container's children according to its
dimension. If you resize the outer container, all its children will be automatically
resized according to the children's anchor rules. Just like the Auto Layout, the
Anchor Layout also stacks its children according to the order they were added or
declared in, in the items config.

For example, we have four panels and we want to add them in a Window using the
Anchor Layout:

var panel1 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 1',
 html: '100% 30%',
 anchor:'100% 30%'
});

Upgraded Layouts

[102]

var panel2 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 2',
 html: '80% 25%',
 anchor:'80% 25%'
});

var panel3 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 3',
 html: '-70 20%',
 anchor:'-70 20%'
});

var panel4 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 4',
 html: '-30 25%',
 anchor:'-30 25%'
});

var anchor = Ext.create('Ext.window.Window', {
 title: 'Anchor Layout',
 width: 250,
 height:300,
 layout:'anchor',
 defaults: {
 bodyStyle: 'padding:10px'
 },
 items: [panel1, panel2, panel3, panel4]
});
anchor.show();

Let's explain the code starting from the last element declared, which is the Window
named anchor. This window has a title, width (250 pixels), height (300 pixels) and
is using the Anchor Layout. It also has four children declared in the items config.

Going back to the beginning of the code, we declared four panels. Each one has a
title and HTML content. We also set an anchor rule for each one:

•	 The first panel (panel1) has an anchor specified as 100% of the parent's
width (250 pixels, originally) and 30% of the parent's height (30% of the
parent's height = 30% of 300 = 90 pixels)

•	 The second panel (panel2) has an anchor specified as 80% of the parent's
width (80% of 300 = 200 pixels) and 25% of the parent's height (25% of 300 =
75 pixels)

•	 The third panel (panel3) has an anchor specified as -70 pixels of offset—
which means this panel will leave 70 pixels of space on the right side of the
parent's body—and 20% of the parent's height (20% of 300 = 60 pixels)

Chapter 3

[103]

•	 The fourth panel (panel4) has an anchor specified as -30 of offset—which
means this panel will leave 30 pixels of space on the right side of the parent's
body—and 25% of the parent's height (25% of 300 = 75 pixels)

When we execute the code, the output will be as follows:

If we try to resize the Window, all its children will be resized according to their
anchor rules. Let's try to resize the window to a bigger size to see what happens:

Upgraded Layouts

[104]

When we compare the two previous screenshots, we see that when we resized the
window, it maintained the child panels proportional to their original size.

Absolute layout
The AbsoluteLayout class is a subclass of AnchorLayout, and that is why it inherits
the anchoring feature from its mother class. Like the Anchor Layout, the Absolute
Layout also allows you to set an x and y configuration, which means the location of
the Component will be located in its parent's body.

Let's try to add a Panel in a Window using the Absolute Layout:

var panel1 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 1',
 html: 'x: 10; y: 10 - anchor: 80% 80%', /*this config option will
display the given text inside the panel*/
 anchor:'80% 80%',
 x: 10,
 y: 10
});

var absolute = Ext.create('Ext.window.Window', {
 title: 'Absolute Layout',
 width: 300,
 height: 200,
 layout:'absolute',
 defaults: {
 bodyStyle: 'padding:10px'
 },
 items: [panel1]
});
absolute.show();

In the preceding code, we have a Window with a title, width (300 pixels), height
(200 pixels), using the Absolute Layout. This Window contains only one Panel as the
child item.

The panel we declared as the Window item is panel1. This panel has a title and
HTML content. We set the anchor as 80% of the parent's width and 80% of the
parent's height. We also set the position of panel1 in its parent's body, which is
x=10 and y =10.

The upper-left corner of the Window will be x=0 and y=0.

Chapter 3

[105]

The code output will be as follows:

If you resize the outer container (Window), its child is going to be resized according to
its anchor rule. The position of the child items will not change with the resizing.

HBox layout
The HBox layout organizes its children horizontally across the container.

You can set two optional configurations to organize the child's width and height
across the parent's body.

The flex configuration will tell the parent Component how to organize the child
Components horizontally, based on the relative flex configuration. The align
configuration will tell the child Components how to use the height across the parent.

Let's consider that we have two panels and we want to display these panels inside a
Window:

var panel1 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 1',
 html: 'Panel 1', //this text will be displayed on the panel body
 flex: 1
});

var panel2 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 2',
 html: 'Panel 2', //this text will be displayed on the panel body
 flex: 3
});

Upgraded Layouts

[106]

var hbox = Ext.create('Ext.window.Window', {
 title: 'HBox Layout',
 width: 300,
 height:100,
 layout: {
 type: 'hbox',
 align: 'stretch'
 },
 defaults: {
 bodyStyle: 'padding:10px'
 },
 items: [panel1, panel2]
});
hbox.show();

In the preceding code, we have two panels. Each panel has its title and HTML
content. Each one also has a flex configuration. The first panel configured flex as
1 and the second panel configured the flex config as 3. The Window will sum these
flex configs (in this example, the total will be 4) and will distribute the horizontal
space relative to each child. The first panel will get one-fourth (25%) of the window's
horizontal space and the second panel will get three-fourths (75%) of the window's
horizontal space.

In the Window declaration, we have the layout config. It tells the Window that we are
going to use the hbox layout and align of the child Components will be stretch,
meaning that we can use the full height of the window's vertical space.

When we execute the code, the following will be the output:

If we try to resize the Window, children will be resized as well, according to
their configuration.

Chapter 3

[107]

VBox layout
The VBox Layout is very similar to the HBox Layout, but instead of arranging
the Components horizontally across the Container, it arranges child Components
vertically.

We will change the HBox example to use the VBox Layout:

var panel1 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 1',
 html: 'Panel 1',
 flex: 2
});

var panel2 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 2',
 html: 'Panel 2',
 flex: 1
});

var vbox = Ext.create('Ext.window.Window', {
 title: 'VBox Layout',
 width: 82,
 height: 300,
 layout: {
 type: 'vbox',
 align: 'stretch'
 },
 defaults: {
 bodyStyle: 'padding:15px'
 },
 items: [panel1, panel2]
});
vbox.show();

Similar to the HBox example, we set flex properties for each panel. The first panel
has a flex config equal to 1 and the second panel has flex equal to 2. This means
panel1 gets one-third (33%) of the Window vertical space and panel2 gets two-thirds
(66%) of the Window vertical space.

Upgraded Layouts

[108]

When we execute the code, the following will be the output:

If we try to resize the Window all its child Components will be resized according to
their configuration as well.

Accordion layout
The AccordionLayout is a subclass of VBoxLayout. This already tells us that the
Components will be organized vertically in the container. The difference between
AccordionLayout and VBoxLayout is that the AccordionLayout only displays a
Component at a time; we can collapse or expand the items.

In the following example, we have five panels being displayed inside a Window:

var panel1 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 1',
 html: 'Panel 1'
});

var panel2 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 2',
 html: 'Panel 2'
});

Chapter 3

[109]

var panel3 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 3',
 html: 'Panel 3'
});

var panel4 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 4',
 html: 'Panel 4'
});

var panel5 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 5',
 html: 'Panel 5'
});

var accordion = Ext.create('Ext.window.Window', {
 title: 'Accordion Layout',
 margins:'5 0 5 5',
 split:true,
 width: 210,
 height:250,
 layout:'accordion',
 defaults: {
 bodyStyle: 'padding:35 15 0 50'
 },
 items: [panel1, panel2, panel3, panel4, panel5]
accordion.show();

When we execute the code, the output will be as follows:

Upgraded Layouts

[110]

To expand a Panel, simply click on the plus (+) icon; to collapse the panel that is
being currently displayed, click on the minus (-) icon. If we try to resize the Window,
all the child panels will be resized as well.

Table layout
The TableLayout class converts the Components into an HTML table and it is a
subclass of AutoLayout.

For example, let's consider we have nine Components and we want to display these
Components in a Window using Table Layout:

var table = Ext.create('Ext.window.Window', {
 title: 'Table Layout',
 width: 250,
 height: 200,
 layout: {
 type: 'table',
 columns: 3,
 tableAttrs: {
 style: {
 width: '100%',
 height: '100%'
 }
 }
 },
 defaults: {
 bodyStyle: 'padding:10px'
 },
 items:[{
 html:'Cell 1',
 rowspan: 3 //this cell will span 3 rows
 },{
 html:'Cell 2'
 },{
 html:'Cell 3'
 },{
 html:'Cell 4'
 },{
 html:'Cell 5'
 },{
 html:'Cell 6',
 colspan: 2 //this cell will span 2 columns
 },{

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[111]

 html:'Cell 7'
 },{
 html:'Cell 8'
 },{
 html:'Cell 9'
 }]
});
table.show();

In the preceding code, we set the Window layout to table. Inside the layout config,
we set the number of columns to create in the table (container). We also set the
tableAttrs config, where we can set properties to be applied to the HTML table,
such as width and height. We set the width and height of the table as 100%, which
means the Components will use all the available space horizontally and vertically.

The code outputs the following Window:

Column layout
The ColumnLayout class manages the width of its children and, like the
TableLayout, it is also a subclass of AutoLayout.

It does not provide any configuration in the Container. The child Component has
support for a columnWidth configuration, where you can specify how much of
horizontal space the Component will get from its parent.

We will declare a Window with Column Layout containing three child panels:

var panel1 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 1',
 html: '.25',
 columnWidth: .25 //means 25%

Upgraded Layouts

[112]

});

var panel2 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 2',
 html: '.25',
 columnWidth: .25 //means 25%
});

var panel3 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 3',
 html: '1/2',
 columnWidth: 1/2 //means 50%
});

var column = Ext.create('Ext.window.Window', {
 title: 'Column Layout',
 width: 400,
 layout:'column',
 defaults: {
 height: 60,
 bodyStyle: 'padding:10px'
 },
 items: [panel1, panel2, panel3]
});
column.show();

In the code, we have a Window using the Column Layout with three panels
configured as its child items. Each panel has a title and HTML content. We also
configured a columnWidth for each one. In the first panel, we set a columnWidth
equal to .25, which means this panel will get 25% of the Window horizontal space. It
will be the same for the second Panel. The third panel has a columnWidth equal to
half, which means this panel will get 50% of the Window horizontal space. Note that
you can set the columnWidth in two different ways.

When we execute the code, we will get the following output:

When we resize the Window, the child panels will be resized horizontally. The height
of the child panels will not change.

Chapter 3

[113]

Fit layout
The Fit layout only displays a single Component in the Container. The Component
will fill all the space in the Container's body.

For example, we want to display a single panel inside a window:

var panel1 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 1',
 bodyStyle: 'padding:15px',
 html: 'Fit Content'
});

var fit = Ext.create('Ext.window.Window', {
 title: 'Fit Layout',
 width: 100,
 height: 150,
 layout:'fit',
 items: [panel1]
});
fit.show();

In the code, we have a window with a panel as an item with fit layout. When we
execute the code, the following will be the output:

And if we try to resize the window, the panel inside it will be resized as well.

Upgraded Layouts

[114]

Card layout
The CardLayout is a subclass of FitLayout. Like its superclass, it also renders
only one Component in the Container, In the CardLayout, the Container can have
multiple items, but it will only display one at time.

This layout manager works well for wizard setup; we are going to demonstrate this
in the following example:

var card = Ext.create('Ext.window.Window', {
 title: 'Card Layout',
 width: 400,
 height: 200,
 layout: 'card',
 activeItem: 0,
 bodyStyle: 'padding:70 50 0 150',
 defaults: {
 border:false
 },
 bbar: [{
 id: 'prevButton',
 text: 'Preivous Step',
 handler: navHandler,
 disabled: true
 },
 '->',
 {
 id: 'nextButton',
 text: 'Next Step',
 handler: navHandler
 }],

 items: [{
 html: '<p>Step 1 of 3</p>'
 },{
 html: '<p>Step 2 of 3</p>'
 },{
 html: '<p>Step 3 of 3</p>'
 }]
});
card.show();

Chapter 3

[115]

In the code, we have a window using the Card Layout. This window contains three
Components with HTML content declared in the items config. Since only one
Component can be displayed at a time, the window manages which Component will
be displayed first, using the activeItem configuration. In this example, when we show
the window, the first item will be displayed in the container body (index is 0-based).

We also added two buttons to control the wizard setup—nextButton and
previousButton—so the user can navigate through the screens. When we display
the first step, only the next button will be enabled. And when the user clicks on the
next or previous buttons, the navHandler function will be executed. Let's take a look
at this function:

var navHandler = function(btn) {

 var activeItem = card.layout.activeItem;
 var active = card.items.indexOf(activeItem);

 if (btn.id == 'nextButton') {
 active += 1;
 }
 else if (btn.id == 'prevButton') {
 active -= 1;
 }

 card.layout.setActiveItem(active);

 var prev = card.dockedItems.items[1].items.items[0];
 var next = card.dockedItems.items[1].items.items[2];

 if (active == 0){
 prev.setDisabled(true);
 } else if (active == 1){
 prev.setDisabled(false);
 next.setDisabled(false);
 } else if (active == 2){
 next.setDisabled(true);
 }
};

Upgraded Layouts

[116]

In this function, first we get which item is the active one. Then we analyze which
button the user pressed, either Next Step or Previous Step. If user clicks on the
Next Step button, we will increase the active index because we want to navigate
to the next page and decrease the active index, if we want otherwise. Then we get
a reference for both buttons, so we can control when we need to disable or enable
the buttons. We will disable the Previous Step button when we display the first step
and we will disable the Next Step button when we display the third (and last) step;
otherwise, the buttons will be enabled.

It is simple logic to exemplify how we can manage a wizard using the card layout.

When we execute the preceding code, the following will be the output (all three steps):

If we try to resize the Window, its content will be also resized.

Border layout
The Border Layout divides the Container into five regions: north, south, east, west,
and center, as we can see in the following diagram:

Chapter 3

[117]

The north and south regions can be resized and the west and east regions can be
collapsed. These four regions are optional in a Border Layout. The center is the only
region required by a Container while using the Border Layout. You do not need
to specify width and height for the center region. It is going to be rendered in the
remaining space of the Container's body.

Let's take a look at the following example:

var border = Ext.create('Ext.window.Window', {
 width: 700,
 height: 500,
 title: 'Border Layout',
 layout: 'border',
 defaults:{
 xtype: 'panel'
 },
 items: [{
 title: 'North Region is resizable',
 region: 'north',
 height: 100,
 split: true
 },{
 title: 'South Region is resizable',
 region: 'south',
 height: 100,
 split: true
 },{
 title: 'West Region is collapsible',
 region:'west',
 width: 200,
 collapsible: true,
 layout: 'fit'
 },{
 title: 'East Region is collapsible',
 region:'east',
 width: 200,
 collapsible: true,
 layout: 'fit'
 },{
 title: 'Center Region',
 region: 'center',
 layout: 'fit'
 }]
});
border.show();

Upgraded Layouts

[118]

In the preceding code, we have a window using the Border Layout. This window
also contains five items (panel) distributed in different regions of the panel.

The first panel is located in the north. The north panel will occupy the full width of
the Window and will have a height of 100.

The second panel is located in the south. Like the north panel, it will also occupy the
full width of the Window and height equal to 100.

You need to specify height for the north and south panels. When you scroll your
mouse over the central border, you will see we can resize the panels. This is because
we set the split config to true.

Then we have the east and west panels. We need to specify the width for these
panels. If there is a south or north panel (as in this example), the west and east panels
will occupy the remaining full height of the Container. We also set the collapse
config as true; this means we can collapse the west and east panels.

At last, we have the center panel. The center Component is the only mandatory
Component that we have to declare while using the Border Layout (the south, north,
west, and east regions are optional). We do not need to set a height or width because
this Component will occupy the remaining space left in the Container's body.

If we execute the preceding code, the following will be the output:

Chapter 3

[119]

When we resize the window, the north and south panels will resize their width (if
needed) and the west and east panels will resize their height (if needed). The only
panel that will be fully resized, occupying the remaining area, is the center panel.

Component layouts
The Component Layout is responsible for organizing the HTML elements for a
Component. In Ext JS 4, there are some new features applied to Toolbars, Headers,
and Form Fields. Let's take a look at them.

Dock layout
To improve flexibility, Ext JS 4 now has a new layout engine called DockLayout,
mostly applied to panel Components. This layout is set internally and it is used for
panel Headers and Toolbars.

We will compare the differences between Ext JS 3 Panel and Ext JS 4 Panel. First, we
will take a look at the following code implemented using Ext JS 3:

var html = '<div style="padding:10px;"><h1><center>Body</
center></h1></div>';

var panel1 = new Ext.Panel({
 collapsible:true,
 width:400,
 renderTo: 'ext3-panel',

 title: 'Ext 3 Panel - Header',

 html: html,

 tbar: new Ext.Toolbar({
 items: [{
 type: 'button',
 text:'Button - Top Toolbar'
 }]
 }),

 bbar: new Ext.Toolbar({
 items: [{
 type: 'button',
 text:'Button - Bottom Toolbar'
 }]

Upgraded Layouts

[120]

 }),

 fbar: new Ext.Toolbar({
 items: [{
 type: 'button',
 text:'Button - Footer Toolbar'
 }]
 })
});

In the preceding code, we are creating an Ext.Panel that contains a header named
Ext 3 Panel - Header and three Toolbars, one located at the top (tbar), another one
located at the bottom of the panel (bbar), and the third one located in the footer of
the panel (fbar); each Toolbar has a button. This code will generate the following
Ext Component:

When we analyze the generated code for Ext JS 4 Panel, we have an outer wrapper
element (El), the panel itself with the Header, and a body wrapper. Inside the body
wrapper, it has the three Toolbars and the panel body, as demonstrated in the
following picture:

Chapter 3

[121]

As you can see, the Ext JS 4 Panel has almost no flexibility, which means we cannot
make many changes. This means we can have a Header on the top, only one Toolbar
on the top, and two Toolbars on the footer of the panel.

Now, let's take a look at the Ext JS 4 Panel Component. We will simply migrate the
code that we implemented in Ext JS 3 to Ext JS 4:

var panel1 = Ext.create('Ext.panel.Panel', {
 collapsible:true,
 width:400,
 renderTo: 'ext4-panel',

 title: 'Ext 4 Panel - Header',

 html: html,

 tbar: Ext.create('Ext.toolbar.Toolbar',{
 items: [{
 type: 'button',
 text:'Button - Top Toolbar'
 }]
 }),

 bbar: Ext.create('Ext.toolbar.Toolbar',{
 items: [{
 type: 'button',
 text:'Button - Bottom Toolbar'
 }]
 }),

 fbar: Ext.create('Ext.toolbar.Toolbar',{
 items: [{
 type: 'button',
 text:'Button - Footer Toolbar'
 }]
 })
});

Upgraded Layouts

[122]

The only thing that changed from Ext JS 3 to Ext JS 4 in both codes is how we
instantiate the classes. In Ext JS 3, we used the keyword new and in Ext JS 4 we
use the Ext.create to instantiate a class. Another thing that changed is the name of
the classes—Ext.Panel is now Ext.panel.Panel, and Ext.Toolbar is now Ext.
toolbar.Toolbar.

There is something new in Ext JS 4 about the Panel—the Header is now a
Component, an instance of the class Ext.panel.Header. We can set the Header's
position to top (default value), bottom, left or right, which means the Header is
now very flexible.

The Toolbar is also a flexible Component in Ext JS 4. You can set a Toolbar on the
top, bottom, left, or right. This Component is now a docked item.

Let's see how we can write the preceding code in Ext JS 4 using the new features (the
following code is equivalent to the preceding code):

var panel2 = Ext.create('Ext.panel.Panel', {
 collapsible:true,
 width:400,
 border:true,
 renderTo: 'ext4-panel2',

 title: 'Ext 4 Panel - Header',
 headerPosition: 'top',

 html: html,

 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 xtype: 'button',
 text: 'Button - Top Toolbar'
 }]
 },{
 xtype: 'toolbar',
 dock: 'bottom',
 items: [{
 xtype: 'button',
 text: 'Button - Bottom Toolbar'
 }]
 },{
 xtype: 'toolbar',

Chapter 3

[123]

 dock: 'bottom',
 items: [{
 xtype: 'component',
 flex: 1 //will occupy 100% of the width of the panel
 },{
 xtype: 'button',
 text: 'Button - Footer Toolbar'
 }]
 }]
});

We added the headerPosition configuration to the default value (top). And,
instead of the toolbar declarations (tbar, bbar, and fbar), we now have three
docked items of type toolbar:—one at the top and two at the bottom.

When we analyze the generated code for Ext JS 4 Panel, we have an outer wrapper
element (El), the panel itself with the Header as a docked item, and a body wrapper.
Inside the body wrapper, it has three toolbars and the panel body, as demonstrated
in the following picture:

Upgraded Layouts

[124]

As Header is a new Component in Ext JS 4 and it is a docked item, we can set the
location of the Header as top, bottom, right, and left, as demonstrated by the
following screenshot:

Chapter 3

[125]

The code to generate the panels above is very simple—you only need to change the
headerPosition to one of the four possible values. If the collapse configuration is
set to true, the panel will collapse to the header direction, as shown in the following
code:

var panel1 = Ext.create('Ext.panel.Panel', {
 collapsible:true,
 width:400,
 border:true,
 renderTo: 'ext4-panel-header-top',
 html: html,

 title: 'Ext 4 Panel - Header - Top'
});

var panel2 = Ext.create('Ext.panel.Panel', {
 collapsible:true,
 width:400,
 border:true,
 renderTo: 'ext4-panel-header-bottom',
 html: html,

 title: 'Ext 4 Panel - Header - Bottom',
 headerPosition: 'bottom'
});

var panel3 = Ext.create('Ext.panel.Panel', {
 collapsible:true,
 width:400,
 height:200,
 border:true,
 renderTo: 'ext4-panel-header-left',
 html: html,

 title: 'Ext 4 Panel - Header - Left',
 headerPosition: 'left'
});

var panel4 = Ext.create('Ext.panel.Panel', {
 collapsible:true,
 width:400,
 height:200,
 border:true,
 renderTo: 'ext4-panel-header-right',

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Upgraded Layouts

[126]

 html: html,

 title: 'Ext 4 Panel - Header - Right',
 headerPosition: 'right'
});

Like Header, the Toolbar is also a docked Component in Ext JS 4. It works the same
way as the Header does—you can set the position (dock) to top, bottom, left, or
right:

var panel2 = Ext.create('Ext.panel.Panel', {
 collapsible:true,
 width:400,
 height:200,
 border:true,
 renderTo: 'ext4-panel-toolbars',

 title: 'Ext 4 Panel - Header',

 html: html,

 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 xtype: 'button',
 text: 'Button - Top Toolbar'
 }]
 },{
 xtype: 'toolbar',
 dock: 'bottom',
 items: [{
 xtype: 'button',
 text: 'Button - Bottom Toolbar'
 }]
 },{
 xtype: 'toolbar',
 dock: 'left',
 items: [{
 xtype: 'button',
 text: 'Button - Left Toolbar'
 }]
 },{
 xtype: 'toolbar',
 dock: 'right',

Chapter 3

[127]

 items: [{
 xtype: 'button',
 text: 'Button - Right Toolbar'
 }]
 }]
});

You will have a panel like the following one:

To keep compatibility, you can still use the old configuration—tbar (top bar),
bbar (bottom bar), and fbar (footer bar). In Ext JS 4, there are also two new toolbar
configurations, rbar (right bar) and lbar (left bar), equivalent to a toolbar with
dock:'right' and dock:'left', respectively:

var panel1 = Ext.create('Ext.panel.Panel', {
 collapsible:true,
 width:400,
 height:200,
 renderTo: 'ext4-panel-bars',

 title: 'Ext 4 Panel - Header',

 html: html,

 tbar: Ext.create('Ext.toolbar.Toolbar',{
 items: [{
 type: 'button',
 text:'Button - Top Toolbar'
 }]
 }),

 bbar: Ext.create('Ext.toolbar.Toolbar',{
 items: [{

Upgraded Layouts

[128]

 type: 'button',
 text:'Button - Bottom Toolbar'
 }]
 }),

 fbar: Ext.create('Ext.toolbar.Toolbar',{
 items: [{
 type: 'button',
 text:'Button - Footer Toolbar'
 }]
 }),

 lbar: Ext.create('Ext.toolbar.Toolbar',{
 items: [{
 type: 'button',
 text:'Button - Left Toolbar'
 }]
 }),

 rbar: Ext.create('Ext.toolbar.Toolbar',{
 items: [{
 type: 'button',
 text:'Button - Right Toolbar'
 }]
 })
});

As Header and Toolbar are docked items, you can mix them the way you want.
If you want three toolbars on the top, two toolbars on the bottom, one toolbar on
the right, one toolbar header on the left, as demonstrated in the following picture,
it is possible:

Chapter 3

[129]

The following code implements the panel shown in the previous image:

var panel3 = Ext.create('Ext.panel.Panel', {
 collapsible:true,
 width:430,
 height:200,
 border:true,
 renderTo: 'ext4-panel-mix-toolbars',
 html: html,

 title: 'Ext 4 Panel - Header',
 headerPosition: 'left',

 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 xtype: 'button',
 text: 'Button - Top Toolbar 1'
 }]
 },{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 xtype: 'button',
 text: 'Button - Top Toolbar 2'
 }]
 },{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 xtype: 'button',
 text: 'Button - Top Toolbar 3'
 }]
 },{
 xtype: 'toolbar',
 dock: 'bottom',
 items: [{
 xtype: 'button',
 text: 'Button - Bottom Toolbar 1'
 }]
 },{
 xtype: 'toolbar',
 dock: 'bottom',

Upgraded Layouts

[130]

 items: [{
 xtype: 'button',
 text: 'Button - Bottom Toolbar 2'
 }]
 },{
 xtype: 'toolbar',
 dock: 'right',
 items: [{
 xtype: 'button',
 text: 'Button - Right Toolbar 1'
 }]
 },{
 xtype: 'toolbar',
 dock: 'left',
 items: [{
 xtype: 'button',
 text: 'Button - Left Toolbar 1'
 }]
 }]
});

We simply need to set the dock to a position, and you can have as many toolbars as
you want on each side. This new Panel configuration is extremely flexible; you no
longer need to use any plugin to achieve the above configuration.

When we try to execute the previous code, the following is going to be the
panel output:

Chapter 3

[131]

Tool layout
Header Tools are also Components in Ext JS 4. You can configure them in the tools
configuration. One important thing to know about tools—Ext JS 4 will only display
the icon; you will have to implement its behavior. For example, if you add the search
tool, you will have to implement the function that will be run when a user clicks
on it. There are some tools that Ext adds to the Header automatically. For example,
the collapse tool; when we set the collapsed panel config as true, Ext will add the
collapse button (according to the header position) and will also add a behavior to the
handler function.

The following are some tools that you can configure. You simply need to set the
type and implement the handler function:

var panel1 = Ext.create('Ext.panel.Panel', {
 width:500,
 renderTo: 'ext4-panel-tools',
 html: html,
 title: 'Tools - Header',

 tools: [{
 type: 'close',
 handler: function(){} //some logic inside handler
 },{
 type: 'collapse',
 handler: function(){} //some logic inside handler
 },{
 type: 'down',
 handler: function(){} //some logic inside handler
 },{
 type: 'expand',
 handler: function(){} //some logic inside handler
 },{
 type: 'gear',
 handler: function(){} //some logic inside handler
 },{
 type: 'help',
 handler: function(){} //some logic inside handler
 },{
 type: 'left',
 handler: function(){} //some logic inside handler
 },{
 type: 'maximize',
 handler: function(){} //some logic inside handler
 },{

Upgraded Layouts

[132]

 type: 'minimize',
 handler: function(){} //some logic inside handler
 },{
 type: 'minus',
 handler: function(){} //some logic inside handler
 },{
 type: 'next',
 handler: function(){} //some logic inside handler
 },{
 type: 'pin',
 handler: function(){} //some logic inside handler
 },{
 type: 'plus',
 handler: function(){} //some logic inside handler
 },{
 type: 'prev',
 handler: function(){} //some logic inside handler
 },{
 type: 'print',
 handler: function(){} //some logic inside handler
 },{
 type: 'refresh',
 handler: function(){} //some logic inside handler
 },{
 type: 'restore',
 handler: function(){} //some logic inside handler
 },{
 type: 'right',
 handler: function(){} //some logic inside handler
 },{
 type: 'save',
 handler: function(){} //some logic inside handler
 },{
 type: 'search',
 handler: function(){} //some logic inside handler
 },{
 type: 'toggle',
 handler: function(){} //some logic inside handler
 },{
 type: 'unpin',
 handler: function(){} //some logic inside handler
 },{
 type: 'up',
 handler: function(){} //some logic inside handler
 }]
});

Chapter 3

[133]

If we try to execute the previous code, the following is going to be the output:

If you click on any tool, it will not work. Remember you have to implement the
handler function.

Field layout
Ext JS 4 no longer supports FormLayout, which was used on FormPanels in Ext JS 3.
So how are we going to organize the form fields in Ext JS 4? The new version of Ext
JS introduces a new layout called FieldLayout, which replaces the old FormLayout.

First, we will take a look at how a form with two fields was implemented in Ext JS 4:

Ext.form.Field.prototype.msgTarget = 'side';

var simple = new Ext.FormPanel({
 labelWidth: 75,
 url:'save-form.php',
 frame:true,
 title: 'Form - Ext 3',
 bodyStyle:'padding:5px 5px 0',
 width: 350,
 renderTo:'ext3-form',
 defaults: {width: 230},
 defaultType: 'textfield',

 items: [{
 fieldLabel: 'First Name',
 name: 'first',
 allowBlank:false
 },{
 fieldLabel: 'Last Name',
 name: 'last',
 allowBlank:false
 }
],

 buttons: [{

Upgraded Layouts

[134]

 text: 'Save'
 },{
 text: 'Cancel'
 }]
});

In the preceding code, we have a form with a width value of 350 pixels, a label with
a width value of 75 pixels, and two fields (text fields) with width values of 230 pixels
each. The text fields cannot be left blank—they have to contain a value—otherwise,
the form will display an error message.

If we execute the code, we will have the following output:

Note that we left the last name blank and the form
displayed an error.

In Ext JS 4, when we are working on form validation, we have to leave at least 20
pixels of space so that the form can display the error message, otherwise we will not
be able to see the error icon.

Now, let's take a look at how we implement the same form in Ext JS 4:

var simple = Ext.create('Ext.form.Panel', {

 frame:true,
 title: 'Form - Ext 4',
 bodyStyle:'padding:5px 5px 0',
 width: 350,
 renderTo:'ext4-form',

 fieldDefaults: {
 msgTarget: 'side',
 labelWidth: 75
 },
 defaultType: 'textfield',

Chapter 3

[135]

 defaults: {
 anchor: '100%'
 },

 items: [{
 fieldLabel: 'First Name',
 name: 'first',
 allowBlank:false
 },{
 fieldLabel: 'Last Name',
 name: 'last',
 allowBlank:false
 }],

 buttons: [{
 text: 'Save'
 },{
 text: 'Cancel'
 }]
});

The Ext JS 4 form that we implemented is very similar to the Ext JS 3 form. It has
two fields (both required—they cannot be blank) with the same width and the same
labelWidth. The only difference is that we did not set a fixed field width. We set
both fields to be rendered in 100% of the space they have; in other words, we did not
leave 20 pixels of offset for the error icon.

Let's execute the preceding code to see what happens:

This means we do not have to leave the blank space for the error icon; we can display
the field using all the space it can get. If an error occurs, Ext JS 4 will automatically
resize the field so the form can display the error.

Since FormLayout is no longer supported, we can use any layout we want inside
a form.

Upgraded Layouts

[136]

For example, if you want to use the Hbox Layout in a form, you simply need to
specify the layout as hbox:

var hboxForm = Ext.create('Ext.form.Panel', {

 frame:true,
 title: 'Form - Ext 4',
 bodyStyle:'padding:5px 5px 0',
 width: 600,
 renderTo:'ext4-form',
 fieldDefaults: {
 labelAlign: 'top',
 msgTarget: 'side'
 },
 defaults: {
 border: false,
 xtype: 'panel',
 flex: 1,
 layout: 'anchor'
 },

 layout: 'hbox',
 items: [{
 items: [{
 xtype:'textfield',
 fieldLabel: 'First Name',
 anchor: '-10',
 name: 'first',
 allowBlank:false
 }, {
 xtype:'textfield',
 fieldLabel: 'Phone Number',
 anchor: '-10',
 name: 'phone',
 allowBlank:false
 }]
 }, {
 items: [{
 xtype:'textfield',
 fieldLabel: 'Last Name',
 anchor: '100%',
 name: 'last',
 allowBlank:false
 },{

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

[137]

 xtype:'textfield',
 fieldLabel: 'Email',
 anchor: '100%',
 name: 'email',
 vtype:'email'
 }]
 }],

 buttons: [{
 text: 'Save'
 },{
 text: 'Cancel'
 }]
});

In the preceding form, we have four fields: First Name, Last Name, Phone Number,
and Email (the first three are required and cannot be left blank). The layout used in
the form is the hbox with two items, and each item contains two sub-items (which
are the fields themselves). The Hbox Layout will organize the items horizontally;
as we have two items, we will have two columns in the form, and each column will
have two fields. The first column (left side of the form) will contain First Name (at
the top) and Phone Number (at the bottom). The second column (right side of the
form) will contain Last Name (at the top) and Email (at the bottom).

You can configure FormLayout like you were configuring any other Component with
an Hbox Layout.

The output for the previous code will be as follows:

Let's take a look at another example. We will change the above form to use a
VBox Layout:

var vboxForm = Ext.create('Ext.form.Panel', {

 frame:true,

Upgraded Layouts

[138]

 title: 'Form - Ext 4',
 bodyStyle:'padding:5px 5px 0',
 width: 300,
 height: 175,
 renderTo:'ext4-form',

 fieldDefaults: {
 anchor: '100%',
 msgTarget: 'side'
 },

 layout: {
 type: 'vbox',
 align: 'stretch'
 },

 items: [{
 xtype:'textfield',
 fieldLabel: 'First Name',
 name: 'first',
 allowBlank:false
 },{
 xtype:'textfield',
 fieldLabel: 'Last Name',
 name: 'last',
 allowBlank:false
 },{
 xtype:'textfield',
 fieldLabel: 'Phone Number',
 name: 'phone',
 allowBlank:false
 },{
 xtype:'textfield',
 fieldLabel: 'Email',
 name: 'email',
 vtype:'email'
 }],

 buttons: [{
 text: 'Save'
 },{
 text: 'Cancel'
 }]
});

Chapter 3

[139]

We changed the layout to vbox. The VBox Layout will organize the Components
vertically, in a single column. As we will not have more then one column, we can set
all the fields to stretch (full width of the form), and we can declare all the fields in
the items configuration of the form.

The previous code will output the following form:

If you do not specify any layout, the form will use the Anchor Layout, which is the
default layout for forms.

As you can see, the new layout engine for the Form Component is very flexible.

TriggerField layout
The TriggerField Layout is an extension of the FieldLayout. In Ext JS 4, we do not
need to worry about leaving a space (offset) for the error icon. The same applies to
the TriggerField Layout.

A trigger field can be the arrow of a combo box, a calendar icon from the
DatePicker Component, and so on. When you worked with Ext JS 3, do you
remember that we left a space for the trigger field?

Let's take a look how the TriggerField works on Ext JS 3:

var simple = new Ext.FormPanel({
 labelWidth: 75,
 frame:true,
 title: 'Form - Ext 3',
 bodyStyle:'padding:5px 5px 0',
 width: 350,
 renderTo:'ext3-form',
 defaults: {width: 230},

 items: [

Upgraded Layouts

[140]

 new Ext.form.ComboBox({
 store: new Ext.data.ArrayStore({
 fields: ['id','lang'],
 data: [[1, 'PHP'], [2, 'Java'], [3, 'Ruby']]
 }),
 fieldLabel: 'Favorite Programming Language',
 valueField: 'id',
 displayField:'lang',
 typeAhead: false,
 mode: 'local',
 forceSelection: true,
 triggerAction: 'all',
 emptyText:'Select a language...',
 selectOnFocus:true,
 allowBlank: false
 })
]
});

In the form above, we have a single item that is a combo box. The combo box contains
a trigger field; this is the down arrow the user can click to choose an option from a
list. Note that we left some space for the trigger field and the error icon:

Now, let's take a look at how the same form is implemented using Ext JS 4:

Ext.createWidget('form', {
 renderTo: 'ext4-form',
 labelWidth: 75,
 frame:true,
 title: 'Form - Ext 4',
 bodyStyle:'padding:5px 5px 0',
 width: 350,

 fieldDefaults: {
 anchor: '100%',
 msgTarget: 'side'
 },

Chapter 3

[141]

 items: [
 Ext.create('Ext.form.field.ComboBox', {
 store: Ext.create('Ext.data.ArrayStore', {
 fields: ['id','lang'],
 data: [[1, 'PHP'], [2, 'Java'], [3, 'Ruby']]
 }),
 fieldLabel: 'Favorite Programming Language',
 valueField: 'id', displayField:'lang',
 typeAhead: false,
 mode: 'local',
 forceSelection: true,
 triggerAction: 'all',
 emptyText:'Select a language...',
 selectOnFocus:true,
 allowBlank: false
 })
]
});

We changed the way we instantiated the Components (instead of the keyword
new, we used Ext.create) and we also removed the fixed width for the combo
box, so that the Component can use the full width of the form through the config
anchor: '100%'.

If we execute the preceding code, the output will be as follows:

Note that the Component was rendered using all the horizontal space of the form.
When we did not select an option from the combo box (the field does not allow blank
values), the form displayed an error and it resized the combo box automatically.

Upgraded Layouts

[142]

Summary
In this chapter, we covered a quick overview and code samples on the basic concepts
of the known Container layouts, such as, Auto (old Container Layout), Table,
Column, HBox, VBox, Anchor, Absolute, Accordion, Fit, Card, and Border layouts.

We also covered the features of some of the new Component layouts, such as Dock,
Toolbar, Field, and TriggerField layouts. We learned these new features through
code examples.

In the next chapter, we will dive into the new draw and chart package, and we will
learn how to implement the available chart types in the Ext JS 4 framework.

Upgraded Charts
Ext JS 4 has vastly improved on charts and drawing packages. Ext JS 3 introduced
some charts, but they still had many features to improve on, starting with the fact
that Ext JS 3 used Flash to render the charts. As Ext JS is a JavaScript framework, the
chart package has been rewritten, and now, the charts no longer need Flash to be
rendered. Ext JS 4 also introduces some new chart series, such as, Radar, Scatter,
and Gauge.

In this chapter, we will cover:

•	 The difference between Ext JS 3 and Ext JS 4 charts
•	 Ext draw package features
•	 An Ext chart package overview
•	 How to configure Legends
•	 How to use Axis
•	 Chart Series
•	 Customize a Chart Theme

We will also learn how to implement:

•	 Pie Charts
•	 Area Charts
•	 Column/Bar Charts
•	 Line Charts
•	 Radar Charts
•	 Scatter Charts
•	 Gauge Charts
•	 Mixed Series (Mix more than two Chart series just mentioned)

Upgraded Charts

[144]

Ext JS 4 chart upgrades
Ext JS 3 introduced chart components. Although it was a great improvement for
Ext JS 3, the Chart component was not entirely implemented with JavaScript; it
required a Flash file to run. This Flash file is supported by the YUI Chart Flash file
(http://developer.yahoo.com/yui/charts/).

The use of a Flash file to render charts was an issue, because the client had to
have Flash player installed to run the charts, and not every device supports flash.
Ext JS 3 only supported six types of charts: Pie, Bar, Line, Column, Stacked Bar,
and Stacked Column.

Ext JS 4 improved the chart components in a big way. You no longer need the Flash
file. All charts are implemented with JavaScript, and now you can run them on any
device. Ext JS 4 also supports more chart types than Ext JS 3—Bar, Column, Stacked
Bar, Stacked Column, Line, Area, Scatter, Pie, Radar, and Gauge charts. Plus, you
can combine different series in a single chart, and it is much easier to customize them.

Ext JS 4 also introduces the draw package, which provides classes you can use to
create graphics and custom animations you can run cross-browser.

Ext draw package
The draw package contains 7 classes to help you create graphics in Ext JS 4, which
are: Surface, engine.Svg, engine.Vml, Component, CompositeSprite, Color, and
Sprite.

The Surface class contains methods to render Sprite objects or Sprite groups
(CompositeSprite) and contains listeners to respond to mouse interactions; it also
provides methods to animate. A Sprite is a two-dimensional image or animation that
is integrated into a larger scene.

The Surface class has two concrete implementations—Svg and Vml. The Svg class
provides methods to draw with a SVG engine (Scalable Vector Graphics), for SVG-
capable browsers. The Vml class provides methods to draw with a VML engine
(Vector Markup Language), for the Internet Explorer browser family.

For further reading about SVG, please go to http://www.
w3.org/Graphics/SVG/, and for further reading about VML,
please go to http://www.w3.org/TR/NOTE-VML.html.

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/NOTE-VML.html
http://www.w3.org/TR/NOTE-VML.html

Chapter 4

[145]

The Component class is the superclass for the Chart class. Besides the fact that the
Chart class is inherited from the Component class, it also provides a surface where
Sprite objects can be rendered. You can create graphics without instantiating a class
from the chart package.

To create a drawing surface, you simply need to instantiate the Ext.draw.
Component class, as follows:

var drawComponent = Ext.create('Ext.draw.Component', {
 viewBox: false,
 items: [{
 type: 'circle',
 fill: '#9966FF',
 radius: 100,
 x: 110,
 y: 110
 }]
});

And you can add the drawing to any container class, such as a Window, and use
layouts:

Ext.create('Ext.Window', {
 width: 240,
 height: 250,
 layout: 'fit',
 items: [drawComponent]
}).show();

When we try to execute the previous code snippet, we will have the following output:

Upgraded Charts

[146]

Let's dig into the code of the draw Component we instantiated:

We have the viewBox property we set to false, which means that when we try to
resize Window, the draw Component inside will not be resized. The default value is
true, which means the drawing will be resized when you resize Window.

Then we have the items declaration. Inside this property, you can add a list of
sprites. In the previous example we have a Sprite of type circle, which means we
are going to draw a circle; we chose a color to fill the circle and defined the radius
size of the circle and the position along the x and y axes that the centre of the circle
will be located at.

The following code is equivalent to the drawComponent variable we just declared:

var drawComponent = Ext.create('Ext.draw.Component', {
 viewBox: false,
 items: [Ext.create('Ext.draw.Sprite', {
 type: 'circle',
 fill: '#9966FF',
 radius: 100,
 x: 110,
 y: 110
 })]
});

Every item declared inside the items config option in
Ext.draw.Component is an instance of Ext.draw.Sprite.

We can draw some types of Sprite object. Some of them are listed as follows:

•	 Circle: Used to draw circles
•	 Rect: Used to draw rectangles
•	 text: Used to render a text
•	 square: Used to draw a square
•	 path: Used to draw complex shapes using the SVG path syntax

We can also set other option properties to render a Sprite. Some of them are listed
as follows:

•	 type: The type of the Sprite (circle, rect, square, text, path) – string
•	 width: Used to set the rectangle width – number
•	 height: Used to set the rectangle height – number
•	 size: Used to set the size of a square – number

Chapter 4

[147]

•	 radius: Used to set the size of the radius of a circle – number
•	 x: The position along the x-axis – number
•	 y: The position along the y-axis – number
•	 fill: The color used to fill the sprite – string
•	 opacity: The opacity of a sprite – number
•	 stroke: The stroke color – string
•	 stroke-width: The width of the stroke – number
•	 path: The path of the sprite written in SVG path syntax – array
•	 text: The text desired to be rendered – string
•	 font: Used to set the font of text sprites written as a CSS font parameter – string

Now that we know some components we can draw, let's play with each one to see
how to set and use the options we discussed just now.

We already know how to draw a circle. We need to set a radius and we can
also set the position of the x and y axes. The next Sprite we are going to draw is a
rectangle:

var drawComponent = Ext.create('Ext.draw.Component', {
 viewBox: false,
 items: [{
 type: 'rect',
 fill: '#9966FF',
 width: 350,
 height: 200,
 x: 20,
 y: 20
 }]

});

To draw a rectangle, we need to set the Sprite type as 'rect'; we are going to
set a purplish color as the fill color and we will set the width and the height of
the rectangle. We also are going to set the positions on the x and y axes. When the
rectangle is rendered on the Window, the upper-left corner will be located at x = 20
and y = 20.

Upgraded Charts

[148]

When we execute the preceding code (also add it to a window 400x230 pixels), the
output will be as follows:

The next Sprite we are going to work on is text:

var drawComponent = Ext.create('Ext.draw.Component', {
 viewBox: false,
 items: [{
 type: 'text',
 text: 'Hello, World!',
 fill: '#000',
 font: '20px "Lucida Grande", "Lucida Sans Unicode", Verdana,
Arial, Helvetica, sans-serif',
 x: 30,
 y: 30
 }]
});

To draw a text we need to set the Sprite type as 'text', and we set a text we want
to display. We can also set a fill color to fill the text—in this example, we used
black; we can also set font, to set a font for the text. The font is written as in CSS. We
also set a location (on the x and y axes) to display the text.

If we try to execute the preceding code, we will have the following output:

Chapter 4

[149]

The next Sprite we are going to draw is a spiral, but we do not have any Sprite type
that draws a spiral for us. So, to draw it, we are going to use a Sprite of type path.
We are going to use an SVG path:

var drawComponent = Ext.create('Ext.draw.Component', {
 viewBox: true,
 items: [{
 type: 'path',
 path: ['M153 334',
 'C153 334 151 334 151 334',
 'C151 339 153 344 156 344',
 'C164 344 171 339 171 334',
 'C171 322 164 314 156 314',
 'C142 314 131 322 131 334',
 'C131 350 142 364 156 364',
 'C175 364 191 350 191 334',
 'C191 311 175 294 156 294',
 'C131 294 111 311 111 334',
 'C111 361 131 384 156 384',
 'C186 384 211 361 211 334',
 'C211 300 186 274 156 274'],
 fill: 'white',
 stroke: 'red',
 "stroke-width": "2"
 }]

});

When we use a Sprite of type path, we also need to set parameters for path itself.
path is an array of path locations. We also set the fill color for the spiral to white
and the stroke to red, with stroke-width as 2. It will draw a white spiral, and the
line that defines the spiral will be red, as shown in the following screenshot:

Upgraded Charts

[150]

Drawing a path can be very complex. For further reading, please go
to http://www.w3schools.com/svg/svg_path.asp.

Applying transformations to a draw
You can also apply transformations to a draw. For example, we will use the text
Hello,World and we will apply some transformations to it.

The first transformation is the rotation. You can rotate a Sprite. Let's rotate the text
by 45 degrees:

var drawComponent = Ext.create('Ext.draw.Component', {
 viewBox: false,
 autoSize: true,
 padding: 20,
 items: [{
 type: 'text',
 text: 'Hello, World!',
 fill: '#000',
 font: '20px "Lucida Grande", "Lucida Sans Unicode"',
 rotate: {
 degrees: 45
 }
 }]
});

In the previous code snippet, we set the rotate property, and we also set how many
degrees the text is going to be rotated. In the example, we chose to rotate the text by
45 degrees. If we execute the previous code snippet, the following will be the output:

http://www.w3schools.com/svg/svg_path.asp
http://www.w3schools.com/svg/svg_path.asp

Chapter 4

[151]

Another transformation we can perform is the scale transformation:

var drawComponent = Ext.create('Ext.draw.Component', {
 viewBox: false,
 autoSize: true,
 padding: 20,
 items: [{
 type: 'text',
 text: 'Hello, World!',
 fill: '#000',
 font: '20px "Lucida Grande", "Lucida Sans Unicode"',
 scale: {
 x: 1,
 y: 3
 }
 }]

});

We need to set the x and y attributes for scaling on the x and y axes.

The previous code snippet will produce the following output:

Putting it all together
We learned how to draw the available Ext JS 4 Sprite objects and how to apply some
transformation into them. Now, let's implement an example of how to use some of
these Sprites together to draw a more complex drawing.

Upgraded Charts

[152]

We will draw an MVC diagram using the Sprites mentioned previously, as displayed
by the following screenshot:

To draw the previous diagram, we will use three circles, three texts, and three
rectangles (for the linking lines). We will add all these sprites into a single Ext.
draw.Component and will set x and y values for each of them:

var drawComponent = Ext.create('Ext.draw.Component', {
 viewBox: false,
 items: [{
 type: 'circle',
 fill: '#0066CC', //blue
 radius: 40,
 x: 125,
 y: 50
 },{
 type: 'circle',
 fill: '#00CC66', //green
 radius: 40,
 x: 50,
 y: 145
 },{
 type: 'circle',
 fill: '#FF9933', //orange
 radius: 40,
 x: 200,
 y: 145
 },{

Chapter 4

[153]

 type: 'text',
 text: 'Model',
 fill: '#000', //black
 font: '12px "Arial"',
 x: 110,
 y: 50
 },{
 type: 'text',
 text: 'View',
 fill: '#000',
 font: '12px "Arial"',
 x: 185,
 y: 145
 },{
 type: 'text',
 text: 'Controller',
 fill: '#000',
 font: '12px "Arial"',
 x: 25,
 y: 145
 },{
 type: 'rect',
 fill: '#CC0000', //red
 width: 50,
 height: 5,
 x: 100,
 y: 145
 },{
 type: 'rect',
 fill: '#CC0000',
 width: 30,
 height: 5,
 x: 150,
 y: 95,
 rotate: {
 degrees: 45 // line in diagonal \
 }
 },{
 type: 'rect',
 fill: '#CC0000',
 width: 30,
 height: 5,
 x: 70,
 y: 95,

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Upgraded Charts

[154]

 rotate: {
 degrees: 135 // line in diagonal /
 }
 }]
});

Ext.create('Ext.Window', {
 title: 'MVC Diagram',
 width: 260,
 height: 250,
 layout: 'fit',
 items: [drawComponent]
}).show();

We also used two rotate transformations to rotate the two upper rectangles. Now
you can use your creativity and create very nice drawings with Ext JS 4.

The draw package provides basic functions to render charts. And, all the examples
before and the examples we will see in the following topics are cross-browser, which
is very important, and run on any device that has a browser.

Ext chart package
First, we will see an example of how to implement an Ext JS 3 chart:

Ext.chart.Chart.CHART_URL = '../extjs3/resources/charts.swf';

var store = new Ext.data.JsonStore({
 fields:['name', 'age'],
 data: [
 {name:'Loiane', age: 25},
 {name:'Peter', age: 24},
 {name:'Claudia', age: 30},
 {name:'John', age: 28},
 {name:'Steve', age: 32}
]
});

var chart = new Ext.Window({
 title: 'Friends x Age',
 width:500,
 height:300,
 layout:'fit',

Chapter 4

[155]

 items: {
 xtype: 'columnchart',
 store: store,
 xField: 'name',
 yField: 'age',
 xAxis: new Ext.chart.CategoryAxis({
 title: 'Friend Name'
 }),
 yAxis: new Ext.chart.NumericAxis({
 displayName: 'Age'
 })
 }
});
chart.show();

As you can see, we can declare the chart type directly in the xtype property. We are
saying that the preceding chart is a Column Chart. We also declared a store, the
xField and yField, and the xAxis and yAxis. But, an important detail we have to
pay attention to is the Ext.chart.Chart.CHART_URL constant declaration, for which
we set the path to the charts.swf file.

If we execute the preceding code snippet, we will have the following output:

Upgraded Charts

[156]

The Ext JS 4 chart package is independent of the draw package, except for the fact
that the Chart class is a subclass of the Ext.draw.Component class. A Chart contains
several parts, as shown in the next diagram:

DrawComponent

Chart

Store Legend Axis Series Callout

A Chart consists of a Legend, Axis, Series, and Callout, and can load data from
a Store.
A Chart has access to:

•	 Axis class through the chart.axes property, which defines the axes for a
particular chart/series.

•	 Legend class through the legend property, which is the legend box and its
legend item.

•	 It has access to the Series through the series property. A series can be a Pie,
Line, Bar, Column, and so on.

Chapter 4

[157]

The following code snippet will output the preceding chart:

var store = Ext.create('Ext.data.JsonStore', {
 fields:['name', 'age'],
 data: [
 {name:'Loiane', age: 25},
 {name:'Peter', age: 24},
 {name:'Claudia', age: 30},
 {name:'John', age: 28},
 {name:'Steve', age: 32}
]
});

Ext.create('Ext.window.Window', {
 title: 'Friends x Age',
 width:500,
 height:300,
 layout:'fit',
 maximizable: true,

 items: {
 xtype: 'chart',
 style: 'background:#fff',
 animate: true,
 shadow: true,
 store: store,
 axes: [{
 type: 'Numeric',
 position: 'left',
 fields: ['age'],
 title: 'Age',
 grid: true,
 minimum: 0
 }, {
 type: 'Category',
 position: 'bottom',
 fields: ['name'],
 title: 'Friend Name'
 }],
 legend:{
 position: 'right'
 },
 series: [{
 type: 'column',
 axis: 'left',
 highlight: true,
 tips: {
 trackMouse: true,
 width: 140,
 height: 28,

Upgraded Charts

[158]

 renderer: function(storeItem, item) {
 this.setTitle(storeItem.get('name') + ': ' + storeItem.
get('age'));
 }
 },
 xField: 'name',
 yField: 'age',
 showInLegend: true
 }]
 }
}).show();

As in Ext JS 3, the Ext JS 4 chart contains a store, to load the data from it.

The chart structure is more organized in Ext JS 4: we have a
chart declaration, we set a style for it, declared the axis in the
axes declaration, declared a legend, and finally, declared the
series, which is a Column series.

If you compare the Ext JS 3 and Ext JS 4 screenshots, you will note that even the style
is very different.

The structure in Ext JS 4 is easier to understand. Using the series property, it is
easier to use different series and create a chart with mixed series. And you can also
customize how the chart looks, using a style or a theme, and customize the legend, as
we will learn in the Customizing a Chart section of this chapter.

Legend
The Legend class is used to configure a legend for a chart series. The Legend class
displays a list of LegendItems related to the chart series.

The following is an example of how to configure and customize a legend for a chart:

legend: {
 position: 'right',
 padding: 20,
 itemSpacing: 15,
 boxFill: '#CCFFCC',
 labelFont : '16px Helvetica'
}

Chapter 4

[159]

Some configuration options are listed as follows:

•	 position: The position of the legend box. Possible values are bottom, top,
left, right, or float. If you use float, the legend box will be rendered at
the x,y position.

•	 x: The x position of the legend box, if the position is set to 'float'.
•	 y: The y position of the legend box, if the position is set to 'float'.
•	 padding: The padding between the legend border and its items.
•	 itemSpacing: The amount of space between the legend items.
•	 boxFill: The style to be applied to the legend box.
•	 labelFont: The font to be applied on the legend items labels.

If you do not want to display a legend box, simply omit the legend configuration.
If you want to display the legend for specified series only, use the configuration
displayInLegend: false (or true) in the series declaration.

The following screenshot exemplifies the legend configuration we just declared:

Axis
The Axis package contains seven classes:

•	 There is the Abstract class, which is the superclass of all Axis package
classes. As direct subclasses of Abstract, there is the Gauge class, the Radial
class, and the Axis class.

Upgraded Charts

[160]

•	 The Gauge axis is used with the Gauge series.
•	 The Radial class is used with the Pie and Radar series, because it uses polar

coordinates.
•	 The Axis class is the superclass of Category, Numeric, and Time axes.

The Axis class uses cartesian coordinates, and its subclasses are used with Bar,
Column, Area, Scatter, and Line charts.

Abstract

Gauge Axis Radial

Category Numeric Time

Category, Numeric, and Time axes
The Category, Numeric and Time axes are subclasses of the Axis class. This means
they have some configuration options in common:

•	 position: The position of the axis—it can use the following values: bottom,
top, left or right. The default value is bottom.

•	 minorTickSteps: The number of small ticks between two major ticks. The
default value is 0.

•	 majorTickSteps: The properties minimum and maximum are set; you need to
specify a number for the majorTickSteps.

•	 grid: This can be a Boolean value or an object configuration. If specified, it
adds a background grid for an axis. If set to true on vertical axis, it will draw
vertical lines; if set to true on horizontal axis, it will draw horizontal lines.

•	 length: The offset of the axis position. The default value is 0.
•	 width: The offset of the axis width. The default value is 0.

Tickmarks (Ticks) divide an axis into equal sections by a step whose
value is determined by the special options of an axis. Tickmarks are
used to improve comprehension of a chart's data. In addition, axis
labels may accompany them. There are two types of tickmarks and
grid lines: major and minor, as described in the preceding items.

Chapter 4

[161]

The following is an example of how to configure the axes chart property:

axes: [{
 type: 'Numeric',
 position: 'left',
 fields: ['visits'],
 title: 'Number of Visits',
 grid: true,
 minimum: 0,
 minorTickSteps:3
 }, {
 type: 'Category',
 position: 'bottom',
 fields: ['os'],
 title: 'Operational System'
}],

The preceding code outputs the following chart:

In the preceding example, we have a Numeric and a Category axis.

The Numeric axis handles numeric and quantitative values. You can set minimum and
maximum values, which are going to limit the values of the axis; if you do not set any,
Ext JS 4 will use the minimum and maximum values from the data set.

The Category axis handles names of items, such as names, months, and so on. When
you have many category items and there is no space to render all of them along the
axis, you can set the calculateCategoryCount property; if set to true, Ext JS 4 will
calculate the number of items that will be rendered along the axis; if set to false, it
will plot all the category items.

Upgraded Charts

[162]

If you have to work with time values, you can use the Time axis. But, use it only
when the dates are dynamic or change very often. If you want to display month
names or dates as a category, use the Category axis.

Some options you can use to configure a Time axis are:

•	 aggregateOpt: The operator used when grouping. Its value can be sum, avg,
max, or min. The default value is sum.

•	 groupBy: The array of fields to group.
•	 fromDate: The starting date. Similar to minimum value.
•	 toDate: The ending date. Similar to maximum value.
•	 constrain: If set to true, the chart will be rendered only if the values belong

to fromDate and toDate. If set to false, it will adapt the axis to the values.
•	 dateFormat: The format of the date that will be rendered. Ext JS uses the

same date format PHP uses. For further reading about date format, please go
to http://php.net/function.date.php.

•	 timeUnit: The unit of time used for each step. Its value can be day, month, or
year. The default value is year,month,day.

Gauge axis
The Gauge axis is used with the Gauge series. This axis is used to display numeric or
quantitative values.

The following is an example of how to configure a Gauge axis:

axes: [{
 type: 'gauge',
 position: 'gauge',
 minimum: 0,
 maximum: 7,
 steps: 7,
 margin: -10
}]

The possible configuration options are:

•	 minimum: The minimum value to be displayed on the axis
•	 maximum: The maximum value to be displayed on the axis
•	 steps: The number of steps and tick marks
•	 margin: Offset of the ticks and labels; the default value is 10

http://php.net/manual/en/function.date.php
http://php.net/manual/en/function.date.php

Chapter 4

[163]

The position of a Gauge axis is always set to 'gauge'.

Radial axis
The Radial axis is used with the Radar and Pie series. This axis is used to display
numeric values.

The following is an example of how to configure a Radial axis:

axes: [{
 type: 'Radial',
 position: 'radial',
 label: {
 display: true
 }
}]

The position of a Radial axis is always set to 'radial'.

Series
A Series is the key to showing data in a chart; with the Series, you define how the
chart will display the data through x and y axes (or using a single axis).

In Ext JS 4, there is a package named Ext.chart.series, which contains all the
chart.series classes:

Series

Pie Gauge Cartesian Radar

Area Bar Line Scatter

Column

Upgraded Charts

[164]

The Series class is the super class (abstract class), which contains some basic
properties and behaviors applied to all chart series. As direct subclasses, there are the
Pie, Gauge, and Radar series classes. There is also a series class named Cartesian,
which is an abstract series classc ontaining common properties and methods to
render a chart through the x and y axes. The subclasses of the Cartesian class
are the Area, Bar, Line, and Scatter series. The Bar class also has a subclass, the
Column class.

Before starting with each series, we will take a look at some common properties that
can be applied to all chart series:

•	 type: The type of the series. It can be column, bar, line, area, scatter, pie,
radar, or gauge.

•	 highlight: This highlights the markers or the series when hovering over
them with the mouse, if the value is true.

•	 showInLegend: A Boolean value that indicates if the legend will display
the series.

•	 field: The name of the field to be displayed in the label. The default
value is 'name'.

•	 tips: Shows a tooltip when hovering over the markers. It is the same
configuration used for Ext.tip.Tooltip.

Bar chart
A Bar Chart is a chart with horizontal rectangular bars proportional to the value
they represent. The Bar Chart class is a subclass of the Cartesian class, which is a
subclass of Series.

First, we will generate some data to display in the chart. Let's suppose we want to
display how many visits your blog has per operating system. If we organize the data
in a table, we will have something like the following:

Operating system Visits
Windows 21548
Linux 19864
Mac OS 18459
Android 5762
iOS 5635

Chapter 4

[165]

Let's transform the preceding table into a Store:

var store = Ext.create('Ext.data.ArrayStore', {
 fields: [
 {name: 'os'},
 {name: 'visits', type: 'int'}
],
 data: [
 ['Windows','21548'],
 ['Linux', '19864'],
 ['Mac OS', '18459'],
 ['Android','5762'],
 ['iOS', '5635']
]
});

We will use the previous store in some examples in this chapter, including in the
following example:

var barChart = Ext.create('Ext.chart.Chart', {
 animate: true,
 shadow: true,
 store: store,
 style: 'background:#fff',

 axes: [{
 type: 'Numeric',
 position: 'bottom',
 fields: ['visits'],
 title: 'Number of Visits',
 grid: true,
 minimum: 0
 }, {
 type: 'Category',
 position: 'left',
 fields: ['os'],
 title: 'Operational System'
 }],

 series: [{
 type: 'bar',
 axis: 'bottom',
 highlight: true,
 tips: {
 trackMouse: true,

Upgraded Charts

[166]

 width: 140,
 height: 28,
 renderer: function(storeItem, item) {
 this.setTitle(storeItem.get('os') + ': ' + storeItem.
get('visits') + ' visits');
 }
 },
 xField: 'os',
 yField: 'visits'
 }]
});

In the preceding chart, we have set some chart properties, such as, animate, shadow,
sytle (white background), and store. We also set the axes declaration. We have two
axes: a horizontal one, at the bottom, which is going to display the number of visits
(starting from 0 and ranging to minimum); and a vertical one, at the left, which is
going to display the operating systems. In this example, we are using a Numeric axis
to display the quantitative data and a Category axis to display the OS names.

Then, we have the series declaration. We have a single Series, which is a Bar chart
(represented by type:'bar'). We have set the axis to bottom, meaning the visits
value will be displayed on the bottom. We also set the highlight value as true, so
when we hover the mouse over the rectangular bars, they will be highlighted. We
also set a tooltip to be displayed when we hover over the rectangular bars; the
tooltip will display the name of the operating system and its number of visits. And
finally, we declared the xField and yField.

The following are some common properties used for all Cartesian charts:

•	 axis: Which axis the series will be blinded to
•	 xField: Which field is going to be used to access the x axis value from

the store
•	 yField: Which field is going to be used to access the y axis value from

the store

Let's add the previous chart to a Window and display it:

Ext.create('Ext.window.Window', {
 width: 400,
 height: 300,
 hidden: false,
 maximizable: true,
 title: 'Bar Chart',
 renderTo: Ext.getBody(),
 layout: 'fit',
 items: [barChart]
});

Chapter 4

[167]

When we execute the preceding code, it will output the following:

Grouped bar chart
Sometimes we need to display more than one set of data in a single chart to compare
the results. In Ext JS 4, you can simply create a grouped Bar Chart.

Let's consider the following data:

Number of Visits by OS
Year Windows Linux Mac OS
2008 21548 19864 18459
2009 32458 28475 15874
2010 17856 25418 20673
2011 2635 29183 23584

In the preceding table, we can compare the number of visits, by operating system, to
a blog, through the years of 2008, 2009, 2010, and 2011. Let's transform the preceding
table in an Ext Store:

var store = Ext.create('Ext.data.ArrayStore', {
 fields: [
 {name: 'year'},
 {name: 'windows', type: 'int'},
 {name: 'linux', type: 'int'},
 {name: 'macos', type: 'int'}
],
 data: [

Upgraded Charts

[168]

 ['2008','21548','19864','18459'],
 ['2009', '32458','28475','15874'],
 ['2010', '17856','25418','20673'],
 ['2011','2635','29183','23584']
]
});

Now, we will declare the Grouped Bar Chart:

var groupedBarChart = Ext.create('Ext.chart.Chart', {
 animate: true,
 shadow: true,
 store: store,
 style: 'background:#fff',

 axes: [{
 type: 'Category',
 position: 'left',
 fields: ['year'],
 title: 'Year'
 }, {
 type: 'Numeric',
 position: 'bottom',
 fields: ['windows','linux','macos'],
 title: 'Number of Visits by OS',
 grid: true,
 minimum: 0
 }],

 series: [{
 type: 'bar',
 axis: 'bottom',
 highlight: true,
 tips: {
 trackMouse: true,
 width: 140,
 height: 28,
 renderer: function(storeItem, item) {
 this.setTitle(String(item.value[1]) + ' Visits');
 }
 },
 xField: 'year',
 yField: ['windows','linux','macos']
 }],

 legend: {
 position: 'right'
 }
});

Chapter 4

[169]

There some few important changes we need to note in the preceding code snippet.
The first one is the fields declaration in the Numeric axis. We grouped the fields
that represent the number of visits for each OS. The other important change is we
also grouped the yFields in the bar series declaration. We also added a legend
declaration, so we can note the difference between the bars' colors and map them
with an OS. Everything else we declared as a simple bar chart.

If we execute the preceding code, we will have the following output:

Stacked bar chart
A stacked bar chart is a grouped bar chart, but with one difference: a property. The
Series Bar Chart class has a property called stacked. If we set this property as
true, the chart will be stacked instead of grouped.

Let's get the code for a grouped bar chart and transform it into a stacked bar chart:

var stackeBarChart = Ext.create('Ext.chart.Chart', {
 animate: true,
 shadow: true,
 store: store,
 style: 'background:#fff',

 axes: [{
 type: 'Category',
 position: 'left',
 fields: ['year'],

Upgraded Charts

[170]

 title: 'Year'
 }, {
 type: 'Numeric',
 position: 'bottom',
 fields: ['windows','linux','macos'],
 title: 'Number of Visits by OS',
 grid: true,
 minimum: 0
 }],

 series: [{
 type: 'bar',
 axis: 'bottom',
 highlight: true,
 tips: {
 trackMouse: true,
 width: 140,
 height: 28,
 renderer: function(storeItem, item) {
 this.setTitle(String(item.value[1]) + ' Visits');
 }
 },
 xField: 'year',
 yField: ['windows','linux','macos'],
 stacked: true
 }],

 legend: {
 position: 'right'
 }
});

The difference between the grouped bar chart and the stacked bar chart is the last
line of code of the series declaration, which is stacked: true.

Chapter 4

[171]

If we execute the preceding code, we will have the following output:

Column chart
A Column Chart has vertical, rectangular bars proportional to the value they
represent. It is a Bar chart, but in the vertical position. The Column Chart class is a
subclass of the Bar chart class.

For the next example, we will consider the store we used for the Bar chart example:

var columnChart = Ext.create('Ext.chart.Chart', {
 animate: true,
 shadow: true,
 store: store,
 style: 'background:#fff',

 axes: [{
 type: 'Numeric',
 position: 'left',
 fields: ['visits'],
 title: 'Number of Visits',
 grid: true,
 minimum: 0
 }, {
 type: 'Category',
 position: 'bottom',

Upgraded Charts

[172]

 fields: ['os'],
 title: 'Operational System'
 }],

 series: [{
 type: 'column',
 axis: 'left',
 highlight: true,
 tips: {
 trackMouse: true,
 width: 140,
 height: 28,
 renderer: function(storeItem, item) {
 this.setTitle(storeItem.get('os') + ': ' + storeItem.
get('visits') + ' visits');
 }
 },
 xField: 'os',
 yField: ['visits']
 }]
});

As the Column Chart is a Bar Chart, let's compare the differences. The differences
are in the axes and axis positions. If you notice, the Numeric axis is not on the
bottom, it is on the left in the Column Chart. Same for the Category axis; it is not on
the left anymore—it is positioned on the bottom. And in the series declaration,
the axis is on the left, not on the bottom.

The preceding code snippet will output the following chart:

Chapter 4

[173]

You can also have a grouped or stacked Column chart. The principle is the same
that is applied to the grouped and stacked Bar chart.

Line Chart
A Line chart is a chart with a set of data points connected by a straight line of
segments. The LineChart class is a subclass of the Cartesian class, which is a
subclass of Series.

Before we start implementing a Line chart, we have to generate some data to display
on it. Let us suppose that we want to display how many visits a blog had during
each month of a year; consider the following table:

Month Visits
January 4875
February 3854
March 2358
April 5693
May 6751
June 5231
July 8721
August 8642
September 7231
October 5642
November 8642
December 6154

Now, we will transform the preceding table into a Store:

var store = Ext.create('Ext.data.ArrayStore', {
 fields: [
 {name: 'month'},
 {name: 'visits', type: 'int'}
],
 data: [
 ['January','4875'],
 ['February', '3854'],
 ['March', '2358'],
 ['April','5693'],
 ['May', '6751'],
 ['June', '5231'],

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Upgraded Charts

[174]

 ['July', '8721'],
 ['August', '8642'],
 ['September', '7231'],
 ['October', '5642'],
 ['November', '8642'],
 ['December', '6154']
]
});

Let's get to the Line chart implementation example:

var lineChart = Ext.create('Ext.chart.Chart', {
 style: 'background:#fff',
 animate: true,
 store: store,
 shadow: true,
 axes: [{
 type: 'Numeric',
 minimum: 0,
 position: 'left',
 fields: ['visits'],
 title: 'Number of Visits',
 minorTickSteps: 1
 }, {
 type: 'Category',
 position: 'bottom',
 fields: ['month'],
 title: 'Month of the Year'
 }],
 series: [{
 type: 'line',
 highlight: {
 size: 7,
 radius: 7
 },
 tips: {
 trackMouse: true,
 width: 140,
 height: 28,
 renderer: function(storeItem, item) {
 this.setTitle(storeItem.get('month') + ': ' + storeItem.
get('visits') + ' visits');
 }
 },
 axis: 'left',
 xField: 'month',
 yField: 'visits'
 }]
});

Chapter 4

[175]

In the preceding code, we have a Numeric Axis representing the number of visits,
and a Category axis representing each month of the year. Then, we have the series
declaration, which we declared of type 'line'. We also have the xField and yField
, tips, highlight and axis declarations, as we also had in previous chart examples.

If we execute the preceding code, we will get the following output:

Customizing a Line Chart
The Line Chart Series class contains some properties you can use to customize the
chart.

Let's get the series declaration from the previous Line chart example and add
some properties:

series: [{
 type: 'line',
 highlight: {
 size: 7,
 radius: 7
 },
 tips: {
 trackMouse: true,
 width: 140,
 height: 28,
 renderer: function(storeItem, item) {
 this.setTitle(storeItem.get('month') + ': ' + storeItem.
get('visits') + ' visits');

Upgraded Charts

[176]

 }
 },
 axis: 'left',
 xField: 'month',
 yField: 'visits',
 smooth: true,
 markerConfig: {
 type: 'cross',
 radius: 5,
 'fill': '#f00'
 },
 showMarkers: true,
 fill: true
}]

If we execute the preceding code, we will have the following output:

What is different in the code? We have added the following properties:

•	 smooth: If set to true or a non-zero number, the line will be smoothed/
rounded. If you compare the previous example with this one, you will note
the lines are straight in the previous example; in this one, they are rounded
around the chart points.

Chapter 4

[177]

•	 markerConfig: You can set a style for the markers (the points in the chart).
The configuration is the same for a Sprite class. In this example, we set
the type of the marker as 'cross'; you can also set it as 'circle'. We also
set a radius value for the marker and a fill color (red). The marker will be
displayed only if the property showMarkers is set as true.

•	 showMarkers: A Boolean property. If is set as true, will display the marker
configured in the markerConfig property.

•	 fill: Is set as true, will fill the area under the line. The default value is false.

Grouped Line Chart
We saw that it is very simple to implement a grouped Bar Chart or Column Chart,
we simply needed to group the fields. The Grouped Line chart works a little bit
differently. We will see how it works.

But first, let's generate some data to be displayed in the chart. We want to display
how many visits a blog had in each month of the year, but we are going to compare
two years:

Month Visits in 2009 Visits in 2010
January 4875 3587
February 3854 2489
March 2358 4965
April 5693 1684
May 6751 2943
June 5231 1846
July 8721 4662
August 8642 9712
September 7231 6847
October 5642 5222
November 8642 7304
December 6154 5651

Let's transform the preceding table into a Store:

var store = Ext.create('Ext.data.ArrayStore', {
 fields: [
 {name: 'month'},
 {name: 'visits2009', type: 'int'},
 {name: 'visits2010', type: 'int'}
],

Upgraded Charts

[178]

 data: [
 ['January','4875','3587'],
 ['February', '3854','2489'],
 ['March', '2358','4965'],
 ['April','5693','1684'],
 ['May', '6751','2943'],
 ['June', '5231','1846'],
 ['July', '8721','4662'],
 ['August', '8642','9712'],
 ['September', '7231','6847'],
 ['October', '5642','5222'],
 ['November', '8642','7304'],
 ['December', '6154','5651']
]
});

Now, we will implement a Grouped Line Chart:

var groupedLineChart = Ext.create('Ext.chart.Chart', {
 style: 'background:#fff',
 animate: true,
 store: store,
 shadow: true,
 legend: {
 position: 'right'
 },
 axes: [{
 type: 'Numeric',
 minimum: 0,
 position: 'left',
 fields: ['visits2009','visits2010'],
 title: 'Number of Visits',
 minorTickSteps: 1
 }, {
 type: 'Category',
 position: 'bottom',
 fields: ['month'],
 title: 'Month of the Year'
 }],
 series: [{
 type: 'line',
 highlight: {
 size: 7,
 radius: 7
 },

Chapter 4

[179]

 axis: 'left',
 smooth: true,
 xField: 'month',
 yField: 'visits2009',
 markerConfig: {
 type: 'cross',
 size: 5,
 radius: 4,
 'stroke-width': 0
 }
 },
 {
 type: 'line',
 highlight: {
 size: 7,
 radius: 7
 },
 axis: 'left',
 smooth: true,
 xField: 'month',
 yField: 'visits2010',
 markerConfig: {
 type: 'circle',
 size: 5,
 radius: 4,
 'stroke-width': 0
 }
 }]
});

To display a Grouped Line Chart, we do not group the fields in the Line Chart
Series declaration. We have to declare two Line Series (or as many as you need to,
depending on how many data sets you need to compare). But, we do group the fields
in the Axes declaration; in this case, in the Numeric Axis fields declaration.

We can also customize each line series to look different from each other. In the
preceding example, we customized the markers; we declared one as cross and the
other one as circle.

Ext JS 4 also uses different colors for each series. We do not need
to manually customize it, but, if we want to, we can. We will learn
how to customize a chart later on in this chapter.

Upgraded Charts

[180]

The preceding code will output the following chart:

Area Chart
The Area Chart is based on the Line Chart, but the area between the axis and the
line is filled with color. It is a chart that displays quantitative data. Generally, the
Area Chart compares two or more sets of data. The Area class is a subclass of the
Cartesian Chart class.

As the Area Chart is similar than the Line chart, we will use the Store we declared
for the Line chart in the Area Chart as well. Let's implement an Area Chart:

var areaChart = Ext.create('Ext.chart.Chart', {
 style: 'background:#fff',
 animate: true,
 store: store,
 shadow: true,
 axes: [{
 type: 'Numeric',
 minimum: 0,
 position: 'left',
 fields: ['visits'],
 title: 'Number of Visits',
 minorTickSteps: 1
 }, {
 type: 'Category',
 position: 'bottom',

Chapter 4

[181]

 fields: ['month'],
 title: 'Month of the Year'
 }],
 series: [{
 type: 'area',
 highlight: true,
 tips: {
 trackMouse: true,
 width: 140,
 height: 28,
 renderer: function(storeItem, item) {
 this.setTitle(storeItem.get('month') + ': ' + storeItem.
get('visits') + ' visits');
 }
 },
 axis: 'left',
 xField: 'month',
 yField: 'visits'
 }]
});

The Area Chart does not have any property to configure itself. All the properties
used we've discussed already, in previous topics. The only thing we need to do is to
set the series type as 'area'. The preceding code will output the following chart:

Upgraded Charts

[182]

Grouped Area Chart
The most common area charts are used to compare two or more data sets. For the
following example, we will use the grouped line chart store:

var groupedAreaChart = Ext.create('Ext.chart.Chart', {
 style: 'background:#fff',
 animate: true,
 store: store,
 shadow: true,
 legend: {
 position: 'right'
 },
 axes: [{
 type: 'Numeric',
 minimum: 0,
 position: 'left',
 fields: ['visits2009','visits2010'],
 title: 'Number of Visits',
 minorTickSteps: 1
 }, {
 type: 'Category',
 position: 'bottom',
 fields: ['month'],
 title: 'Month of the Year'
 }],
 series: [{
 type: 'area',
 axis: 'left',
 highlight: true,
 xField: 'month',
 yField: ['visits2009','visits2010'],
 tips: {
 trackMouse: true,
 width: 200,
 height: 28,
 renderer: function(storeItem, item) {
 this.setTitle(item.storeField + ' - '
 + storeItem.get('month')
 + ' - ' + storeItem.get(item.storeField));
 }
 },
 style: {
 opacity: 0.93
 }
 }]
});

Chapter 4

[183]

In the preceding code, to implement a grouped area chart, we simply need to
group the fields. Unlike with the Line chart, we do not need to declare a series for
each data set.

The preceding code will output the following chart:

Note that Ext JS 4 will automatically use a different color for each data set. And, if
you mouse over the legend items, the chart will highlight the selected area.

Scatter Chart
A Scatter Chart is used to display and compare two variables in a Cartesian plan.
For each variable a point/marker is plotted. The Scatter class is a subclass of the
Cartesian Chart class.

First, we will learn how to implement a scatter chart with a single variable, and then
we will learn how to add variables to be displayed in the Cartesian plan.

For the following example, we will use the same Store we used for the Line chart:

var scatterChart = Ext.create('Ext.chart.Chart', {
 style: 'background:#fff',
 animate: true,
 store: store,
 shadow: true,
 axes: [{
 type: 'Numeric',

Upgraded Charts

[184]

 minimum: 0,
 position: 'left',
 fields: ['visits'],
 title: 'Number of Visits',
 minorTickSteps: 1
 }, {
 type: 'Category',
 position: 'bottom',
 fields: ['month'],
 title: 'Month of the Year'
 }],
 series: [{
 type: 'scatter',
 highlight: {
 size: 7,
 radius: 7
 },
 axis: 'left',
 xField: 'month',
 yField: 'visits'
 }]
});

The preceding code is a sample of how to configure a scatter chart. We have to
declare the type of the series as 'scatter', and configure the other series options.
As with the Line chart, we can also configure a markerConfig; but, if we do not, Ext
will use the default one, which is circle.

If we execute the preceding code snippet, we will have the following output:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 4

[185]

Grouped Scatter Chart
Now we will see how to add a second variable to a Scatter chart. You can use as
many variables as you need to. For the following example, we will use the Store we
used for the grouped Line chart:

var groupedScatterChart = Ext.create('Ext.chart.Chart', {
 style: 'background:#fff',
 animate: true,
 store: store,
 legend: {
 position: 'right'
 },
 axes: [{
 type: 'Numeric',
 minimum: 0,
 position: 'left',
 fields: ['visits2009','visits2010'],
 title: 'Number of Visits',
 minorTickSteps: 1
 }, {
 type: 'Category',
 position: 'bottom',
 fields: ['month'],
 title: 'Month of the Year'
 }],
 series: [{
 type: 'scatter',
 axis: 'left',
 smooth: true,
 xField: 'month',
 yField: 'visits2009',
 markerConfig: {
 radius: 5
 },
 highlight: true
 },
 {
 type: 'scatter',
 axis: 'left',
 smooth: true,
 xField: 'month',
 yField: 'visits2010',
 markerConfig: {
 radius: 5
 },
 highlight: true
 }]
});

Upgraded Charts

[186]

If you compare the previous code snippet with the Grouped Lined chart, you will
see that is very similar.

If we execute the preceding code, it will output the following chart:

Pie Chart
The Pie Chart is a chart in a shape of a pie (or pizza). It is a circular chart divided
into sectors, with each one representing a proportion. The Pie Chart class is a
subclass of Series class.

For the Pie Chart example, we will use the Bar Chart Store:

var pieChart = Ext.create('Ext.chart.Chart', {
 animate: true,
 shadow: true,
 store: store,
 style: 'background:#fff',
 shadow: true,
 legend: {
 position: 'right'
 },

 series: [{
 type: 'pie',
 showInLegend: true,
 field: ['visits'],

Chapter 4

[187]

 label: {
 field: 'os',
 display: 'rotate',
 contrast: true,
 font: '18px Arial'
 },
 highlight: {
 segment: {
 margin: 20
 }
 }
 }]
});

To implement a Pie chart, we first need to set the Series type as 'pie'. As each
sector of the pie will have an angle, we set the legend to rotate as well, and we also
customized the font of the legend. We also set the highlight to have a margin of
20 pixels, when we hover the mouse over a sector.

An important thing to note is that the Pie chart uses the
Radial axis. As this configuration is applied automatically,
we can omit it.

The preceding code snippet will output the following pie chart:

Upgraded Charts

[188]

The Pie Chart also has some other properties you can configure:

•	 colorSet: An array of color values to be used for each sector, in the order
they were declared.

•	 donut: If set to true or a number (radius size), the pie chart will be
transformed into a donut chart. The default value is false (zero).

•	 highlightDuration: The duration of the highlight effect applied to a sector
when hovered.

Donut Chart
The Pie chart has a property called donut. When this property is set to true or a
number (representing the radius size of the donut), the pie chart is transformed into
a Donut chart.

For example, we will add the donut property into the series declaration of the
previous example with a value of 30:

series: [{
 type: 'pie',
 showInLegend: true,
 field: ['visits'],
 label: {
 field: 'os',
 display: 'rotate',
 contrast: true,
 font: '18px Arial'
 },
 highlight: {
 segment: {
 margin: 20
 }
 },
 donut: 30
}]

Chapter 4

[189]

If we try to execute the preceding code, we will get the following output:

Radar Chart
A Radar Chart displays data in the form of a two-dimensional chart, commonly
displaying three (or more) data sets starting from the same point. The Radar Chart is
also known as a spider chart. The Radar class is a subclass of Series class.

We will use the same Store we used for Line chart, in the following example:

var radarChart = Ext.create('Ext.chart.Chart', {
 style: 'background:#fff',
 animate: true,
 store: store,
 shadow: true,
 axes: [{
 type: 'Radial',
 position: 'radial',
 label: {
 display: true
 }
 }],
 series: [{
 type: 'radar',
 xField: 'month',

Upgraded Charts

[190]

 yField: 'visits',
 showInLegend: true,
 showMarkers: true,
 highlight: true,
 markerConfig: {
 radius: 4
 },
 style: {
 'stroke-width': 2,
 fill: 'none'
 }
 }]
});

The Radar chart uses the Radial axis. To declare a radar series, first we need
to set the type of the series as 'radar'. The other config options, such as show
markerConfig, are very similar to the Line Series configuration. If we execute the
preceding code, we will get the following chart as output:

Chapter 4

[191]

Grouped Radar Chart
To implement a Grouped Radar Chart with multiple data sets, we need to declare a
radar series for each data set we want to display on the chart:

series: [{
 type: 'radar',
 xField: 'month',
 yField: 'visits2009',
 highlight: true,
 showMarkers: true,
 markerConfig: {
 radius: 4
 },
 style: {
 'stroke-width': 2,
 fill: 'none'
 }
},
{
 type: 'radar',
 xField: 'month',
 yField: 'visits2010',
 highlight: true,
 showMarkers: true,
 markerConfig: {
 radius: 4
 },
 style: {
 'stroke-width': 2,
 fill: 'none'
 }
}]

Upgraded Charts

[192]

The Store we used for the previous example is the same as Grouped Line Chart. All
the configuration options are very similar to the Line Chart as well. The preceding
code snippet will output the following chart:

Gauge Chart
The Gauge chart is used to show progress. The Gauge class is a subclass of the Series
class and uses a Gauge Axis in the axes configuration.

To use as an example, let's compare the progress of your reading of this book
(supposing you are reading it from cover to cover and reading the chapters in
sequence). This is the fourth chapter (from a total of 7). Let's declare a store to use in
the chart:

var store = Ext.create('Ext.data.ArrayStore', {
 fields: [
 {name: 'chapters', type: 'int'}
],
 data: [['4']]
});

Chapter 4

[193]

Now let's see how to implement a Gauge chart:

var gaugeChart = Ext.create('Ext.chart.Chart', {
 style: 'background:#fff',
 animate: true,
 store: store,
 shadow: true,
 axes: [{
 type: 'gauge',
 position: 'gauge',
 minimum: 0,
 maximum: 7,
 steps: 7,
 margin: -10
 }],
 series: [{
 type: 'gauge',
 field: 'chapters',
 donut: false,
 highlight: true
 }]
});

To implement a Gauge series, we first need to set the type of the series as 'gauge'.
This series supports only a single field, which is the one we are going to use to
display the progress (chapters we already read of this book). When we execute the
preceding code, we will see the following output:

Upgraded Charts

[194]

In the preceding chart, two different colors are used to display the progress of the
reading. But, if you want to display a needle to point is the exact location of the
value the chart is displaying, simply add the needle:true property to the series
declaration. Another change we can make is to set the donut property. The donut
property works similar to the Pie chart donut property.

series: [{
 type: 'gauge',
 field: 'chapters',
 donut: 30,
 needle: true,
 highlight: true
}]

If we try to execute the code again, we will have the following output:

Customizing a Chart
The Ext.chart package contains a package called theme. Inside this package, we
will find there are two classes: Ext.chart.theme.Base and Ext.chart.theme.
Theme.

The Theme class is a base class for creating a custom theme in Ext JS 4.

Chapter 4

[195]

Let's try to create a theme based on blue colors. To do it, we will set base color and
use it at the axis and we will declare an array of bluish colors to be used by the series:

Ext.define('Ext.chart.theme.Blue', {
 extend: 'Ext.chart.theme.Base',

 baseColor: '#000099',
 colors: ['#3399FF', '#0066CC', '#003366'],

 constructor: function(config) {
 this.callParent([Ext.apply({
 axis: {
 fill: this.baseColor,
 stroke: this.baseColor
 },
 axisLabelLeft: {
 fill: this.baseColor
 },
 axisLabelBottom: {
 fill: this.baseColor
 },
 axisTitleLeft: {
 fill: this.baseColor
 },
 axisTitleBottom: {
 fill: this.baseColor
 },
 colors: this.colors
 }, config)]);
 }
});

To use a custom theme in a chart, we simply need to declare it in the theme property
(the Theme is a mixin applied to the Chart class):

Ext.create('Ext.chart.Chart', {
 theme: 'Blue',

 //other config here
});

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Upgraded Charts

[196]

When we render the chart, we will see it all in blue colors (we applied the theme to
the grouped bar chart):

But, which are the options we can set to a custom chart? The configuration can
be very complex. You can always use a base theme, consulting the Base class
configuration:

Ext.define('Ext.chart.theme.Custom', {
 extend: 'Ext.chart.theme.Base',

 constructor: function(config) {
 this.callParent([Ext.apply({
 background: false,
 axis: {
 stroke: '#444',
 'stroke-width': 1
 },
 axisLabelTop: {
 fill: '#444',
 font: '12px Arial, Helvetica, sans-serif',
 spacing: 2,
 padding: 5,
 renderer: function(v) { return v; }
 },
 axisLabelRight: {
 fill: '#444',
 font: '12px Arial, Helvetica, sans-serif',

Chapter 4

[197]

 spacing: 2,
 padding: 5,
 renderer: function(v) { return v; }
 },
 axisLabelBottom: {
 fill: '#444',
 font: '12px Arial, Helvetica, sans-serif',
 spacing: 2,
 padding: 5,
 renderer: function(v) { return v; }
 },
 axisLabelLeft: {
 fill: '#444',
 font: '12px Arial, Helvetica, sans-serif',
 spacing: 2,
 padding: 5,
 renderer: function(v) { return v; }
 },
 axisTitleTop: {
 font: 'bold 18px Arial',
 fill: '#444'
 },
 axisTitleRight: {
 font: 'bold 18px Arial',
 fill: '#444',
 rotate: {
 x:0, y:0,
 degrees: 270
 }
 },
 axisTitleBottom: {
 font: 'bold 18px Arial',
 fill: '#444'
 },
 axisTitleLeft: {
 font: 'bold 18px Arial',
 fill: '#444',
 rotate: {
 x:0, y:0,
 degrees: 270
 }
 },
 series: {
 'stroke-width': 0

Upgraded Charts

[198]

 },
 seriesLabel: {
 font: '12px Arial',
 fill: '#333'
 },
 marker: {
 stroke: '#555',
 fill: '#000',
 radius: 3,
 size: 3
 },
 colors: ["#94ae0a", "#115fa6","#a61120", "#ff8809",
"#ffd13e", "#a61187", "#24ad9a", "#7c7474", "#a66111"],
 seriesThemes: [{
 fill: "#115fa6"
 }, {
 fill: "#94ae0a"
 }, {
 fill: "#a61120"
 }, {
 fill: "#ff8809"
 }, {
 fill: "#ffd13e"
 }, {
 fill: "#a61187"
 }, {
 fill: "#24ad9a"
 }, {
 fill: "#7c7474"
 }, {
 fill: "#a66111"
 }],
 markerThemes: [{
 fill: "#115fa6",
 type: 'circle'
 }, {
 fill: "#94ae0a",
 type: 'cross'
 }, {
 fill: "#a61120",
 type: 'plus'
 }]
 }, config)]);
 }
});

Chapter 4

[199]

The preceding code represents the base theme used in every Ext JS 4 chart. The
configuration properties are self-explanatory.

The following chart maps some theme config options:

Summary
In this chapter, we covered some basics concepts of the new draw package, which is
the base for the new chart package. We also covered how to configure each part of
the chart, such as axis, legend, and series.

We covered every Series class with examples, such as, Bar, Stacked Bar, Grouped
Bar, Column (Stacked Column and Grouped Column), Line, Grouped Line, Area,
Scatter, Pie (and Donut), Radar, and Gauge. We also covered an example of how to
use different series (mixed) in the same chart.

We also covered to how create custom themes for a chart and how to apply them in a
particular chart. We learned that themes can be very useful when you need to change
the custom look and feel of a chart, and it can be re-used for other charts as well.

In the next chapter, we will see the new features of some Ext JS 4 components, such
as, Grids, Trees, and Forms, and we will also learn the differences between these
components using Ext JS 3 and Ext JS 4.

Upgraded Grid, Tree,
and Form

So far, we have covered new API, system enhancements and changes, the new data
package, and layouts; we also introduced the new chart package. But, the main
pieces of Ext JS framework we use when we develop an Ext application are the
components such as Grid panel, Tree panel, and Forms, because the main goal of an
application is to display and manage data.

In this chapter, we will cover some new features and enhancements in the following
Components:

•	 Grid panel
•	 Tree panel
•	 Form panel

Grid panel
The grid panel is one of the most-used components when developing an application.
Ext JS 4 provides some great improvements related to this component.

The Ext JS 4 Grid panel renders a different HTML than Ext JS 3 Grid did. Sencha calls
this new feature Intelligent Rendering. Ext JS 3 used to create the whole structure,
supporting all the features. But, what if someone just wanted to display a simple
grid? All the other features not being rendered would just be wasted, because no
one was using that structure. Ext JS 4 now renders only the features the grid uses,
minimizing and boosting the performance.

Upgraded Grid, Tree, and Form

[202]

Before we examine the grid's new features and enhancements, let's take a look how
to implement a simple grid in Ext JS 4:

Ext.create('Ext.grid.Panel', {
 store: Ext.create('Ext.data.ArrayStore', {
 fields: [
 {name: 'book'},
 {name: 'author'}
],
 data: [['Ext JS 4: First Look','Loiane Groner']]
 }),
 columns: [{
 text : 'Book',
 flex : 1,
 sortable : false,
 dataIndex: 'book'
 },{
 text : 'Author',
 width : 100,
 sortable : true,
 dataIndex: 'author'
 }],
 height: 80,
 width: 300,
 title: 'Simple Grid',
 renderTo: Ext.getBody()
});

As you can see in the preceding code, the two main parts of the grid are the store and
the columns declarations. Note, as well, names of both store and model fields
always have to match with the column's dataIndex (if you want to display the
column in the grid).

So far, nothing has changed. The way we used to declare a simple grid in Ext JS 3 is
the same way we do for Ext JS 4.

However, there are some changes related to plugins and the new features property.
We are going to take a closer look at that in this section.

Let's dive into the changes!

Chapter 5

[203]

Columns
Ext JS 4 organizes all the column classes into a single package—the Ext.grid.
column package.

We will explain how to use each column type with an example. But first, we need to
declare a Model and a Store to represent and load the data:

Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'book'},
 {name: 'topic', type: 'string'},
 {name: 'version', type: 'string'},
 {name: 'released', type: 'boolean'},
 {name: 'releasedDate', type: 'date'},
 {name: 'value', type: 'number'}
]
});

var store = Ext.create('Ext.data.ArrayStore', {
 model: 'Book',
 data: [
 ['Ext JS 4: First Look','Ext JS','4',false,null,0],
 ['Learning Ext JS 3.2','Ext JS','3.2',tr
ue,'2010/10/01',40.49],
 ['Ext JS 3.0 Cookbook','Ext JS','3',true,'2009/10/01',44.99],
 ['Learning Ext JS','Ext JS','2.x',true,'2008/11/01',35.99],
]
});

Now, we need to declare a grid:

Ext.create('Ext.grid.Panel', {
 store: store,
 width: 550,
 title: 'Ext JS Books',
 renderTo: 'grid-example',
 selModel: Ext.create('Ext.selection.CheckboxModel'), //1
 columns: [
 Ext.create('Ext.grid.RowNumberer'), //2
 {
 text: 'Book',//3
 flex: 1,
 dataIndex: 'book'
 },{

Upgraded Grid, Tree, and Form

[204]

 text: 'Category', //4
 xtype:'templatecolumn',
 width: 100,
 tpl: '{topic} {version}'
 },{
 text: 'Already Released?', //5
 xtype: 'booleancolumn',
 width: 100,
 dataIndex: 'released',
 trueText: 'Yes',
 falseText: 'No'
 },{
 text: 'Released Date', //6
 xtype:'datecolumn',
 width: 100,
 dataIndex: 'releasedDate',
 format:'m-Y'
 },{
 text: 'Price', //7
 xtype:'numbercolumn',
 width: 80,
 dataIndex: 'value',
 renderer: Ext.util.Format.usMoney
 },{
 xtype:'actioncolumn', //8
 width:50,
 items: [{
 icon: 'images/edit.png',
 tooltip: 'Edit',
 handler: function(grid, rowIndex, colIndex) {
 var rec = grid.getStore().getAt(rowIndex);
 Ext.MessageBox.alert('Edit',rec.get('book'));
 }
 },{
 icon: 'images/delete.gif',
 tooltip: 'Delete',
 handler: function(grid, rowIndex, colIndex) {
 var rec = grid.getStore().getAt(rowIndex);
 Ext.MessageBox.alert('Delete',rec.get('book'));
 }
 }]
 }]
});

Chapter 5

[205]

The preceding code outputs the following grid:

•	 The first column is declared as selModel, which, in this example, is going
to render a checkbox, so we can select some rows from the grid. To add this
column into a grid, simply declare the selModel (also known as sm in Ext JS
3) as CheckBox selection model, as highlighted in the code (comment 1 in the
code).

•	 The second column that we declared is the RowNumberer column. This
column adds a row number automatically into the grid.

•	 In the third column (with text:'Book'), we did not specify a column type;
this means the column will display the data itself as a string.

•	 In the fourth column, we declared a column with xtype as templatecolumn.
This column will display the data from the store, specified by an XTemplate,
as declared in the tpl property. In this example, we are saying we want to
display the topic (name of the technology) and its version.

•	 The fifth column is declared as booleancolumn. This column displays a true
or false value. But, if we do not want to display true or false in the grid,
we can specify the values that we want to get displayed. In this example, we
displayed the value as Yes (for true values) and No (for false values), as we
declared in the trueText and falseText.

•	 The sixth column we declared as datecolumn, which is used to display dates.
We can also declare a date format we want to be displayed. In this example,
we want to display only the month and the year. The format follows the
same rules for PHP date formats.

•	 The seventh column we declared as numbercolumn. This column is used to
display numbers, such as a quantitative number, money, and so on. If we
want to display the number in a particular format, we can use one of the Ext
JS renderers to create a customized one.

•	 And the last column we declared is the actioncolumn. In this column, we
can display icons that are going to execute an action, such as delete or edit.
We declare the icons we want to display in the items property.

Upgraded Grid, Tree, and Form

[206]

Feature support
In Ext JS 3, when we wanted to add a new functionality to a grid, we used to create
a plugin or extend the GridPanel class. There was no default way to do it. Ext JS 4
introduces the Ext.grid.feature.Feature class that contains common methods
and properties to create a plugin.

Inside the Ext.grid.feature package, we will find seven classes: AbstractSummary,
Chunking, Feature, Grouping, GroupingSummary, RowBody, and Summary.

A feature is very simple to use—we need to add the feature inside the feature
declaration in the grid:

features: [{
 groupHeaderTpl: 'Publisher: {name}',
 ftype: 'groupingsummary'
}]

Let's take a look at how to use some of these native grid features.

Ext.grid.feature.Grouping
Grouping rows in Ext JS 4 has changed. Now, Grouping is a feature and can be
applied to a grid through the features property.

The following code displays a grid grouped by book topic:

Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: ['name', 'topic']
});

var Books = Ext.create('Ext.data.Store', {
 model: 'Book',
 groupField: 'topic',
 data: [{
 name: 'Learning Ext JS',
 topic: 'Ext JS'
 },{
 name: 'Learning Ext JS 3.2',
 topic: 'Ext JS'
 },{
 name: 'Ext JS 3.0 Cookbook',
 topic: 'Ext JS'
 },{
 name: 'Expert PHP 5 Tools',

Chapter 5

[207]

 topic: 'PHP'
 },{
 name: 'NetBeans IDE 7 Cookbook',
 topic: 'Java'
 },{
 name: 'iReport 3.7',
 topic: 'Java'
 },{
 name: 'Python Multimedia',
 topic: 'Python'
 },{
 name: 'NHibernate 3.0 Cookbook',
 topic: '.NET'
 },{
 name: 'ASP.NET MVC 2 Cookbook',
 topic: '.NET'
 }]
});

Ext.create('Ext.grid.Panel', {
 renderTo: Ext.getBody(),
 frame: true,
 store: Books,
 width: 350,
 height: 400,
 title: 'Books',
 features: [Ext.create('Ext.grid.feature.Grouping',{
 groupHeaderTpl: 'topic: {name} ({rows.length}
 Book{[values.rows.length > 1 ? "s" : ""]})'
 })],
 columns: [{
 text: 'Name',
 flex: 1,
 dataIndex: 'name'
 },{
 text: 'Topic',
 flex: 1,
 dataIndex: 'topic'
 }]
});

Upgraded Grid, Tree, and Form

[208]

In the groupHeaderTpl attribute, we declared a template to be displayed in the
grouping row. We are going to display one of the following customized strings,
depending on the number of books belonging to the topic:

•	 topic: {name}{rows.length} Book

•	 topic: {name}{rows.length} Books

The string comprises of the topic name ({name}) and the count of the book for the
topic ({rows.length}).

In Ext JS 3, we still had to declare a grouping field in the store; but, instead of a
Grouping feature, we used to declare GroupingView, as follows:

view: new Ext.grid.GroupingView({
 forceFit:true,
 groupTextTpl: '{text} ({[values.rs.length]} {[values.rs.length > 1
 ? "Books" : "Book"]})'
})

If we execute the grouping grid, we will get the following output:

Chapter 5

[209]

Ext.grid.feature.GroupingSummary
The GroupingSummary feature also groups rows with a field in common, but it also
adds a summary row at the bottom of each group.

Let's change the preceding example to use the GroupingSummary feature:

Ext.create('Ext.grid.Panel', {
 renderTo: Ext.getBody(),
 frame: true,
 store: Books,
 width: 350,
 height: 400,
 title: 'Books',
 features: [{
 groupHeaderTpl: 'Topic: {name}',
 ftype: 'groupingsummary'
 }],
 columns: [{
 text: 'Name',
 flex: 1,
 dataIndex: 'name',
 summaryType: 'count',
 summaryRenderer: function(value){
 return Ext.String.format('{0} book{1}',
 value, value !== 1 ? 's' : '');
 }
 },{
 text: 'Topic',
 flex: 1,
 dataIndex: 'topic'
 }]
});

We highlighted two pieces in the preceding code. The first line is the feature
declaration: in the previous example (Grouping) we created the feature using the
Ext.create declaration. But if we do not want to explicitly create the feature every
time we declare, we can use the ftype property, which is groupingsummary in
this example.

The groupingsummary that we added to the grid's name column is in the second line
of highlighted code. We declared a summaryType property and set its value as count.
Declaring the summaryType as count means we want to display the number of books
in that particular topic/category; it is going to count how many records we have
for a particular category in the grid. It is very similar to the count of the PL/SQL
language. Other summary types we can declare are: sum, min, max, average (these
are self-explanatory).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Upgraded Grid, Tree, and Form

[210]

In this example, we want to customize the text that will be displayed in the
summary, so we are going to use the summaryRenderer function. We need to pass a
value argument to it, and the value is the count of the name column. Then, we are
going to return a customized string that is going to display the count (token {0}) and
the string book or books, depending on the count (if it is more than 1 we add s at
the end of the string book).

Ext.String.format is a function that allows you to define a
tokenized string and pass an arbitrary number of arguments to
replace the tokens. Each token must be unique and must increment
in the format {0}, {1}, and so on.

The preceding code will output the following grid:

Chapter 5

[211]

Ext.grid.feature.Summary
The GroupingSummary feature adds a row at the bottom of each grouping.
The Summary feature adds a row at the bottom of the grid to display summary
information. The property configuration is very similar to that for GroupingSummary,
because both classes are subclasses of AbstractSummary (a class that provides
common properties and methods for summary features).

Ext.create('Ext.grid.Panel', {
 renderTo: Ext.getBody(),
 frame: true,
 store: Books,
 width: 350,
 height: 300,
 title: 'Books',
 features: [{
 ftype: 'summary'
 }],
 columns: [{
 text: 'Name',
 flex: 1,
 dataIndex: 'name',
 summaryType: 'count',
 summaryRenderer: function(value){
 return Ext.String.format('{0} book{1}',
 value, value !== 1 ? 's' : '');
 }
 },{
 text: 'Topic',
 flex: 1,
 dataIndex: 'topic'
 }]
});

The only difference from the GroupingSummary feature is the feature declaration
itself. The summayType and summaryRenderer properties work in a similar way.

Upgraded Grid, Tree, and Form

[212]

The preceding code will output the following grid:

Ext.grid.feature.RowBody
The rowbody feature adds a new tr->td->div in the bottom of the row that we can
use to display additional information.

Here is how to use it:

Ext.create('Ext.grid.Panel', {
 renderTo: Ext.getBody(),
 frame: true,
 store: Books,
 width: 350,
 height: 300,
 title: 'Books',
 features: [{
 ftype: 'rowbody',
 getAdditionalData: function(data, idx, record, orig) {
 return {
 rowBody: Ext.String.format(
 '<div>->topic: {0}</div>',
 data.topic)
 };
 }
 }, {

Chapter 5

[213]

 ftype: 'rowwrap'
 }],
 columns: [{
 text: 'Name',
 flex: 1,
 dataIndex: 'name'
 }]
});

In the preceding code, we are not only displaying the name of the book; we are using
the rowbody to display the topic of the book as well.

The first step is to declare the rowbody feature. One very important thing to be
noted is that rowbody will be initially hidden, unless you override the
getAdditionalData method.

If we execute the preceding code, we will get the following output:

Upgraded Grid, Tree, and Form

[214]

Grid plugins
Ext JS 4 also introduces a plugin package with five classes: Editing, CellEditing,
RowEditing, HeaderResizing, and DragDrop.

The Editing class is an abstract class that provides common methods and properties
for editing a grid. Its subclasses are CellEditing and RowEditing.

Ext.grid.plugin.CellEditing
The CellEditing plugin enables editing in a particular cell of the grid. When you
click on the cell (the cell has to be enabled for editing) the editor (field instance or
field configuration) will open and we can edit its value.

Before we get to the code for the cell that needs to be edited, we will declare a store:

Ext.define('Contact', {
 extend: 'Ext.data.Model',
 fields: ['name', 'email','phone']
});

var Contacts = Ext.create('Ext.data.Store', {
 model: 'Contact',
 data: [
 {name: 'Loiane', email: 'me@loiane.com', phone: '1234-5678'},
 {name: 'Peter', email: 'peter@email.com', phone: '2222-2222'},
 {name: 'Ane', email: 'ane@email.com', phone: '3333-3333'},
 {name: 'Harry', email: 'harry@email.com', phone: '4444-4444'},
 {name: 'Camile', email: 'camile@email.com', phone: '5555-5555'}
]
});

Now, let's get to the code for the cell that needs to be edited:

Ext.create('Ext.grid.Panel', {
 renderTo: Ext.getBody(),
 frame: true,
 store: Contacts,
 width: 350,
 title: 'Contacts',
 selType: 'cellmodel',
 columns: [{
 text: 'Name',
 flex: 1,
 dataIndex: 'name'
 },{

Chapter 5

[215]

 text: 'Email',
 flex: 1,
 dataIndex: 'email',
 editor: {
 xtype:'textfield',
 allowBlank:false
 }
 },{
 text: 'Phone',
 flex: 1,
 dataIndex: 'phone',
 editor: {
 xtype:'textfield',
 allowBlank:false
 }
 }],
 plugins: [
 Ext.create('Ext.grid.plugin.CellEditing', {
 clicksToEdit: 1
 })
]
});

In the preceding code, we have to pay attention to a few things: the first one is
the plugins declaration. We declared a CellEditing plugin and we also set the
clicksToEdit property to 1, which means the users have to click on the specific cell
to be able to edit it. Declaring only the plugin is not enough in order to make the cell
editable. We also have to add the editor option to the cell.

We declared, inside the columns property, an editor property. The editor property
is an Ext.form.field.Field object, which means you can use its properties to
configure as if it is a text field, a combobox, a checkbox, or any other component
from the field package. The columns are editable only after adding the editor
property. In the preceding example, we added the editor property to the Email and
Phone columns, so these columns become editable when we click on them. We did
not add the editor property for the Name column, thus it will not be editable when
we click on it.

Another highlighted line is the selType property. We set cellModel as the selection
model (known as the sm property in Ext JS 3), which means that, when we click on a
row of the grid, the cell we clicked on will be selected. The default one is rowModel,
which selects the entire row, including all columns.

Upgraded Grid, Tree, and Form

[216]

If we execute the preceding code, we will have the following output:

Ext.grid.plugin.RowEditing
The RowEditing plugin enables editing in a particular row of the grid. When you
click on the row, the editor (a form) will open and we can edit the row values:

Ext.create('Ext.grid.Panel', {
 renderTo: Ext.getBody(),
 frame: true,
 store: Contacts,
 width: 350,
 title: 'Contacts',
 selType: 'rowmodel',
 columns: [{
 text: 'Name',
 flex: 1,
 dataIndex: 'name'
 },{
 text: 'Email',
 flex: 1,
 dataIndex: 'email',
 editor: {
 xtype:'textfield',
 allowBlank:false
 }
 },{
 text: 'Phone',
 flex: 1,
 dataIndex: 'phone',
 editor: {
 xtype:'textfield',
 allowBlank:false
 }

Chapter 5

[217]

 }],
 plugins: [
 Ext.create('Ext.grid.plugin.RowEditing', {
 clicksToEdit: 1
 })
]
});

In the preceding code, we declared the RowEditing plugin in the plugins
declaration. As in the CellEditing example, we also set clicksToEdit to 1, so the
user will have to click only once on the row to open the editor.

We need to add the editor to the columns/cells; otherwise the column will not be
editable, just like the CellEditing plugin.

We also highlighted the selType line in the preceding code. We set its value to
rowmodel, meaning that, when we click on a row in the grid, the entire row will be
selected, including all its columns.

When we execute the preceding code, we will have the following output:

Saving the data to the server
To save the data to the server, we need to change the Store to support the four
CRUD (create, read, update, delete) actions, as follows:

var Contacts = Ext.create('Ext.data.Store', {
 model: 'Contact',
 proxy: {
 type: 'ajax',
 api: {
 read : 'contact/view.php',
 create : 'contact/create.php',

Upgraded Grid, Tree, and Form

[218]

 update: 'contact/update.php',
 destroy: 'contact/delete.php'
 },
 reader: {
 type: 'json',
 root: 'data',
 successProperty: 'success'
 },
 writer: {
 type: 'json',
 writeAllFields: true,
 encode: false,
 root: 'data'
 }
 }
});

We can also add a toolbar with Add and Delete buttons to the grid, to perform all
the four CRUD operations:

var rowEditor = Ext.create('Ext.grid.plugin.RowEditing', {
 clicksToEdit: 1
})

var grid = Ext.create('Ext.grid.Panel', {
 //other config options
 plugins: rowEditor,
 dockedItems: [{
 xtype: 'toolbar',
 items: [{
 text: 'Add',
 handler : function() {
 rowEditor.cancelEdit();

 // Create a record instance through the ModelManager
 var r = Ext.ModelManager.create({
 name: 'New Contact',
 email: 'newcontact@email.com',
 phone: '1111-1111'
 }, 'Contact');

 Contacts.insert(0, r);
 rowEditor.startEdit(0, 0);
 }
 },{

Chapter 5

[219]

 text: 'Delete',
 handler: function() {
 var sm = grid.getSelectionModel();
 rowEditor.cancelEdit();
 Contacts.remove(sm.getSelection());
 if (store.getCount() > 0) {
 sm.select(0);
 }
 }
 }]
 }]
});

And, if we want to, we can also create another button in the toolbar to save all our
actions with the following code in the handler function:

Contacts.sync()

This way, we will save all the operations we performed on the grid, at once.

If we want to automatically save the data after every operation, we
need to add the config option autoSync to the Store. However,
this will generate a request to the server for every update, save, or
delete action. If the user is going to perform many CRUD operations
in the grid, autoSync may not be the best option; instead, the save
handler function would be ideal.

Infinite scrolling
Ext JS 4 also introduces the infinite scrolling grid, used for rendering thousands of
records without using the paging feature. If you worked with Ext JS 3 and tried to
display a few thousands records at once, you know it took a big effort to make it
work.

To implement an infinite scrolling grid, we just have to configure some properties in
the Store and in the Grid. First, let's see how the Store looks:

Ext.define('Book', {
 extend: 'Ext.data.Model',
 fields: [
 {name: 'book'},
 {name: 'pages', type: 'int'}
]

Upgraded Grid, Tree, and Form

[220]

});

var store = Ext.create('Ext.data.Store', {
 id: 'store',
 pageSize: 50,
 buffered: true,
 purgePageCount: 0,
 model: 'Book',
 proxy: {
 type: 'ajax',
 url : 'data/infinite.json',
 reader: {
 type: 'json',
 root: 'data'
 }
 }
});
store.guaranteeRange(0, 49);

In the preceding code snippet, we have a Model for book. We will display a book
and its page number.

Then, we have a variable store and we configured three extra properties. The first
one is pageSize (we have to configure this property to use it with paging), where
we set how many records we will be buffering at once—we have to set the pageSize
even if we are not going to use the paging feature. The second property that we
configured is buffered, which is going to buffer and pre-fetch pages of records if we
set it as true. The third property we set is the purgePageCount, which represents
how many pages we are going to cache before purging more records. When we set
its value to zero (0), it indicates that we are never going to purge pre-fetched data.

And finally, we call the guaranteeRange method, passing 0 and 49 (which is a
number lower than the value of pageSize). This method will load the variable store
with the specific number of records passed as the parameter and then will take care
of any additional loading required to display the total number of records.

And finally, we have the grid declaration:

var grid = Ext.create('Ext.grid.Panel', {
 width: 400,
 height: 500,
 title: 'Bufffered Grid - 50k records',
 store: store,
 verticalScrollerType: 'paginggridscroller',
 invalidateScrollerOnRefresh: false,

Chapter 5

[221]

 disableSelection: true,
 columns:[{
 text: 'Book Name',
 flex:1 ,
 sortable: true,
 dataIndex: 'book'
 },{
 text: 'Pages',
 width: 125,
 sortable: true,
 dataIndex: 'pages'
 }],
 renderTo: Ext.getBody()
});

We need to configure three additional properties to a simple grid to turn it into an
infinite scrolling grid.

The first property is verticalScrollerType; in this case, we will set it as
paginggridscroller. The second one is invalidateScrollerOnRefresh, which,
if set to false, will not refresh the scrollbar when we refresh the view. The third one
is disableSelection, which we have to set as false, because the infinite grid does
not support selection.

The preceding code will output the following grid:

Upgraded Grid, Tree, and Form

[222]

Tree panel
The tree component is much more simplified in Ext JS 4. Like grid, it is also a
subclass of Ext.panel.Table. This means we can add most functionality of the grid
in the tree as well.

Let's start declaring a simple tree in Ext JS 3:

new Ext.tree.TreePanel({
 renderTo: 'tree-example',
 title: 'Simple Tree',
 width: 200,
 rootVisible: false,

 root: new Ext.tree.AsyncTreeNode({
 expanded: true,
 children: [
 { text: "Menu Option 1", leaf: true },
 { text: "Menu Option 2", expanded: true,
 children: [
 { text: "Sub Menu Option 2.1", leaf: true },
 { text: "Sub Menu Option 2.2", leaf: true}
] },
 { text: "Menu Option 3", leaf: true }
]
 })
});

Now, let's see how to declare the same tree in Ext JS:

Ext.create('Ext.tree.Panel', {
 title: 'Simple Tree',
 width: 200,
 store: Ext.create('Ext.data.TreeStore', {
 root: {
 expanded: true,
 children: [
 { text: "Menu Option 1", leaf: true },
 { text: "Menu Option 2", expanded: true,
 children: [
 { text: "Sub Menu Option 2.1", leaf: true },
 { text: "Sub Menu Option 2.2", leaf: true}
] },
 { text: "Menu Option 3", leaf: true }

Chapter 5

[223]

]
 }
 }),
 rootVisible: false,
 renderTo: 'tree-example'
});

In Ext JS 4, we also have the title, width, and div properties, where the tree is
going to be rendered, and a config store. The store config is a new element
for the tree.

If we output both of the codes, we will have the same output, which is the
following tree:

If we take a look at the data package, we will see three files related to tree:
NodeInterface, Tree, and TreeStore.

NodeInterface applies a set of methods to the prototype of a record to decorate
it with a Node API. The Tree class is used as a container of a series of nodes and
TreeStore is a store implementation used by a Tree. The good thing about having
TreeStore is that we can use its features, such as proxy and reader, as we do for any
other Store in Ext JS 4.

Drag-and-drop and sorting
The drag-and-drop feature is very useful for rearranging the order of the nodes in
the Tree class.

Adding the drag-and-drop feature is very simple. We need to add the following code
into the tree declaration:

Ext.create('Ext.tree.Panel', {
 store: store,
 viewConfig: {
 plugins: {
 ptype: 'treeviewdragdrop'

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Upgraded Grid, Tree, and Form

[224]

 }
 },
 //other properties
});

And how do we handle drag-and-drop in store?

We do it in the same way as we handled the edition plugin on the Grid, using
a Writer:

var store = Ext.create('Ext.data.TreeStore', {
 proxy: {
 type: 'ajax',
 api: {
 read : '../data/drag-drop.json',
 create : 'create.php'
 }
 },
 writer: {
 type: 'json',
 writeAllFields: true,
 encode: false
 },
 autoSync:true
});

In the earlier versions of Ext JS 4, the autoSync config option does work.
Another way of synchronizing the Store with the server is adding a
listener to the Store instead of the autoSync config option, as follows:
listeners: {

 move: function(node, oldParent, newParent, index,
options) {

 this.sync();

 }

}

And, to add the sorting feature to the Tree class, we simply need to configure the
sorters property in the TreeStore, as follows:

Ext.create('Ext.data.TreeStore', {
 folderSort: true,
 sorters: [{
 property: 'text',
 direction: 'ASC'
 }]
});

Chapter 5

[225]

Check tree
To implement a check tree, we simply need to make a few changes in the data
that we are going to apply to the Tree. We need to add a property called checked
to each node, with a true or false value; true indicates the node is checked, and
false, otherwise.

For this example, we will use the following json code:

 [{
 "text": "Cartesian",
 "cls": "folder",
 "expanded": true,
 "children": [{
 "text": "Bar",
 "leaf": true,
 "checked": true
 },{
 "text": "Column",
 "leaf": true,
 "checked": true
 },{
 "text": "Line",
 "leaf": true,
 "checked": false
 }]
},{
 "text": "Gauge",
 "leaf": true,
 "checked": false
},{
 "text": "Pie",
 "leaf": true,
 "checked": true
}]

And as we can see, the code is the same as that for a simple tree:

var store = Ext.create('Ext.data.TreeStore', {
 proxy: {
 type: 'ajax',
 url: 'data/check-nodes.json'
 },
 sorters: [{
 property: 'leaf',

Upgraded Grid, Tree, and Form

[226]

 direction: 'ASC'
 }, {
 property: 'text',
 direction: 'ASC'
 }]
});

Ext.create('Ext.tree.Panel', {
 store: store,
 rootVisible: false,
 useArrows: true,
 frame: true,
 title: 'Charts I have studied',
 renderTo: 'tree-example',
 width: 200,
 height: 250
});

The preceding code will output the following tree:

Tree grid
In Ext JS 3, the client JavaScript Component, Tree Grid, was an extension part of the
ux package. In Ext JS 4, this Component is part of the native API but it is no longer
an extension. To implement a Tree Grid, we are going to use the Tree Component as
well; the only difference is that we are going to declare some columns inside the tree.
This is the good part of Tree being a subclass of Ext.panel.Table, the same super
class for Grid as well.

First, we will declare a Model and a Store, to represent the data we are going to
display in the Tree Grid. We will then load the Tree Grid:

Ext.define('Book', {
 extend: 'Ext.data.Model',

Chapter 5

[227]

 fields: [
 {name: 'book', type: 'string'},
 {name: 'pages', type: 'string'}
]
});

var store = Ext.create('Ext.data.TreeStore', {
 model: 'Book',
 proxy: {
 type: 'ajax',
 url: 'data/treegrid.json'
 },
 folderSort: true
});

So far there is no news. We declared the variable store as any other used in a grid,
except that this one is a TreeStore.

The code to implement the Component Tree Grid is declared as follows:

Ext.create('Ext.tree.Panel', {
 title: 'Books',
 width: 500,
 height: 300,
 renderTo: Ext.getBody(),
 collapsible: true,
 useArrows: true,
 rootVisible: false,
 store: store,
 multiSelect: true,
 singleExpand: true,
 columns: [{
 xtype: 'treecolumn',
 text: 'Task',
 flex: 2,
 sortable: true,
 dataIndex: 'task'
 },{
 text: 'Assigned To',
 flex: 1,
 dataIndex: 'user',
 sortable: true
 }]
});

Upgraded Grid, Tree, and Form

[228]

The most important line of code is highlighted—the columns declaration. The
columns property is an array of Ext.grid.column.Column objects, as we declare in
a grid.

The only thing we have to pay attention to is the column type of the first column,
that is, treecolumn; this way we know that we have to render the node into
the Tree Grid.

We also configured some other properties. collapsible is a Boolean property; if set
to true it will allow us to collapse and expand the nodes of the tree. The useArrows is
also a Boolean property, which indicates whether the arrow icon will be visible in the
tree (expand/collapse icons). The property rootVisible indicates whether we want
to display the root of the tree, which is a simple period (.). The property singleExpand
indicates whether we want to expand a single node at a time and the multiSelect
property indicates whether we want to select more than one node at once.

The preceding code will output the following tree grid:

Form
The class FormPanel provides a container for forms. We usually use a form for data
management. In Ext JS 4, FormPanel consists of Fields, FieldContainer, FieldSet,
Label, and Actions. We will start with an example of form fields, explaining each
one of them.

Chapter 5

[229]

Form fields
Ext JS 4 introduces the Ext.form.field package, where all the form fields belong.
We will look into each one of the classes from the previous diagram, with examples.
First, we will declare a form with some fields:

Ext.create('Ext.form.Panel', {
 frame: true,
 title: 'Form Fields',
 width: 340,
 bodyPadding: 5,
 renderTo: 'form-example',

 fieldDefaults: {
 labelAlign: 'left',
 labelWidth: 90,
 anchor: '100%'
 },

 items: [{
 xtype: 'hiddenfield', //1
 name: 'hiddenfield1',
 value: 'Hidden field value'
 },{
 xtype: 'displayfield', //2
 name: 'displayfield1',
 fieldLabel: 'Display field',
 value: 'Display field value'
 },{
 xtype: 'textfield', //3
 name: 'textfield1',
 fieldLabel: 'Text field',
 value: 'Text field value'
 },{
 xtype: 'textfield', //4
 name: 'password1',
 inputType: 'password',
 fieldLabel: 'Password field'
 },{
 xtype: 'textareafield', //5
 name: 'textarea1',
 fieldLabel: 'TextArea',
 value: 'Textarea value'
 },{
 xtype: 'filefield', //6

Upgraded Grid, Tree, and Form

[230]

 name: 'file1',
 fieldLabel: 'File upload'
 },{
 xtype: 'timefield', //7
 name: 'time1',
 fieldLabel: 'Time Field',
 minValue: '8:00 AM',
 maxValue: '5:00 PM',
 increment: 30
 },{
 xtype: 'datefield', //8
 name: 'date1',
 fieldLabel: 'Date Field',
 value: new Date()
 },{
 xtype: 'combobox', //9
 fieldLabel: 'Combobox',
 displayField: 'name',
 store: Ext.create('Ext.data.Store', {
 fields: [
 {type: 'string', name: 'name'}
],
 data: [
 {"name":"Alabama"},
 {"name":"Alaska"},
 {"name":"Arizona"},
 {"name":"Arkansas"},
 {"name":"California"}
]
 }),
 queryMode: 'local',
 typeAhead: true
 },{
 xtype: 'numberfield',
 name: 'numberfield1', //10
 fieldLabel: 'Number field',
 value: 20,
 minValue: 0,
 maxValue: 50
 },{
 xtype: 'checkboxfield', //11
 name: 'checkbox1',
 fieldLabel: 'Checkbox',
 boxLabel: 'box label'

Chapter 5

[231]

 },{
 xtype: 'radiofield', //12
 name: 'radio1',
 value: 'radiovalue1',
 fieldLabel: 'Radio buttons',
 boxLabel: 'radio 1'
 },{
 xtype: 'radiofield', //13
 name: 'radio1',
 value: 'radiovalue2',
 fieldLabel: '',
 labelSeparator: '',
 hideEmptyLabel: false,
 boxLabel: 'radio 2'
 },{
 xtype: 'multislider', //14
 fieldLabel: 'Multi Slider',
 values: [25, 50, 75],
 increment: 5,
 minValue: 0,
 maxValue: 100
 },{
 xtype: 'sliderfield', //15
 fieldLabel: 'Single Slider',
 value: 50,
 increment: 10,
 minValue: 0,
 maxValue: 100
 }]
});

In the preceding code, after we set the width and height of the form, we declared
the fieldDefaults property. This property contains the configuration applied
to all label instance fields (subclasses of Ext.form.field.Base or Ext.fom.
FieldContainer). As all fields in the preceding form are subclasses of Ext.form.
field.Base, the default config applies to all fields. In the previous example, we
said that the alignment of the label should be at the left of the form; the labelWidth
should be 90 pixels and all fields are going to use 100% of the available width
(anchor: '100%').

Upgraded Grid, Tree, and Form

[232]

The previous form will have the following output:

Now, we will look into the fields/items declarations:

•	 The first field we declared is a hidden field (xtype:'hiddenfield'). This
field stores hidden values, which we do not want to show to the user but
want to submit to the server. We can use a hidden field to store the ID
information; we do not want to display the ID in the form, but we want to
send it back to the server, say to perform updates.

•	 The second field we declared is a display field (xtype:'displayfield').
This field is useful when we want to display read-only information in
the form.

•	 The third field we declared is a text field (type:'textfield'). The text field
is a simple input field, where the user can enter any information.

•	 The fourth field is a text field as well (type 'password'), which means this
field is going to mask the input value.

•	 The fifth field is a textarea (xtype 'textareafield'). It is a multiline text
input field, where the user can enter multiple lines of information. TextArea
is a subclass of the Text field.

Chapter 5

[233]

•	 The sixth field is a file upload field (xtype:'filefield'), also known as File
Uploader. This field contains a button used to browse for a file at the user's
machine end, and the text field will display the path of the file. This field is
also a subclass of the Text field.

Next, we have some fields from the Trigger class, which also have Text as a super
class. The trigger fields contain a trigger button. The Trigger fields are Picker or
Spinner. Picker contains a button, which opens a picker popup to select the value,
such as the combobox, date picker, and time picker. The Spinner fields contain a
spinner with up and down buttons, such as the number field.

•	 The seventh field we declared is a time field (xtype: 'timefield'),
which is a trigger field. In the time field, we can also configure minValue
and maxValue, which are the minimum time and maximum time, set in
this example as 8:00 AM and 5:00 PM , respectively. We can also set the
increment interval (set to 30 minutes in this example), which means the field
is going to display 8 AM, 8:30 AM, 9 AM, and so on.

•	 The eighth field is a date field (xtype: 'datefield'). The date field is also
a trigger field used to handle dates. In the preceding example, it is set to a
default value—the current date.

•	 The ninth field is a combo box, which is also a trigger field:
(xtype:'combobox' or 'combo'). The combo box needs a Store to load the
information that is going to populate it. In this example, we declared the
config, store that loads the data from the memory. displayField is the field
we are going to display in the combo box.

•	 The tenth field is a number field (xtype:'numberfield'). numberfield is a
spinner field with up and down buttons, used to increase and decrease the
value. In the previous example, the default value is 20, the minimum value
is 0, and the maximum value is 50. If we want to remove the spinner button
and leave it as a number text field, we have to add the following config:
hideTrigger: true,
keyNavEnabled: false,
mouseWheelEnabled: false

•	 The eleventh field we declared is a checkbox (xtype: 'checkboxfield' or
'checkbox'). We have also set a value for the label.

•	 The next two fields are radio fields (xtype:'radiofield' or 'radio'). The
Radio class is a subclass of Checkbox, which is why the config is very similar.

Upgraded Grid, Tree, and Form

[234]

•	 The fourteenth field is a multi-slider field (xtype:'multislider'). To
configure this field, we can set an array of default, minimum, and maximum
values, and also the increment interval.

•	 The same applies to the single slider field (xtype:'slider' or
'sliderfield'), but instead of multiple values, we have a single one.

Validation
Having only a form to load and update information is not useful without validating
the data the user has input, correct?

Ext JS 4 also provides a validation mechanism. Let's see an example of how to
validate some fields:

Ext.create('Ext.form.Panel', {
 frame: true,
 title: 'Form Fields Validation',
 width: 340,
 bodyPadding: 5,
 renderTo: 'form-example',

 fieldDefaults: {
 labelAlign: 'left',
 labelWidth: 90,
 anchor: '100%',
 msgTarget: 'under'
 },

 items: [{
 xtype: 'textfield',
 name: 'textfield1',
 fieldLabel: 'Required',
 allowBlank: false //1
 },{
 xtype: 'textfield',
 name: 'textfield2',
 fieldLabel: 'Min 2',
 minLength: 2 //2
 },{
 xtype: 'textfield',
 name: 'textfield3',
 fieldLabel: 'Max 5',
 maxLength: 5 //3
 },{

Chapter 5

[235]

 xtype: 'textfield',
 name: 'textfield7',
 fieldLabel: 'Regex - Phone',
 regex: /^\d{3}-\d{3}-\d{4}$/, //4
 regexText: 'Must be in the format xxx-xxx-xxxx'
 },{
 xtype: 'textfield',
 name: 'textfield4',
 fieldLabel: 'Email',
 vtype: 'email' //5
 },{
 xtype: 'textfield',
 name: 'textfield5',
 fieldLabel: 'Alpha',
 vtype: 'alpha' //6
 },{

 xtype: 'textfield',

 name: 'textfield6',

 fieldLabel: 'AlphaNum',

 vtype: 'alphanum' //7
 },{
 xtype: 'textfield',
 name: 'textfield6',
 fieldLabel: 'Url',
 vtype: 'url' //8
 },{
 xtype: 'textfield',
 name: 'textfield8',
 fieldLabel: 'Custom: IP Address',
 vtype: 'IPAddress' //9
 }]
});

First, if we need to validate the information, we have to display something to the
user if the data is not valid. To do so, we can configure msgTarget (message target
location). It can take the following values: side, under, or top. In the preceding
example, we configure it to be displayed under the field for all fields, but we can also
configure each field separately.

Upgraded Grid, Tree, and Form

[236]

The first validation (comment 1) is the allowBlank form field. This is a Boolean
property, which, if set to true, will allow the user to leave the field blank. If it is set
to false, the user will have to enter a value—it cannot be left blank—otherwise, the
form will display an error message.

Then, we have the minLength and maxLength validations (comment 2 and comment
3), through which we can set a value for the minimum number of characters and the
maximum number of characters. In the preceding example, the minLength is set to 2
and the maxLength to 5. Therefore, if the user inputs only one character or more than
five characters, the form will display an error message.

We can perform another validation by creating a regular expression for the field
(comment 4). In the previous example, we set a regex property. The input field value
must have the following format: xxx-xxx-xxxx, where x can be any number from
zero to nine. We can also configure the error message that the form will display to
the user, in case the field does not match the regular expression.

The form package provides some validation types, also known as vtype. There are
validations that are available, such as email, alpha, alphanum, and url.

A field with a validation type email (comment 5) must have a value in the format of
an e-mail address, such as email@something.com.

A field with a validation type url (comment 6) must have a value in the format of a
URL, such as http://something.com.

A field with validation type alpha (comment 7) allows the user to enter alphabetic
values only, that is, from A to Z (lowercase and uppercase), and underscore (_).

A field with validation type alphanum (comment 8) allows the user to enter
alphabetic and numeric values, that is, from A to Z (lowercase and uppercase), 0 to 9,
and underscore (_).

We can also create a customized validation type and reuse it. Let's create a validation
type, vtype, to validate an IP address:

Ext.apply(Ext.form.field.VTypes, {
 IPAddress: function(v) {
 return /^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$/.test(v););
 },
 IPAddressText: 'Must be a numeric IP address',
 IPAddressMask: /[\d\.]/i
});

Chapter 5

[237]

On the IPAddress function, we applied a regular expression that validates an IP
address. The regular expression is only valid when the user enters an IP address with
the format xxx.xxx.xxx.xxx, where x must be a digit (number), and the user can
enter one, two, or three digits. The IPs 1.1.1.1, or 1.11.111.111, or 111.111.111.111 are
valid examples.

The preceding validation type is named as IPAddress (comment 9), and we used it
on the last field declared in the previous form.

If we try to execute the preceding code and enter some invalid values in the form
fields, we will get some errors, as shown in the following screenshot:

Upgraded Grid, Tree, and Form

[238]

Form label
A label is simply text that can be displayed inside a form. We can use the following
code to display a label:

Ext.create('Ext.form.Panel', {
 title: 'Form with Label',
 width: 100,
 bodyPadding: 10,
 renderTo: 'form-example',
 items: [{
 xtype: 'label',
 forId: 'myFieldId',
 text: 'Just a Label',
 margins: '0 0 0 10'
 }]
});

We can add a label in the items property of a form and use it with other form fields
as well. The preceding code will output the following form:

Actions
We can handle two kinds of actions within forms: loading the data and submitting
the data. We will implement an example where we have two buttons: one to load the
data from the server and another to send the data to the server:

Ext.create('Ext.form.Panel', {
 title: 'Book Info',
 renderTo: 'form-example',
 width: 300,
 bodyPadding: 5,
 fieldDefaults: {
 labelAlign: 'left',
 labelWidth: 90,
 anchor: '100%'
 },
 items: [{
 xtype: 'hiddenfield',
 name: 'bookId'

Chapter 5

[239]

 },{
 xtype: 'textfield',
 name: 'bookName',
 fieldLabel: 'Title'
 },{
 xtype: 'textfield',
 name: 'bookAuthor',
 fieldLabel: 'Author'
 }],
 buttons: [{
 text: 'Load',
 handler: function() {
 var form = this.up('form').getForm();
 form.load({
 url: 'data/form.json',
 failure: function(form, action) {
 Ext.Msg.alert("Load failed", action.result.
errorMessage);
 }
 });
 }
 },{
 text: 'Submit',
 handler: function() {
 var form = this.up('form').getForm();
 form.submit({
 url: 'form-submit.php',
 waitMsg: 'Sending the info...',
 success: function(fp, o) {
 Ext.Msg.alert('Success', 'Form submitted.');
 }
 });
 }
 }]
});

To load data for populating the form, we need to call the load action. To do so, we
need to specify the url config to load the data from; we can pass any additional
parameter and we can also handle any error message.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Upgraded Grid, Tree, and Form

[240]

When we load data to populate the previous form, the data should have the
following format:

{
 success: true,
 data: {
 bookId: 10,
 bookName: "Ext JS 4 First Look",
 bookAuthor: "Loiane Groner"
 }
}

We have to match the name of the field with the name of
the data that we are loading.

And to submit the data, we simply need to call the submit action and pass a url to
send the data to. We can also handle any error message and add a 'waiting' message
to be displayed while the form is being submitted.

The previous form will have the following output:

Summary
This chapter covered some really important changes made to the grid, tree, and form
package. Related to these components, we covered some new features, plugins, and
API changes, using hands-on examples.

In the next chapter, we will learn step-by-step how to create a new Ext JS 4 theme
with Sass and Compass.

Ext JS 4 Themes
Ext JS 4 provides a new engine to create new themes. It is now much easier to create
and customize themes than it was in Ext JS 3.

In this chapter, we will cover how to create a new theme using the CSS3 features:

•	 Install Sass and Compass
•	 Create a new Ext JS 4 theme
•	 Create new UI Components
•	 Support legacy browsers

Getting started with Ext JS 4 themes
If you have already tried to customize an Ext JS 3 theme, you know that it was a
complicated task— and a bit annoying, too. You had to open Firebug, inspect every
single element, go to the CSS file, and then change it to a new color/background,
and so on. Some Components of Ext JS 3 were composed of some images, such as the
Button Component. If we wanted to change the button color, we had to create new
images and then apply them to the Ext JS 3 button.

All of these complications are no longer present in Ext JS 4. Version 4 introduces a
new way to customize and create new themes, using CSS3 features.

Ext JS 4 Themes

[242]

Ext JS 4 uses Sass and Compass to create themes. If you take a look at the Ext JS 4
resources folder, you will see that there are folders and files that will help us to
create and customize a theme (Ext JS 3 does not contain these files):

Installing Ruby
Sass and Compass are Ruby gems, which are Ruby package managers. Prior to the
installation of these gems, we need to install Ruby.

Windows and Mac OS
If you use Windows, go to http://rubyinstaller.org/ and download the
latest version.

If you use Mac OS, you do not need to worry, because Ruby comes installed on
Mac OS. However, on the Sencha website, they recommend that you install XCode
(it installs all required dependencies); to install XCode, please go to http://
developer.apple.com/xcode/.

Linux
If you use Linux, well, there are several Linux distributions available today, and
the best way to install Ruby is to use the default package manager for the particular
distribution that you use.

http://rubyinstaller.org/
http://developer.apple.com/xcode/
http://developer.apple.com/xcode/

Chapter 6

[243]

Ubuntu and Debian
Debian, Ubuntu, and other Debian-derived Linux distributions use the apt-get tool to
manage package installation. If you are running Ubuntu Linux and get the following
output from the Ruby command, you need to install Ruby:

$ ruby

The program 'ruby' is currently not installed. You can install it by
typing:

sudo apt-get install ruby

-bash: ruby: command not found

To install Ruby, simply run the apt-get command, as follows:

sudo apt-get install ruby

Red Hat Enterprise and Fedora
Red Hat Enterprise Linux and Fedora Linux both use the YUM installation manager
and the Red Hat Package Manager (RPM). The first step is to verify if Ruby is
already installed. This can be achieved using the following rpm command:

rpm -q ruby

package ruby is not installed

If Ruby is not installed, it can be installed using the YUM Update Manager. This
needs to be performed as root, so the superuser password will be required:

su -

yum install ruby

Installing Sass and Compass
Sass is a CSS 3 extension and Compass is an open source CSS3 framework. To learn
more about them and how they work, please visit http://sass-lang.com/ and
http://compass-style.org/.

After installing Ruby, we need to install Sass and Compass gems. If you are using
Windows, go to Start Command Prompt with Ruby from the Start menu and type
the following command:

gem install compass

http://sass-lang.com/

Ext JS 4 Themes

[244]

You should get something like the following:

After the gem installation, type compass –v and sass –v to verify if everything is ok
on your computer:

Chapter 6

[245]

If you are using Mac OS (or Linux), please open the terminal application
(/Applications/Utilities/Terminal.app on Mac OS) and type:

sudo gem intall compass

After the installation, please check if everything is ok by typing compass –v and
sass –v:

Now we are ready to create Ext JS 4 themes!

Ext JS 4 Themes

[246]

Setting up an Ext project
Before we get started with Ext JS 4 theming, we need to make couple of adjustments.
First, let's create a new Ext application named appName; inside this application, we
will paste the extjs folder (that you downloaded from the Sencha website). The
folder structure should look like the following:

Now, let's copy the index.html and themes.js file from the extjs/examples/
themes folder and paste them into the appName folder:

Open the index.html file and make the required changes so that the file can contain
the following code:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />

Chapter 6

[247]

 <title>Ext JS 4 Themes</title>

 <link rel="stylesheet" type="text/css" href="extjs/resources/
css/ext-all.css" />

 <script type="text/javascript" src="extjs/bootstrap.js"></
script>

 <script type="text/javascript" src="themes.js"></script>
 </head>
 <body>
 </body>
</html>

Open the index.html page and you should see something like the following (and
other Components as well):

Now, we will set up the custom theme files. Open the folder extjs/resources/
themes/templates and copy the folder resources to the root of the appName
folder. Also copy the images folder from extjs/resources/themes and paste it
into the appName/resources folder. The appName folder structure should look like
the following:

Ext JS 4 Themes

[248]

Open the file located at appName/resources/sass/config.rb and change the
line 4 to:

$ext_path = "../../extjs"

Save the file and close it.

The project setup is now completed. Let's create a new theme!

Creating a new theme
Before we get started, we will compile the my-ext-theme.scss file with no
changes, just to make sure everything is working correctly. Delete the file appName/
resources/css/my-ext-theme.css.

Now, open the terminal application and change the folder to appName/resources/
sass, and then type the command compass compile, as displayed in the
following image:

Since the file appName/resources/css/my-ext-theme.css does not exist, it
will be created.

Open the index.html file again and change the CSS file import to the following and
reload the page:

<link rel="stylesheet" type="text/css" href="resources/css/my-ext-
theme.css" />

The page should look just as it did when we opened it for the first time.

Open the file appName/resources/sass/my-ext-theme.scss; let's take a look at it:

$include-default: false; //1

// Insert your custom variables here. //3

Chapter 6

[249]

// $base-color: #aa0000; //4

@import 'compass'; //6
@import 'ext4/default/all'; //7

@include extjs-boundlist; //9
@include extjs-button;
@include extjs-btn-group;
@include extjs-datepicker;
@include extjs-colorpicker;
@include extjs-menu;
@include extjs-grid;
@include extjs-form;
 @include extjs-form-field;
 @include extjs-form-fieldset;
 @include extjs-form-checkboxfield;
 @include extjs-form-checkboxgroup;
 @include extjs-form-triggerfield;
 @include extjs-form-htmleditor;
@include extjs-panel;
@include extjs-qtip;
@include extjs-slider;
@include extjs-progress;
@include extjs-toolbar;
@include extjs-window;
@include extjs-messagebox;
@include extjs-tabbar;
@include extjs-tab;
@include extjs-tree;
@include extjs-drawcomponent;
@include extjs-viewport; //34

$relative-image-path-for-uis: true;

At line 1, we have the variable $include-default set to false. This means we want
to create a compact CSS file that does not include all the Components. This is very
useful when your application uses only a few Components, not all the available
Components that are provided by Ext JS. This way you can create a compact CSS file
with only the Components you need to use.

Ext JS 4 Themes

[250]

The lines 6 and 7 contain the library and file imports. First, we import the compass
library and then we import all the SCSS files that are within the appName/extjs/
resources/themes/stylesheets/ext4/default folder This folder contains all
file SCSS files with Ext JS default styles. When we execute the compass command,
the new theme will be generated according to the default Ext theme, but with the
changes that we applied. Throughout this chapter, we will dive into more details
about these concepts.

The lines 9 to 34 contain includes of the Components; this means that we are
importing all the Ext JS themes. You can edit it and include only the Components
you are going to use (if you set $include-default to false).

However, if you want to customize all the Components, you can remove the lines
9 to 34 and change $include-default to true. This way, the CSS file will contain
styles for every Ext Component.

The lines 3 and 4 are with comments. In this section, we will add our custom
variables. If we want to change the default color scheme to any other color, we
simply need to declare the $base-color variable and set it to the color we want.

And, in the last line (line 36), we have $relative-image-path-for-uis set to
true. If this variable is set to true, it will change the location of the theme images
to be relative instead of within the Ext JS folder. If the value is true, the path will
be appName/resources/images/. If we set it to false, it is going to use the images
within the Ext JS folder. It is very important to set this variable to true if we want
to create a new theme and support legacy browsers. We have to manually generate
the images to support legacy browsers. We will talk about this issue later on, but, for
now, we will keep this variable set as true. If you want to change the image's paths
to other values, you can set a string value with the image's path instead of the value
true.

In this chapter, we will create a custom theme for all Components, so we will change
the previous file a little bit to reflect the following:

$include-default: true;

@import 'compass';
@import 'ext4/default/all';

$relative-image-path-for-uis: true;

Chapter 6

[251]

Compile the file again with compass (the compass compile command) and reload
the index.html page:

We should get a message that my-ext-theme.css has been overwritten.

Now the fun begins! We will insert a $base-color variable. When we compile the
SCSS again, it will change the bluish default text theme color to a greenish color:

$include-default: true;
$base-color: #bbe4b6; //green-ish
@import 'compass';
@import 'ext4/default/all';
$relative-image-path-for-uis: true;

Type compass compile on the terminal again (we should get a the overwrite ../
css/my-ext-theme.css message) and reload the index page:

Now, all the Components have this green color. It is much easier than customizing a
theme in Ext JS 3 and we spent less than 10 minutes doing it.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Ext JS 4 Themes

[252]

Another thing that is very important to pay attention to is that, for every single
change that we make in the SCSS file, we have to compile it again. To see the changes
on our Ext application, we simply need to reload the page—we do not need to
redeploy the app or do anything complex. This is also a big accomplishment for the
Ext JS 4 framework.

Variables
What are the options that we have to customize an Ext JS 4 theme using Sass and
Compass? If we want to change the background color of the panel, how do we do it?

All the defined variables for each Ext JS 4 Component are located in the appName/
extjs/resources/themes/stylesheets/ext4/default/variables folder:

Chapter 6

[253]

Let's open the _panel.scss file and see the contents and take a look at some
variables:

$panel-border-radius: null !default;
$panel-border-width: 1px !default;
$panel-border-color: adjust-color($base-color, $hue: 0.844deg,
$saturation: 7.644%, $lightness: -8.627%) !default;

If we compare the CSS properties with the declared variables, we will have the
following comparison:

CSS Property Variable
border-radius panel-border-radius
border-width panel-border-width
border-color panel-border-color

The variable for the background color of the panel body is panel-body-
background-color, and, for the window body background color, is window-body-
background-color. It is very intuitive.

Now, let's change some variables in our my-ext-theme.scss file. Add the following
variables to it:

$include-default: true;

$base-color: #bbe4b6; //green-ish

$panel-border-radius: 3px;
$panel-header-font-size: 16px;

@import 'compass';
@import 'ext4/default/all';

$relative-image-path-for-uis: true;

Ext JS 4 Themes

[254]

Type the compass compile command again and reload the index.html page. You
will see the differences in the panel border radius and the panel header font size (it
will be bigger):

Note that we only change the panel header font size. The
window header font size is still the same.
And, we can keep playing with variables and changing them as
we like.

Bugs in earlier versions of Ext JS 4.1
If you are using an earlier version of Ext JS 4.1, when you customize a theme by
changing the base-color, you will note that some Components do not have their
color changed—they still show the bluish Ext JS default color scheme. To fix this, add
the following variables in the my-ext-theme.scss file to change it—after Ext JS 4.1,
everything works as expected:

//grid
$grid-header-over-border-color: adjust-color($base-color, $hue:
-0.175deg, $saturation: 25.296%, $lightness: -2.549%) !default;

//accordion
$accordion-header-background-color: adjust-color($base-color, $hue:
-1.333deg, $saturation: -3.831%, $lightness: 4.51%) !default;

//toolbar
$toolbar-separator-color: adjust-color($base-color, $hue: 0deg,
$saturation: 0.542%, $lightness: 7.843%) !default;

//buttons
$btn-group-background-color: adjust-color($base-color, $hue:
-1.333deg, $saturation: -3.831%, $lightness: 4.51%) !default;
$btn-group-border-color: adjust-color($base-color, $hue: 0deg,
$saturation: 7.644%, $lightness: -8.627%) !default;
$btn-group-inner-border-color: lighten($base-color, 20%) !default;

Chapter 6

[255]

$btn-group-header-color: #000 !default;
$btn-group-header-background-color: $btn-group-background-color;

//menus
$menu-item-active-background-color: lighten($base-color, 20%)
!default;
$menu-item-active-border-color: darken($base-color, 40%) !default;

Creating new Ext JS Component UIs
Sometimes we want to change the theme of a single Component to use it in a very
specific case, without changing the default theme of the Component. For example, in
the application, we have greenish windows as part of the default theme, yet we want
to display a red window in a particular situation. In other words, we want to use
both windows in the application, but with a different theme.

Some Ext JS 4 Components have Sass mixins, which allow us to create new UIs. Some
of these Components are panel, button, and window.

For example, we will create a new UI for the Window Component. The first step is
to take a look at the file appName/extjs/resources/themes/stylesheets/ext4/
default/widgets/_window.scss. Open it and go to the lines 68-82. Copy this block
of code and paste it into the my-ext-theme.scss file. Make the required changes, so
it looks like this:

@include extjs-window-ui(
 'custom',

 $ui-border-radius: 10px,
 $ui-border-color: darken($base-color, 40%),
 $ui-inner-border-color:darken($base-color, 30%),

 $ui-header-color: darken($base-color, 60%),

 $ui-body-border-color: darken($base-color, 30%),
 $ui-body-background-color: $window-body-background-color,
 $ui-body-color: darken($base-color, 30%),

 $ui-background-color: $base-color
);

We can change it as we like, but the most important point to note is that we changed
the second line from default to custom. This change will allow us to use both UIs in
a project.

Ext JS 4 Themes

[256]

To apply the changes, use the compass compile command on the file my-ext-
theme.scss again.

Now, we will create a new file to see how the UI that we created looks.

Create a new file named index2.html and paste the following content into it:

<html>
<head>
<title>Ext JS 4 Themes</title>
<link rel="stylesheet" type="text/css" href="resources/css/my-ext-
theme.css" />

<script type="text/javascript" src="extjs/bootstrap.js"></script>

<script type="text/javascript" src="custom-window.js"></script>

</head>
<body>

 <div id="defaultUIWindow" style="padding:100px;"></div>
 <div id="customUIWindow" style="padding:150px;"></div>
</body>
</html>

We also need a file named custom-window.js. The content will be as follows:

Ext.require([
 'Ext.window.*'
]);

Ext.onReady(function() {

 Ext.createWidget('window', {

 renderTo: 'defaultUIWindow',
 width : 150,
 height : 150,

 title: 'Window',

 bodyPadding: 5,
 html : 'Some text here',

 collapsible: false,

Chapter 6

[257]

 closable:false

 }).show();

 Ext.createWidget('window', {
 ui:'custom',

 renderTo: 'customUIWindow',
 width : 150,
 height : 150,

 title: 'Window',

 bodyPadding: 5,
 html : 'Some text here',

 collapsible: false,
 closable:false

 }).show();
});

In the previous code, we created two windows. Both contain the same configuration,
which means they look the same, except for a small detail—in the second window,
we also declared a property called ui. This means the first window will use the
default UI, and in the second one, we apply the UI we just created.

When we execute the preceding code, we will get the following output:

We can use different UIs for a Component in the same application, without needing
to create a new theme.

Ext JS 4 Themes

[258]

Complete my-ext-theme.scss file
We are now done editing the my-ext-theme.scss file. This is how it should look:

@import 'compass';
@import 'ext4/default/all';

$include-default: true;

$base-color: #bbe4b6; //green-ish

$panel-border-radius: 3px;
$panel-header-font-size: 16px;

//---To fix bug on Ext JS 4.1 previous versions: BEGIN

//grid
$grid-header-over-border-color: adjust-color($base-color, $hue:
-0.175deg, $saturation: 25.296%, $lightness: -2.549%) !default;

//accordion
$accordion-header-background-color: adjust-color($base-color, $hue:
-1.333deg, $saturation: -3.831%, $lightness: 4.51%) !default;

//toolbar
$toolbar-separator-color: adjust-color($base-color, $hue: 0deg,
$saturation: 0.542%, $lightness: 7.843%) !default;

//buttons
$btn-group-background-color: adjust-color($base-color, $hue:
-1.333deg, $saturation: -3.831%, $lightness: 4.51%) !default;
$btn-group-border-color: adjust-color($base-color, $hue: 0deg,
$saturation: 7.644%, $lightness: -8.627%) !default;
$btn-group-inner-border-color: lighten($base-color, 20%) !default;
$btn-group-header-color: #000 !default;
$btn-group-header-background-color: $btn-group-background-color;

//menus
$menu-item-active-background-color: lighten($base-color, 20%)
!default;
$menu-item-active-border-color: darken($base-color, 40%) !default;

//---To fix bug on Ext JS 4.1 previous versions: END

Chapter 6

[259]

@include extjs-window-ui(
 'custom',

 $ui-border-radius: 10px,
 $ui-border-color: darken($base-color, 40%),
 $ui-inner-border-color:darken($base-color, 30%),

 $ui-header-color: darken($base-color, 60%),

 $ui-body-border-color: darken($base-color, 30%),
 $ui-body-background-color: $window-body-background-color,
 $ui-body-color: darken($base-color, 30%),

 $ui-background-color: $base-color
);

$relative-image-path-for-uis: true;

Supporting legacy browsers
This new theme engine is very nice, but there is an issue. Web applications run in
a browser. Sometimes we do not know which browser the user is going to use in
order to access the application, and we have to make the application work in every
browser. Legacy browsers do not support these CSS3 features, and we have to use
images to be able to render the corners, background gradients, and so on.

If we open the index.html file, which we are using for testing on the latest versions
of Chrome, Firefox, and Internet Explorer, you will not note any issue. The browser
will render the Components exactly as presented in the screenshots of this chapter.
Now, let's try to open index.html in Explorer 6 or 7 and see what happens:

Ext JS 4 Themes

[260]

Note that the corners, the background, and the header are
still bluish (the default color of the default Ext theme). That is
because legacy browsers need images to render these resources.

Fortunately, Sencha has Slice Tool, which allows us to create images that are going
to be used for legacy browsers. The Slice Tool is part of the SDK Tools package. To
download it, go to http://www.sencha.com/products/sdk-tools/. SDK Tools are
available for Window, Mac, and Linux.

After downloading and installing the Sencha SDK Tools software, let's go back to our
sample application and fix the issues related to legacy browsers. Open the terminal
and change the folder to appName. Then, execute the following command:

sencha slice theme -d extjs -c resources/css/my-ext-theme.css -o
resources/images –v

Let's take a look at each option of this command:

•	 --ext-dir[=]value, -d[=]value (required): This represents the path to
the root of Ext JS 4 folder.

•	 --css[=]value, -c[=]value: This represents the path to the CSS file that
we created with Sass/Compass. It is optional; if we do not provide any CSS
file, it is going to use the Ext JS default one.

•	 --output-dir[=]value, -o[=]value: This represents the path to generate
all the custom theme images. The default path is to the root folder.

•	 --verbose, -v: This displays a message for every image that is generated.

So, as we are in the appName folder, the Ext folder is extjs and the CSS folder
is resources/css/my-ext-theme.css; we want to generate the images in the
resources/images folder and we also want to display a message for each
image generated.

http://www.sencha.com/products/sdk-tools/

Chapter 6

[261]

This is what you should get when you execute the previous command:

When the Sencha Slice Tool is done generating the custom images, it is going to
display a Done! message with the same content as the previous screenshot:

sencha slice theme -d extjs -c resources/css/my-ext-theme.css -o
resources/images -v

Sencha Theme Generator

Copyright (c) 2011 Sencha Inc.

Generating theme images, please wait...

Saving sprite resources/images/menu/menu-item-active-bg

Saving sprite resources/images/btn/btn-default-small-corners

Saving sprite resources/images/btn/btn-default-small-sides

Saving sprite resources/images/btn/btn-default-small-bg

Saving sprite resources/images/btn/btn-default-small-over-corners

Saving sprite resources/images/btn/btn-default-small-over-sides

Saving sprite resources/images/btn/btn-default-small-over-bg

Saving sprite resources/images/btn/btn-default-small-focus-corners

Saving sprite resources/images/btn/btn-default-small-focus-sides

Saving sprite resources/images/btn/btn-default-small-focus-bg

Saving sprite resources/images/btn/btn-default-small-pressed-corners

Saving sprite resources/images/btn/btn-default-small-pressed-sides

//more saving sprite messages…

Done!

Ext JS 4 Themes

[262]

When we try to open the index.html page in a legacy browser again, it should
work fine.

There is another issue—if we try to open the index2.html page in a legacy browser,
we will see a black-and-white window, as follows:

This is because we also have to generate images for this custom mixin. We will
execute the Sencha slice theme command again, with an extra option:

•	 --manifest[=]value, -m[=]value: This is the path to your Theme
Generator JSON manifest file, for example, manifest.js. This option will
use the default packaged manifest, if not provided.

The manifest.js file will tell the slicing tool which custom widget we want, to
generate the custom images. For example, we want to generate images for legacy
browsers, for this we created custom Window Component. Our manifest.js file will
look like this:

Ext.onReady(function() {
 Ext.manifest = {
 widgets: [
 {
 xtype: 'widget.window',
 ui : 'custom'
 }
]
 };
});

The widget.window is the Component we created—a custom UI. You can list all the
UIs you created in this file. It is very important for the Ext.manifest to be inside the
Ext.onReady function. We will create this file inside the appName/resources folder.

Chapter 6

[263]

Now, we will execute the slice command again:

sencha slice theme -d extjs -c resources/css/my-ext-theme.css -o
resources/images -m resources/manifest.js -v

The terminal will look something like this:

Open the index2.html file in a legacy browser again. Now, it will look like it should!

Remember, you will execute the Sencha Slice tool with the manifest option only
if you create custom UIs. If you do not create custom UIs, you do not need to
execute it.D

ow
n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Ext JS 4 Themes

[264]

Missing custom images
Let's open the index.html file again (in any browser). Note that there are still some
icons that are not customized:

These icons are not in the slice tool yet and, unfortunately, you will have to
customize these manually (if you do not mind using the default ones). To create
these new icons, you can use GIMP, Fireworks, Photoshop, or any other graphics
edition software.

These icons are the only things not yet customized. But as you can see, creating
custom themes in Ext JS 4 is much easier than creating them in Ext JS 3, where you
had to do everything manually.

Summary
In this chapter, we covered how to customize an Ext JS 4 theme from scratch. To do
so, we covered how to install Sass/Compass and how to create and compile an SCSS
file. We also covered how to solve issues while using legacy browsers, creating the
required images using Sencha SDK tools.

In the next chapter, we will learn more about the new Ext JS MVC architecture and
will create an application using this new way of developing Ext JS applications.

MVC Application Architecture
Ext JS 4 introduces a new way of building Ext JS applications.

In this chapter, we will discuss how to create an application by using the new MVC
architecture. We'll cover:

•	 The new MVC application architecture
•	 The Ext.ComponentQuery and Ext.container.Container queries
•	 Creating an application the old-fashioned way
•	 Migrating or creating an application in the new MVC architecture
•	 Useful tips to develop an MVC application
•	 Building the application for production

The new MVC application architecture
When we develop an example application, we usually write only one JavaScript file
that contains all our code. However, real-world applications are larger than a simple
data grid or form. Usually, we have layout combinations, panels, forms, trees, data
grids, and other Components. And, if we are managing data, we need to use Models
(Records, in previous Ext versions) and Stores. There are a lot of Components; how
do we organize all these Components? Do we have to put them in a single JavaScript
file? Do we create a couple of JavaScript files and try to organize these components in
these two files? Do we create a JavaScript file for every piece of the application?

The development phase is over; the application is in production already, but
the work is not over yet—you also need to maintain the application. But, if the
application is written in a single JavaScript file, it must be a really big file. You can
get confused or get lost. Maybe it is not the best option.

MVC Application Architecture

[266]

Each developer will have his/her own way to organize an Ext JS application. Until
Ext JS 4, there was no pattern to organize an Ext JS application. That is why, in Ext
JS4, Sencha introduces us to the new MVC architecture, already used by Sencha
Touch applications.

The new Ext JS 4 MVC architecture introduces a new way to organize the code
(and, as a result, reduces the amount of code you will have to write). The application
structure follows an MVC-like pattern. MVC is the Model-view-controller
pattern (if you do not know what MVC is or how it works, please go to
http://en.wikipedia.org/wiki/Model-view-controller, for further reading).

There are a few MVC architecture definitions. The Ext JS 4 MVC architecture work is
defined by:

•	 Model: This is a collection of fields and their data. It is defined by the Model
class (called Record in Ext's earlier versions). We also use the Store class to
present/persist the data.

•	 View: This is a Component. It can be a data grid, tree, panel, form, and so on.
•	 Controllers: This is where the action happens, say, what happens when the

user clicks on a button.

We will create an application the old-fashioned way (in a single file), and then we
will learn how to migrate/create the same application using the MVC architecture.

Creating a sample application the
old-fashioned way
Before we get our hands on the MVC architecture, we will create a sample
application. As this application is a simple sample (and as it is small), we will declare
everything in a single JavaScript file. Then, we will learn how to migrate this app to
the Ext MVC pattern.

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Chapter 7

[267]

Our sample application looks like the following:

It is a data grid with some book information, and when we click on a grid row, we
will see more information about the book in the details panel below the grid.

Let's try to list everything we need to build this sample app:

•	 First, we need a model where we will declare all the book fields
•	 Then, we need a store to load the book information and populate the grid
•	 As we need to populate a data grid, we also need to implement one
•	 For the details panel, we need to implement a panel
•	 And to display the book details, we need a template
•	 We need to implement the listener, so that when the user clicks on a row of

the grid, the app will update the book details on the template
•	 And at last, we need a viewport/container to hold the grid and the

details panel

MVC Application Architecture

[268]

This is how the application's directory structure is going to look:

All the Components we listed previously are part of the file app.js. Let's take a look
at their implementation:

1. Implement a Model:
Ext.define('Book',{
 extend: 'Ext.data.Model',
 fields: ['id','title','pages','numChapters',
 'topic','publisher','isbn','isbn13']
});

It is a simple Model, with a few fields. There is nothing special about it.

2. Implement a Store:
var store = Ext.create('Ext.data.Store', {
 model: 'Book',
 proxy: {
 type: 'ajax',
 url: 'data/books.json'
 }
});

This variable store is going to load the books.json file that is inside the
data folder, as you can check in the project's directory structure, displayed in
the previous screenshot.
The books.json file contains an array of book models, as follows:
[
 {
 "id": 11,

Chapter 7

[269]

 "title": 'Learning Ext JS 3.2',
 "pages": 432,
 "numChapters": 17,
 "topic": 'Ext JS',
 "publisher": 'Packt',
 "isbn": '1849511209',
 "isbn13": '978-1-849511-20-9'
 },
 {
 "id": 12,
 "title": 'Learning Ext JS',
 "pages": 324,
 "numChapters": 14,
 "topic":'Ext JS',
 "publisher":'Packt',
 "isbn": '1847195148',
 "isbn13": '978-1-847195-14-2'
 },
 {
 "id": 13,
 "title": 'Ext JS 3.0 Cookbook',
 "pages": 376,
 "numChapters": 10,
 "topic":'Ext JS',
 "publisher":'Packt',
 "isbn": '1847198708',
 "isbn13": '978-1-847198-70-9'
 }
]

3. Create a variable grid, where we are going to display some book information:
var grid = Ext.create('Ext.grid.Panel', {
 store: store,
 title: 'Books',
 columns: [
 {text: "Title", width: 120, dataIndex: 'title', sortable:
true},
 {text: "Pages", flex: 1, dataIndex: 'pages', sortable:
true},
 {text: "Topic", width: 115, dataIndex: 'topic', sortable:
true},
 {text: "Publisher", width: 100, dataIndex: 'publisher',
sortable: true}
],
 viewConfig: {
 forceFit: true
 },
 region: 'center'
});

MVC Application Architecture

[270]

This grid is also a simple grid; there's nothing advanced about it. We simply:

	° Declared the store config
	° Gave a title to the grid, declared some columns

We are not displaying all the columns that are in the Book model. We want
the columns to fit in the grid width, so we are forcing the fit

	° Declared the region as center, because we are going to render this
grid in a viewport later.

4. Create the details panel to display the book details:
var details = Ext.create('Ext.panel.Panel',{
 id: 'bookDetail',
 bodyPadding: 7,
 bodyStyle: "background: #ffffff;",
 html: 'Please select a book to see additional details.',
 height: 150,
 split: true,
 region: 'south'
});

This panel is also very simple. We are going to specify the config id for this
panel, so we can get its reference later. We also declared a bodyPadding
config, so the text is not very close to the border and the body of the panel
will have a white background. We declared an initial message/phrase to
be displayed when we render the panel; the region in the viewport where
this panel is going to be rendered is south, and because of this, we have to
declare a height. We also want to resize the panel, so we'll declare the split
attribute as true.

5. Declare a template to format the book details in the way we want to display
them in the details panel:
var bookTplMarkup = [
 'Title: {title}
',
 'Pages: {pages}
',
 'No Chapters: {numChapters}
',
 'Topic: {topic}
',
 'Publisher: {publisher}
',
 'ISBN: {isbn}
',
 'ISBN 13: {isbn13}
'
];
var bookTpl = Ext.create('Ext.Template', bookTplMarkup);

Chapter 7

[271]

In the variable bookTplMarkup, we created an HTML template to display the
book details. All the description labels are in bold, followed by the respective
detail, and each detail is in a single line. Then, we created an instance of the
class Ext.Template and applied the markup as template.

6. Now that we have the grid, the panel, and the template, let's create a listener,
so when the user clicks on a row of the grid, we update the template in the
details panel:
grid.getSelectionModel().on('selectionchange', function(sm,
selectedRecord) {
 if (selectedRecord.length) {
 var detailPanel = Ext.getCmp('bookDetail');
 bookTpl.overwrite(detailPanel.body, selectedRecord[0].
data);
 }
 });

When the user changes the selected row, it is going to fire the
selectionchange event. Then, we check if there is any selected row, and if
positive, we get a reference of the details panel (by its id) and we overwrite
(update) the body of the panel with the book detail information, according to
the template we defined.

7. Create a viewport to hold these two components, as follows:
Ext.create('Ext.container.Viewport', {
 frame: true,
 layout: 'border',
 items: [grid,details]
});

The viewport is going to be rendered in the HTML body of the page. This
viewport has a frame and we are using the Border Layout. We will only use
the center (required) and south regions, because the two Components: the
grid (in the center region) and the book details panel in the south.

MVC Application Architecture

[272]

8. We simply need to load the Store Component to populate the grid, thus:
store.load();

And we are done implementing the app.js file. The only file missing is the
index.html:

 <html>
 <head>
 <title>MVC Architecture</title>

 <link rel="stylesheet" type="text/css"
 href="extjs/resources/css/ext-all.css" />
 <script type="text/javascript" src="extjs/ext-all.js"></
script>

 <script type="text/javascript" src="app.js"></script>
 </head>
 <body>
 </body>
 </html>

It is a very small HTML page. We have a title, the link to the Ext JS CSS file,
the import of the Ext file, and the import of the app.js. The body is empty,
because the viewport will be rendered automatically in it.

Migrating/creating an app using the MVC
architecture
Now that we are done implementing a sample app in the old way, we will
implement the same application, using the MVC architecture.

One of the benefits of using the MVC architecture is the re-use of code; you will have
to learn how to create an app using MVC only once, because all the other projects
will follow the same steps.

Chapter 7

[273]

Project directory structure
First, let's see how the project's directory structure looks, when we finish
implementing it:

Every project you create, using the MVC architecture, will have this same structure.
So, this is how MVC projects are organized:

•	 index.html: This is the HTML page of your application.
•	 app.js: This is the JS file that will wrap the application code.
•	 extjs sdk: We need the Ext JS SDK folder because we are implementing a

project with Ext JS.
•	 data folder: As we are not doing any integration with the server-side

language/framework, we are loading JSON files from this folder. However,
this is not a standard Ext JS application directory— we will use it only
because we are not integrating our Ext JS code with server-side technology.

•	 app folder: In this folder, we will create all the Ext application files.

Before we get started with development, we will take a closer look at some of the
topics we mentioned previously.

MVC Application Architecture

[274]

When we start with the development of an Ext application, the first thing we add to
the project is the Ext JS 4 SDK. When we download the SDK, there are a lot of files
that come with it (as we discussed in Chapter 1, What's is New in Ext JS 4?). We do
not need all of them to develop a MVC application. We need the resources folder,
because it contains the CSS files (if you want to, you can also clear it up and leave
only the files needed). We need the ext-debug.js or ext.js files, depending on the
environment we are working on. If it is development, we will use ext-debug.js,
and if it is production we will use ext.js. And we will need the src folder, which
contains the source code for the Ext JS framework. Why only these files? The MVC
application will load only the files it needs to execute the application; that is why we
are using the src folder. For example, if the application uses a data grid, it will load
the Grid Component's source code and its dependencies; if the application is not
using a Tree Component, there is no need to load it, correct?

The app folder will contain all the files related to the application, and we have to
organize it into four folders/packages:

•	 model: This package contains all the Model classes.
•	 store: This package contains all the Store classes.
•	 view: This package contains all the View Components, such as, grid, panel,

tree, form, and so on—one Component per file.
•	 controller: This package contains all the Controllers related to the project.

Ext.ComponentQuery
Before we look into the creation or migration of our application, we need to learn
how to use the Ext.ComponentQuery class.

This class is very useful when we need to control the views in the Controller class,
and we are going to learn how to use it properly.

This class provides searching of Components within Ext.ComponentManager
(globally) or within a specific Ext.container.Container in the document, with
syntax similar to a CSS selector.

For more information about the CSS selector syntax, please go to
http://www.w3schools.com/cssref/css_selectors.asp

http://www.w3schools.com/cssref/css_selectors.asp
http://www.w3schools.com/cssref/css_selectors.asp

Chapter 7

[275]

For the next examples, we are going to use the following code:

var panel1 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 1',
 html: 'Body 1',
 id: 'panel1Id',
 columnWidth: .25, //means 25%
 height: 120
});

var panel2 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 2',
 html: 'Body 2',
 columnWidth: .25, //means 25%
 height: 120
});

var panel3_1 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 4',
 html: 'Panel 4 within Panel 3',
 height: 60
});

var panel3 = Ext.create('Ext.panel.Panel', {
 title: 'Panel 3',
 columnWidth: 1/2, //means 50%
 items:[panel3_1],
 height: 120
});

var column = Ext.create('Ext.window.Window', {
 title: 'My Window',
 id: 'myWindow',
 width: 400,
 height: 170,
 layout:'column',
 defaults: {
 bodyStyle: 'padding:10px'
 },
 items: [panel1, panel2, panel3]
});
column.show();

MVC Application Architecture

[276]

The preceding code will output a window with four panels, as displayed in the
following screenshot:

The most important function of the Ext.ComponentQuery class is query, which we
are going to use in the next examples. This function returns an array of the matched
Components from the selector string.

For example, let's say we want to know all the panels that are in the application. We
can do it using two selectors:

•	 Ext.ComponentQuery.query('panel');
•	 Ext.ComponentQuery.query('.panel');

If it is a panel, we can use it, or we can use the xtype with the . prefix.

To visualize the matched panels from the selector string, we will highlight the result:

var resultQuery = Ext.ComponentQuery.query('panel');

var colors = ['#ACFA8A','#F4FA8A','#FAB38A','#8AE9FA','#CA8AFA',];
 for (var i = 0; i < resultQuery.length; i++) {
 resultQuery[i].body.highlight(colors[i], {duration: 10000});
}

The output will be as follows:

Chapter 7

[277]

Since the Window class is a subclass of Panel, it will also be highlighted.

Now, let's try to highlight the panels that match the following selectors:

•	 Ext.ComponentQuery.query('panel[title="Panel 1"]'); //1
•	 Ext.ComponentQuery.query('#panel1Id'); //2

In the first query, we are trying to find all the panels with the title Panel 1. This
means that we can also retrieve Components using their attributes.

In the second query, we are trying to retrieve the panel with the ID panel1Id. This
means that we can retrieve Components using their IDs, with the # prefix.

Both these queries output the following result—only Panel 1 is highlighted:

The following line of code retrieves all the panels that are children of the column
variable (of the Window class):

Ext.ComponentQuery.query('#myWindow panel');

We can pass the Window's id config (myWindow) to make sure we will only
retrieve its children (in case we have more than one Window Component in the
application, which is not the case in this example), and we add a space with the child
Component's xtype we are looking for (panel).

If we try to highlight the result of the preceding selector, we will get the
following output:

MVC Application Architecture

[278]

All the panels were highlighted, even the Panel 4, which is a child of Panel 3.

If we want to retrieve only the direct children of the Window class, we have to use the
following selector:

Ext.ComponentQuery.query('#myWindow > panel');

The difference is the greater-than (>) symbol between the Window's id config
and the Component's xtype. When we run the previous query, we will get the
following output:

The only highlighted panels are Panel 1, Panel 2, and Panel 3. Panel 4 was not
highlighted, because it is not a direct child from the Window class in this example.

Ext.container.Container functions: query,
child, down, and up
We can also use the Component itself to retrieve the Components.

Query function
The query function retrieves all the descendent Components that match the passed
selector and executes the Ext.ComponentQuery.query method using the container
itself as its root.

In this example, we have a variable called column, which is a reference to the
Window Component. If we want to retrieve all its direct children, we can use the
following code:

column.query('> panel');

The preceding code will have the same result as the #myWindow > panelselector.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[279]

Child function
The child function retrieves the first direct child of the Container that matches the
passed selector. The passed-in selector must comply with an Ext.ComponentQuery
selector.

For example, we want to retrieve the first child of the Window whose title is
Panel 2:

column.child('panel[title="Panel 2"]');

If we highlight the result, the output will be as follows:

For the child, up, and down functions, if the result has more than
one Component, the functions will return the first one, not an array.
That is why it is very important to specify the selector in a way that
the matched Component is unique.

Down function competency
The down function retrieves the first descendant of the Container that
matches the passed selector. The passed-in selector must comply with an
Ext.ComponentQuery selector.

For example, we want to retrieve the panel with title Panel 2:

column.down('panel[title="Panel 2"]');

MVC Application Architecture

[280]

Up function
The up function walks up to the owner container, looking for an ancestor Container
that matches the passed simple selector.

For example, let's say that we want to retrieve the parent Panel from Panel 4:

panel3_1.up('panel');

The highlighted output will be:

It is very important to play with selectors, because they are very
helpful when we develop an Ext JS 4 application by using the new
MVC architecture, as we are going to learn in the next topic.

Creating the MVC application
We will build/migrate our application step-by-step. At each step, we will explain
what we have to do, present the code, and present the current application's directory
structure and the current output.

Creating the book-mvc application
So, the first step is to create an application (we will call it book-mvc) and add the Ext
JS 4 SDK to it. We have to do it manually.

The second step it to create an HTML page with the following content:

<html>
<head>
 <title>MVC Architecture</title>

 <link rel="stylesheet" type="text/css" href="exts/resources/css/
ext-all.css" />

Chapter 7

[281]

 <script type="text/javascript" src="extjs/ext-debug.js"></script>

 <script type="text/javascript" src="app.js"></script>
</head>
<body>
</body>
</html>

We will not make any changes to the HTML file in further steps.

Then, we will create a JavaScript file named app.js, and we will implement
the following:

Ext.require('Ext.container.Viewport');

Ext.application({
 name: 'App',

 appFolder: 'app',

 launch: function() {
 Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: [
 {
 xtype: 'panel',
 title: 'Books',
 html : 'List of books will be displayed here'
 }
]
 });
 }
});

Let's look into this file content.

The class Ext.app.Application represents an Ext JS 4 application, which uses a
single page; this page contains a viewport with all the application's Components
in it.

In the second line of code, we have name: 'App', which is the name of our
application. This option name is the name of the application, but it will also create
a global variable with the app name, and it will be used as namespace for all the
Models, Stores, Views, and Controllers. As the name is a string, you should use
alphanumeric values; do not use spaces or special characters.

MVC Application Architecture

[282]

The next config option we set is appFolder. appFolder is the path to the application
folder directory; in this example, we created the folder app to hold all our application
files (Models, Stores, Views, and Controllers). We can change the name of the folder
app, but we have to remember to change it in the Ext.application code as well.
The default value is app; as we are using app in this example as well, we do not need
to declare it.

The next declaration is the launch function. This function is called automatically
when the application is created, so we need to implement the code to get the
application running; therefore, we created a Viewport Component. This function
also needs to be overridden by every application, because it has no implementation
in its super class.

In this example, we are creating a viewport with: a panel, the title config as Books,
and HTML content. So far, this is everything that our application is doing:

We cannot forget to create the app folder and its subdirectories as well. At the end of
this step, we will have the following directory structure:

Chapter 7

[283]

Creating the controller class
In this step, we will create a Controller and will integrate it with Ext.application.

In the book_mvc/app/controller folder, create the Books.js file with the
following content:

Ext.define('App.controller.Books', {
 extend: 'Ext.app.Controller',

 init: function() {
 console.log('Initialized Books Controller');
 }
});

We are defining the class name as App.controller.Books.
This means the file that the application will be looking for is called
Books.js and it is located in the app/controller folder. Also
note that the class name starts with the app name we defined in
the application app.js file.

The App.controller.Books class extends the Ext.app.Controller class. The
Controller is what binds the application; it is going to communicate with store
and view, and will take a specific action when a particular event is fired.

Next, we have declared the init function. This function will be executed before
the application's launch function, and, in this function, we will implement all the
code that will be executed before the application boots and before the creation of
the viewport.

In this example, for now, we are only logging the phrase Initialized Books
Controller. In the next step, we will implement more meaningful code, related to
the application we developed in the previous topic.

We have to make some changes to the app.js file, as follows:

Ext.require('Ext.container.Viewport');

Ext.application({
 name: 'App',

 appFolder: 'app',

 controllers: ['Books'],

MVC Application Architecture

[284]

 launch: function() {

 console.log('called function launch - application');

 Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: [
 {
 xtype: 'panel',
 title: 'Books',
 html : 'List of books will be displayed here'
 }
]
 });
 }
});

In the preceding code, we added the controllers declaration, and, inside the
controller's array list, we listed the controller we created—Books. The application
will try to load the Books controller, according to the MVC application's structure. In
other words, it will look for the class App.controller.Books (App is the namespace,
controller is the folder inside the app folder, and Books is the name of the file).

Then, we added a log function, which means that, when the application is launched,
the log message will be showed in the JavaScript console.

The controller's init function will be called first, then the launch function, as we can
see in the following screenshot:

Chapter 7

[285]

In this step, we introduced the Controller class, and we also integrated the
controller we created with the Ext.application class.

In the next step, we will learn how to control a view in the Controller class.

The current application's directory structure for this step looks like this:

Controlling a view in the controller class
In this step, we will make a small change on the Controller class to see how the
controller can control the events fired by the View Components.

This is how the Controller class looks:

Ext.define('App.controller.Books', {
 extend: 'Ext.app.Controller',

 init: function() {
 this.control({
 'viewport > panel': {
 render: this.onPanelRendered
 }
 });
 },

 onPanelRendered: function() {
 console.log('The panel was rendered');
 }
});

MVC Application Architecture

[286]

The init function is a great place to implement how the controller will interact
with the view, and we usually do it using the control function. The control
function listens to the events on the View classes and takes some action using the
handler function. The control function uses the new ComponentQuery engine to get
references from the components on the page.

In the preceding example, we will listen to the render event fired by the panel
we have on the viewport. We will get all the panels that are children of the
Viewport class. As we only have one, we will listen to this one. Once the panel is
rendered, it will fire the render event, and we will handle it using the function
onPanelRendered, which will only log a message on the console.

When we execute the application again, we will get the following output:

Chapter 7

[287]

And the screenshot of the application's directory structure will be as follows:

Creating the model and store classes
In the next step, we will implement every step we need to, to display the Books grid
and list all the books in the grid.

To display the grid, we need a Book Model, a Store to load the data, and the
Books Grid.

So, we will start declaring the Book Model inside the app/model folder. The file we
will create will be named Book.js:

Ext.define('App.model.Book',{
 extend: 'Ext.data.Model',
 fields: ['id','title','pages','numChapters',
 'topic','publisher','isbn','isbn13']
});

The Book Model we declared just now is exactly the same as we declared in the
application that we implemented previously, except for the name. Now, we are
calling the model App.model.Book because of the MVC architecture. App is the name
of the namespace we gave to the application; model is the folder in which we put all
the models; and Book is the name of the file and the model we created.

The next step is to create a Store to load the data. We will create the file
Book.js inside the store folder (because we have to put all the Stores inside
the store folder):

Ext.define('App.store.Book', {
 extend: 'Ext.data.Store',
 model: 'App.model.Book',

MVC Application Architecture

[288]

 proxy: {
 type: 'ajax',
 url: 'data/books.json'
 }
});

The code inside the Store is the same for the application we implemented
previously, except for some details. The differences are located in the first three
lines of the code. Earlier, we were creating a Store and assigning it to a variable
called store. Now, we are defining a Store so we can instantiate it later. The model
declaration is a little bit different, too. Now, we have to declare the complete name of
the Model class (App.model.Book), instead of simply Book.

Next, we have to create the grid. We will create a file named Grid.js, inside the
view/book folder, as follows:

Ext.define('App.view.book.Grid' ,{
 extend: 'Ext.grid.Panel',
 alias : 'widget.bookList',

 title: 'Books',

 initComponent: function() {

 this.store = 'Book';

 this.columns = [
 {text: "Title", width: 120, dataIndex: 'title', sortable:
true},
 {text: "Pages", flex: 1, dataIndex: 'pages', sortable:
true},
 {text: "Topic", width: 115, dataIndex: 'topic', sortable:
true},
 {text: "Publisher", width: 100, dataIndex: 'publisher',
sortable: true}
];

 this.viewConfig = {
 forceFit: true
 };

 this.callParent(arguments);
 }
});

Chapter 7

[289]

In the preceding code, we defined a class called App.view.book.Grid; this class
extends the class Grid from Ext JS 4. We also created an alias so we can instantiate
this class using xtype. Then, we declared a title for the grid and, inside the
initComponent, we will declare all the config options to initialize the grid. The
store, columns, and viewconfig configuration options are the same as we declared
in the previous application.

Now, we have to modify the controller class:

Ext.define('App.controller.Books', {
 extend: 'Ext.app.Controller',

 stores: ['Book'],

 models: ['Book'],

 views: ['book.Grid'],

 init: function() {

 this.getBookStore().load();
 }
});

We added three new configurations to the controller—stores, models, and views.
In the stores config, we will list all the Stores the controller cares about. It is the
same for models, where we will list all the Models important to the controller
and also for views, where we will declare the list of Components the controller cares
about.

We do not need to declare the complete path for these classes. The controller will
try to find them by their default path—[namespace] + [name of the folder] +
[name of the declared class]. In case of Book stores, it will try to find the the
App.store.Book class in the app/store/Book.js file; it will try to find the App.
model.Book model in the app/model/Book.js file, and it will try to find the the
book.Grid class in the app/view/book.Grid.js path.

When we declare stores and models, the controller will automatically create getter
functions for them. In this example, the controller will create the getBookStore
and getBookModel get functions. The getter function follows the following naming
convention for stores: get + [name of your store] + Store and get + [name
of your model] + Model.

Next, we have the init function, where we are loading the Book store.

MVC Application Architecture

[290]

We also have to change the app.js file:

Ext.require('Ext.container.Viewport');

Ext.application({
 name: 'App',

 appFolder: 'app',

 controllers: ['Books'],

 launch: function() {
 Ext.create('Ext.container.Viewport', {
 layout: 'fit',
 items: [
 {
 xtype: 'bookList'
 }
]
 });
 }
});

We removed the temporary panel and replaced it with the bookList grid we created
in this step.

The xtype in Viewport is the alias that we declared in
the Grid.js file.

After we finish implementing this step, the following is the current application's
directory structure:

Chapter 7

[291]

Remember to make a copy of the data folder, because
we are now loading the book's data from it.

If we try to execute the application, we will get the following output:

Adding the book details panel
This is our last step before we have the previous application migrated to the
MVC architecture.

In this step, we will add the details panel.

We will create a file named DetailPanel.js, inside the app/view/book folder.
According to the naming convention, this class will be defined as App.view.book.
DetailPanel:

Ext.define('App.view.book.DetailPanel', {
 extend: 'Ext.Panel',

 alias: 'widget.detailPanel',

 bookTplMarkup: [
 'Title: {title}
',
 'Pages: {pages}
',
 'No Chapters: {numChapters}
',
 'Topic: {topic}
',
 'Publisher: {publisher}
',
 'ISBN: {isbn}
',
 'ISBN 13: {isbn13}
'

MVC Application Architecture

[292]

],

 startingMarkup: 'Please select a book to see additional details.',

 bodyPadding: 7,

 initComponent: function() {
 this.tpl = Ext.create('Ext.Template', this.bookTplMarkup);
 this.html = this.startingMarkup;

 this.bodyStyle = {
 background: '#ffffff'
 };

 this.callParent(arguments);
 },

 updateDetail: function(data) {
 this.tpl.overwrite(this.body, data);
 }
});

We defined a DetailPanel class We also created an alias, so that we can instantiate
this class using an xtype config later.

In the previous application, we declared a variable called bookTplMarkup; now, we
are declaring the same variable, but as a property of this class.

We are also creating a new property called startingMarkup, so that we can apply it
to the panel's HTML property.

We declared a bodyPadding config, as we had declared on the details variable
from the previous application.

Then, we have the initComponent function. First, we will create a template using
the class Ext.Template, with the property bookTplMarkup, and apply it to the tpl
property of the panel. We also assigned the property startingMarkup to the initial
html property of the panel. We also set the bodyStyle config. Next, we will call the
initComponent function from the superclass.

We will also create a new method called updateDetail, so the controller can call it
later, to update the book details on the template.

This is everything we need to declare in this file.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7

[293]

We removed direct control over the grid and the panel
communication. This task will be assigned to the controller. We
only have to create a method to be called from the controller; we are
going to take a look at this in the next topic.

The following code is for the controller with all the changes we need in order to
make the application work like the previous one, which we developed without using
the MVC architecture.

Ext.define('App.controller.Books', {
 extend: 'Ext.app.Controller',

 stores: ['Book'],

 models: ['Book'],

 views: ['book.Grid','book.DetailPanel'],

 refs: [
 {
 ref: 'panel',
 selector: 'detailPanel'
 }
],

 init: function() {

 this.getBookStore().load();

 this.control({
 'viewport>bookList dataview': {
 itemclick: this.bindGridToPanel
 }
 });
 },

 bindGridToPanel : function(grid, record) {
 this.getPanel().updateDetail(record.data);
 }
});

MVC Application Architecture

[294]

We added the book.DetailPanel class as a view of the controller, which means it
will have control over the book details panel.

We also added a new config on the controller, the refs config. The ref system is
very useful when we need to make a reference of a view inside the Controller. The
ref system uses the new class Ext.ComponentQuery to get the reference of a view.
In this example, we want to get a reference of detailPanel (xtype of the instance of
Panel we created)—we named this reference panel; to get a reference of this panel,
we simply need to call the getPanel function, as declared in the bindGridToPanel
function, in the previous code.

Then, we have the init function, and we added a new method control to the
controller. The line of code 'viewport > booklist dataview' is a reference to
the dataview of the Grid class that we created to display the list of all books. We
are listening to the event itemclik, which means that, when the user clicks on a
row of the grid, it will fire the itemclick event, and then we will call the function
bindGridToPanel, declared below the init function.

Remember the Ext.ComponentQuery selector? The line of code 'viewport >
booklist dataview' means that we want to retrieve the first booklist Component
of the viewport; this booklist has a dataview Component, which is the one that we
want to get to.

The bindGridToPanel function simply calls the method updateDetail, of the book
detail Panel, passing the selected record of the grid.

We are now done with our MVC application. When we execute the code, we will get
the following output:

Chapter 7

[295]

The application's directory structure is shown in the following screenshot:

Controller getter methods
The Controller also has some useful methods you can use in case you have some
issues using the generated getter methods:

•	 getModel(name): This method returns a reference of the given Model name;
•	 getStore(name): This method returns a reference of the given Store name;
•	 getView(name): This method returns a reference of the given View name;

The Model has to be declared properly through the model/
store/view JavaScript file, or those methods will never work.

For an example, we will use the same instance of Controller that we used, to
develop the MVC application:

init: function() {

 this.getStore('Book').load();

 this.control({
 'viewport>bookList dataview': {
 itemclick: this.bindGridToPanel
 }
 });

 }

MVC Application Architecture

[296]

As you can see, we called the method getStore('Book'), to get the reference of the
App.store.Book store (alternative to getBookStore()).

Useful tips to develop an MVC application
Here is what we need to do when we are implementing an MVC application:

•	 Create the Model, Store, and View classes.
•	 We do not take any action on the View class; we can create functions that will

be called by the controller.
•	 On the controller, we have to list the models, stores, and views the

controller will care about.
•	 The controller automatically generates the getter functions for Models and

Stores.
•	 To easily get a reference of a View on the Controller, we can declare

references using the ref system, which uses the instance of Ext.
ComponentQuery; the controller will create getter functions for the references.

•	 As Ext JS is event-driven, we have to listen to the events fired by the Views/
Components using the control config; we can declare functions to handle
the events.

•	 The init function on the Controller is called before the launch
application function.

MVC architecture can be a little difficult to learn in the beginning, but you will have
to learn how it works. Once you have learned it, you can apply it to every single
application you develop.

Nested models and MVC
Another issue you may find while developing with MVC is while declaring Model
classes with associations.

Let's take a closer look when we declare the Store in a Grid:

this.store = 'Book';

Chapter 7

[297]

Take a look at the following code:

Ext.define('App.controller.Books', {
 extend: 'Ext.app.Controller',

 stores: ['Book'],

 models: ['Book'],

 views: ['book.Grid','book.DetailPanel'],

We did not have to specify the complete name of the class, correct? The controller
knows that it will find the Model classes inside the App[namespace]/model folder,
the Store classes in the [namespace]/store folder, and the View classes in the
[namespace]/view folder.

Now, let's declare a nested association using the MVC architecture. We have the class
Author; an author can have many (hasMany association) books, and a book can have
many chapters:

Ext.define('App.model.Author',{
 extend: 'Ext.data.Model',

 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'},
],

 hasMany: {
 model: 'Book',
 foreignKey: 'authorId',
 name: 'books'
 },

 proxy: {
 type: 'ajax',
 url : 'data/authors/1.json',
 reader: {
 type: 'json',
 root: 'authors'
 }
 }
});

MVC Application Architecture

[298]

Ext.define('App.model.Book',{
 extend: 'Ext.data.Model',

 fields: [
 {name: 'id', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'pages', type: 'int'},
 {name: 'numChapters', type: 'int'},
 {name: 'authorId', type: 'int'}
],

 hasMany: {
 model: 'Chapter',
 foreignKey: 'bookId',
 name: 'chapters'
 }
});

Ext.define('App.model.Chapter',{
 extend: 'Ext.data.Model',

 fields: [
 {name: 'id', type: 'int'},
 {name: 'number', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'bookId', type: 'int'}
]
});

By instinct, we only declared the name of the associated model.

In the controller, we will declare the models config and will try to load an Author
model and log some information about it:

Ext.define('App.controller.Books', {
 extend: 'Ext.app.Controller',

 models: ['Author', 'Book', 'Chapter'],

 init: function() {

 this.getAuthorModel().load(1, {

 success: function(author) {

Chapter 7

[299]

 var books = author.books();

 console.log("Author "+ author.get('name') + " has
written " + books.getCount() + " books");

 books.each(function(book) {

 var title = book.get('title');
 var chapters = book.chapters();

 console.log("Book " + title + " has " + chapters.
getCount() + " chapters");

 chapters.each(function(chapter) {
 console.log(chapter.get('number') + " " +
chapter.get('title'));
 });
 });
 }
 });

 }

});

When we try to execute the preceding code, we will get the following error:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

MVC Application Architecture

[300]

This is because we did not declare the complete class name on the association. Even
while using the MVC architecture, we have to declare the complete path of the
associated model so that Ext JS can find it:

Ext.define('App.model.Author',{
 extend: 'Ext.data.Model',

 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'},
],

 hasMany: {
 model: 'App.model.Book',
 foreignKey: 'authorId',
 name: 'books'
 },

 proxy: {
 type: 'ajax',
 url : 'data/authors/1.json',
 reader: {
 type: 'json',
 root: 'authors'
 }
 }
});

Ext.define('App.model.Book',{
 extend: 'Ext.data.Model',

 fields: [
 {name: 'id', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'pages', type: 'int'},
 {name: 'numChapters', type: 'int'},
 {name: 'authorId', type: 'int'}
],

 hasMany: {
 model: 'App.model.Chapter',
 foreignKey: 'bookId',
 name: 'chapters'
 }

Chapter 7

[301]

});

Ext.define('App.model.Chapter',{
 extend: 'Ext.data.Model',

 fields: [
 {name: 'id', type: 'int'},
 {name: 'number', type: 'int'},
 {name: 'title', type: 'string'},
 {name: 'bookId', type: 'int'}
]
});

If we try to execute the application now, we will be able to read the author
information from the console successfully:

Always remember: for Controller, Store, View, and so on, we do not need to
declare the complete class name; but, for nested associations, we do.

Building your application for production
Now that you are done with development, it is time to deploy your application for
production. Sencha developed the Sencha SDK tools that we used for customizing
the Ext JS 4 theme; they help us to easily generate a manifest of all Javascript
dependencies in the JSB3 format (JSBuilder file format) and customize it with only
the files that the application needs.

MVC Application Architecture

[302]

If you do not have SDK tools installed on your machine yet, please go to
http://www.sencha.com/products/sdk-tools/ and download and install it.

Now that we have the Sencha SDK tools installed, open the terminal and change the
directory to where your app is located.

We will need to execute two commands. The first one is:

sencha create jsb -a index.html -p app.js

You can also point the index file of you local server:

sencha create jsb -a http://local.loiane/books-mvc/index.html -p app.jsb3

After executing one of the commands, a file named app.jsb3 will be created and
should look something like this:

{
 "projectName": "Project Name",
 "licenseText": "Copyright(c) 2011 Company Name",
 "builds": [
 {
 "name": "All Classes",
 "target": "all-classes.js",
 "options": {
 "debug": true
 },
 "files": [
 {
 "path": "extjs/src/util/",
 "name": "Observable.js"
 },
 {
 "path": "extjs/src/data/",
 "name": "Association.js"
 },
 {
 "path": "extjs/src/data/",
 "name": "Operation.js"
 },
 //more
]
 },
 {
 "name": "Application - Production",
 "target": "app-all.js",
 "compress": true,
 "files": [
 {
 "path": "",

http://www.sencha.com/products/sdk-tools/
http://www.sencha.com/products/sdk-tools/

Chapter 7

[303]

 "name": "all-classes.js"
 },
 {
 "path": "",
 "name": "app.js"
 }
]
 }
],
 "resources": []
}

We can customize some information before making the build.

Then, we need to execute one more command:

sencha build -p app.jsb3 -d .

This command will create two files:

•	 all-classes.js: This file contains all of our application's classes. It is
not minified so is very useful for debugging problems with your built
application.

•	 app-all.js: This file is a minimized build of our application and contains all
the Ext JS classes required to run it. It is the minified and production-ready
version of all classes .js and app.js files combined.

After running the two previous commands, you should have something like the
following screenshot on your terminal:

MVC Application Architecture

[304]

The application's directory structure should look like this:

Now, we need to make a small change to the index.html:

<html>
 <head>
 <title>MVC Architecture</title>

 <link rel="stylesheet" type="text/css" href="extjs/resources/css/
ext-all.css" />
 <script type="text/javascript" src="extjs/ext-debug.js"></script>

 <script type="text/javascript" src="app-all.js"></script>
 </head>
 <body>
 </body>
</html>

If you open app-all.js, you will see that the file is obfuscated, so it is much harder
to read.

The application is now ready to be deployed!

Chapter 7

[305]

Summary
Throughout this book, we have learned about Ext JS API and Component features. In
this chapter, we covered how to put together everything that we have learned, into
an application, using the new MVC architecture.

We covered what to do in each step of the process of building an application with Ext
JS 4. We also demonstrated how to use the Sencha SDK tools to build the application
and make it ready to be deployed in production.

Ext JS 4 Versus Ext JS 3
Class Names

Ext JS 4 introduces a new package organization and that is why some class names are
not the same as they were in Ext JS 3.

When we start migrating an application from Ext JS 3 to Ext JS 4, it can get a
little confusing, because some class names are different. The classes in Ext JS 4
that have changed from Ext JS 3 contain a property called alternateClassName,
which indicates that the Ext JS 3 class names are compatible with Ext JS 4. You can
still use Ext JS 3 class names when implementing an Ext JS 4 application, but it is
recommended that you use the new class names.

This appendix lists all the Ext JS 4 classes that have a name compatible with
Ext JS 3 classes.

Some of Ext JS 4 classes can have more than one compatible Ext JS 3 class name, so
this class will appear twice (or more times) in the list:

You can also check this list online at http://loianegroner.
com/extjs/examples/ext4-ext3-class-names/.

Ext JS 4 Class Alternate Class Name
Ext.button.Button Ext.Button
Ext.button.Cycle Ext.CycleButton
Ext.button.Split Ext.SplitButton
Ext.chart.axis.Axis Ext.chart.Axis
Ext.chart.axis.Category Ext.chart.CategoryAxis

Ext JS 4 Versus Ext JS 3 Class Names

[308]

Ext JS 4 Class Alternate Class Name
Ext.chart.axis.Numeric Ext.chart.NumericAxis
Ext.chart.axis.Time Ext.chart.TimeAxis
Ext.chart.series.Bar Ext.chart.BarSeries
Ext.chart.series.Bar Ext.chart.BarChart
Ext.chart.series.Bar Ext.chart.StackedBarChart
Ext.chart.series.Cartesian Ext.chart.CartesianSeries
Ext.chart.series.Cartesian Ext.chart.CartesianChart
Ext.chart.series.Column Ext.chart.ColumnSeries
Ext.chart.series.Column Ext.chart.ColumnChart
Ext.chart.series.Column Ext.chart.StackedColumnChart
Ext.chart.series.Line Ext.chart.LineSeries
Ext.chart.series.Line Ext.chart.LineChart
Ext.chart.series.Pie Ext.chart.PieSeries
Ext.chart.series.Pie Ext.chart.PieChart
Ext.ComponentManager Ext.ComponentMgr
Ext.container.ButtonGroup Ext.ButtonGroup
Ext.container.Container Ext.Container
Ext.container.Viewport Ext.Viewport
Ext.data.Model Ext.data.Record
Ext.data.proxy.Ajax Ext.data.HttpProxy
Ext.data.proxy.Ajax Ext.data.AjaxProxy
Ext.data.proxy.Client Ext.data.ClientProxy
Ext.data.proxy.Direct Ext.data.DirectProxy
Ext.data.proxy.JsonP Ext.data.ScriptTagProxy
Ext.data.proxy.LocalStorage Ext.data.LocalStorageProxy
Ext.data.proxy.Memory Ext.data.MemoryProxy
Ext.data.proxy.Proxy Ext.data.DataProxy
Ext.data.proxy.Proxy Ext.data.Proxy
Ext.data.proxy.Rest Ext.data.RestProxy
Ext.data.proxy.Server Ext.data.ServerProxy
Ext.data.proxy.SessionStorage Ext.data.SessionStorageProxy
Ext.data.proxy.WebStorage Ext.data.WebStorageProxy
Ext.data.reader.Array Ext.data.ArrayReader
Ext.data.reader.Json Ext.data.JsonReader
Ext.data.reader.Reader Ext.data.Reader

Appendix A

[309]

Ext JS 4 Class Alternate Class Name
Ext.data.reader.Reader Ext.data.DataReader
Ext.data.reader.Xml Ext.data.XmlReader
Ext.data.StoreManager Ext.StoreMgr
Ext.data.StoreManager Ext.data.StoreMgr
Ext.data.StoreManager Ext.StoreManager
Ext.data.writer.Json Ext.data.JsonWriter
Ext.data.writer.Writer Ext.data.DataWriter
Ext.data.writer.Writer Ext.data.Writer
Ext.data.writer.Xml Ext.data.XmlWriter
Ext.dd.DragDropManager Ext.dd.DragDropMgr
Ext.dd.DragDropManager Ext.dd.DDM
Ext.direct.Transaction Ext.Direct.Transaction
Ext.flash.Component Ext.FlashComponent
Ext.FocusManager Ext.FocusMgr
Ext.form.action.Action Ext.form.Action
Ext.form.action.DirectLoad Ext.form.Action.DirectLoad
Ext.form.action.DirectSubmit Ext.form.Action.DirectSubmit
Ext.form.action.Load Ext.form.Action.Load
Ext.form.action.Submit Ext.form.Action.Submit
Ext.form.Basic Ext.form.BasicForm
Ext.form.field.Base Ext.form.Field
Ext.form.field.Base Ext.form.BaseField
Ext.form.field.Checkbox Ext.form.Checkbox
Ext.form.field.ComboBox Ext.form.ComboBox
Ext.form.field.Date Ext.form.DateField
Ext.form.field.Date Ext.form.Date
Ext.form.field.Display Ext.form.DisplayField
Ext.form.field.Display Ext.form.Display
Ext.form.field.File Ext.form.FileUploadField
Ext.form.field.File Ext.ux.form.FileUploadField
Ext.form.field.File Ext.form.File
Ext.form.field.Hidden Ext.form.Hidden
Ext.form.field.HtmlEditor Ext.form.HtmlEditor
Ext.form.field.Number Ext.form.NumberField
Ext.form.field.Number Ext.form.Number

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Ext JS 4 Versus Ext JS 3 Class Names

[310]

Ext JS 4 Class Alternate Class Name
Ext.form.field.Picker Ext.form.Picker
Ext.form.field.Radio Ext.form.Radio
Ext.form.field.Spinner Ext.form.Spinner
Ext.form.field.Text Ext.form.TextField
Ext.form.field.Text Ext.form.Text
Ext.form.field.TextArea Ext.form.TextArea
Ext.form.field.Time Ext.form.TimeField
Ext.form.field.Time Ext.form.Time
Ext.form.field.Trigger Ext.form.TriggerField
Ext.form.field.Trigger Ext.form.TwinTriggerField
Ext.form.field.Trigger Ext.form.Trigger
Ext.form.Panel Ext.FormPanel
Ext.form.Panel Ext.form.FormPanel
Ext.grid.column.Action Ext.grid.ActionColumn
Ext.grid.column.Boolean Ext.grid.BooleanColumn
Ext.grid.column.Column Ext.grid.Column
Ext.grid.column.Date Ext.grid.DateColumn
Ext.grid.column.Number Ext.grid.NumberColumn
Ext.grid.column.Template Ext.grid.TemplateColumn
Ext.grid.Panel Ext.list.ListView
Ext.grid.Panel Ext.ListView
Ext.grid.Panel Ext.grid.GridPanel
Ext.grid.property.Grid Ext.grid.PropertyGrid
Ext.grid.property.HeaderContainer Ext.grid.PropertyColumnModel
Ext.grid.property.Property Ext.PropGridProperty
Ext.grid.property.Store Ext.grid.PropertyStore
Ext.layout.container.Absolute Ext.layout.AbsoluteLayout
Ext.layout.container.Accordion Ext.layout.AccordionLayout
Ext.layout.container.Anchor Ext.layout.AnchorLayout
Ext.layout.container.Border Ext.layout.BorderLayout
Ext.layout.container.Box Ext.layout.BoxLayout
Ext.layout.container.Card Ext.layout.CardLayout
Ext.layout.container.Column Ext.layout.ColumnLayout
Ext.layout.container.Container Ext.layout.ContainerLayout
Ext.layout.container.Fit Ext.layout.FitLayout

Appendix A

[311]

Ext JS 4 Class Alternate Class Name
Ext.layout.container.HBox Ext.layout.HBoxLayout
Ext.layout.container.Table Ext.layout.TableLayout
Ext.layout.container.VBox Ext.layout.VBoxLayout
Ext.menu.Item Ext.menu.TextItem
Ext.menu.Manager Ext.menu.MenuMgr
Ext.ModelManager Ext.ModelMgr
Ext.panel.Panel Ext.Panel
Ext.panel.Proxy Ext.dd.PanelProxy
Ext.picker.Color Ext.ColorPalette
Ext.picker.Date Ext.DatePicker
Ext.PluginManager Ext.PluginMgr
Ext.resizer.Resizer Ext.Resizable
Ext.selection.Model Ext.AbstractSelectionModel
Ext.slider.Multi Ext.slider.MultiSlider
Ext.slider.Single Ext.Slider
Ext.slider.Single Ext.form.SliderField
Ext.slider.Single Ext.slider.SingleSlider
Ext.slider.Single Ext.slider.Slider
Ext.tab.Panel Ext.TabPanel
Ext.tip.QuickTip Ext.QuickTip
Ext.tip.Tip Ext.Tip
Ext.tip.ToolTip Ext.ToolTip
Ext.toolbar.Fill Ext.Toolbar.Fill
Ext.toolbar.Item Ext.Toolbar.Item
Ext.toolbar.Paging Ext.PagingToolbar
Ext.toolbar.Separator Ext.Toolbar.Separator
Ext.toolbar.Spacer Ext.Toolbar.Spacer
Ext.toolbar.TextItem Ext.Toolbar.TextItem
Ext.toolbar.Toolbar Ext.Toolbar
Ext.tree.Panel Ext.tree.TreePanel
Ext.tree.Panel Ext.TreePanel
Ext.util.History Ext.History
Ext.util.KeyMap Ext.KeyMap
Ext.util.KeyNav Ext.KeyNav
Ext.view.AbstractView Ext.view.AbstractView

Ext JS 4 Versus Ext JS 3 Class Names

[312]

Ext JS 4 Class Alternate Class Name
Ext.view.BoundList Ext.BoundList
Ext.view.View Ext.DataView
Ext.window.MessageBox Ext.MessageBox
Ext.window.Window Ext.Window
Ext.ZIndexManager Ext.WindowGroup

Index
Symbols
--css[=]value, -c[=]value option 260
*-debug.js file 12
*-debug-w-comments 12
*-dev.js 12
--ext-dir[=]value, -d[=]value (required)

option 260
--output-dir[=]value, -o[=]value option 260
--verbose, -v option 260

A
absolute layout

about 104
VBox Layout 107

AbstractStore 82
accordion layout 108-110
actions, form fields

handling 238-240
load action 239
submit action 240

add() function 57, 58
AjaxProxy 77, 82
all-classes.js command 303
alternateClassName 307
ALTERNATE NAMES 10
anchor layout

about 101, 102
anchor rule, setting 102-104

API Documentation tab 9
app-all.js command 303
App.controller.Books class 283
applyTitle method 9
appName folder structure 247
App.view.book.Grid class 289
apt-get command 243

apt-get tool 243
Area Chart

about 180, 181
Grouped Area Chart 182, 183

ArrayStore 82
Associations between Models

belongsTo 54
hasMany 54
hasMany association, declaring 55-63
using, in association 54, 55

associations declaration 62
author.books() function 56
auto layout 99-101
axes chart property

configuring 161
Axis class

about 160
configuration options 160

Axis package
about 159
classes 159, 160

B
Bar chart

about 164-166
Grouped Bar Chart 167-169
Stacked Bar Chart 169, 171

belongsTo association
callback function 61
foreignKey 60
getterName 60
model 60
primarykey 60
setterName 60

bindGridToPanel function 294
body wrapper 123

[314]

book.DetailPanel class 294
book.getAuthor() function 61
bookList grid 290
books.add() function 58
book.setAuthor() function 62
books() function 58
boolean property 228
BufferStore 82
builds folder 13

C
calculateCategoryCount property 161
callback function 61, 62
card layout 114-118
Cartesian charts

properties 166
Cartesian class 164
Category axis 161
Category class 160
CellEditing plugin 215
chart

customizing 194-199
Chart class 145
Chart component 144
chart series

properties 164
check tree

example 225, 226
child function 279
class system, Ext JS 4

features 14
client proxies

client-side storage, advantage 64
HTML5 storage 64
LocalStorageProxy 63
MemoryProxy 63
SessionStorageProxy 63
using 63

client proxies, Ext JS 4
Ext.data.proxy.Client 64
Ext.data.proxy.Client 64
Ext.data.proxy.LocalStorage 64
Ext.data.proxy.Memory 64
Ext.data.proxy.SessionStorage 64
Ext.data.proxy.WebStorage 64
LocalStorageProxy 65-67
MemoryProxy 68-70

SessionStorageProxy 67, 68
client-side storage

advantage 64
disadvantage 64

colorSet property 188
Column Chart 171
column layout 111
columns, grid panel

about 203
action column 205
booleancolumn 205
datecolumn 205
 Ext.grid.feature.Grouping 206-208
features 206
GroupingSummary feature 209, 210
numbercolumn 205
RowBody feature 212, 213
RowNumberl 205
selModel 205
Summary feature 211, 212
using 203, 204

Compass
about 243-245
installing 243-245
Sass 243-245

compass compile command 251, 256
Component class 145
component layout

about 98, 119
absolute 99
Accordion 99
anchor 99
auto 99
Border 99
Card 99
Column 99
dock layout 98, 119-130
field layout 98, 133-139
Fit 99
Hbox 99
hierarchy 99
Table 99
toolbar layout 98
tool layout 131-133
TriggerField Layout 98, 139-141
Vbox 99

Configs option 10

[315]

container layout
absolute layout 104
Accordion layout 108, 110
anchor layout 101, 102
auto layout 99-101
border layout 116, 118
card layout 114-116
column layout 111, 112
fit layout 113
HBox Layout 105, 106
table layout 110, 111
VBox Layout 107

control function 286
controller class

creating 283, 285
view, controlling 285-287

controllers 266
CRUD (create, read, update, delete) actions

78, 217
custom images

about 264
new icons, creating 264

D
data packages, Ext JS 4

about 41
Model class 42
organization diagram 42
Record class 42

DatePicker Component 139
debug version 13
DetailPanel class 292
dev version 13
DirectStore 82
docked item 124
dock layout 119-130
Dock Layout 98
DockLayout 37
Donut Chart 188
donut property 188
down function 279
drag-and-drop feature, tree panel 223, 224
drawComponent variable 146

E
Editing class 214

EditorGrid 38
editor property 215
Events option 10
Ext.AbstractSelectionModel 311
ext-all.js

about 12, 28
comparing, with ext.js 13

Ext.app.Controller class 283
Ext.application class 285
Ext.BoundList 312
Ext.Button 307
Ext.button.Button class 307
Ext.button.Cycle class 307
Ext.ButtonGroup 308
Ext.button.Split class 307
Ext.chart.Axis 307
Ext.chart.axis.Axis class 307
Ext.chart.axis.Category class 307
Ext.chart.axis.Numeric class 308
Ext.chart.axis.Time class 308
Ext.chart.BarChart 308
Ext.chart.BarSeries 308
Ext.chart.CartesianChart 308
Ext.chart.CartesianSeries 308
Ext.chart.CategoryAxis 307
Ext.chart.ColumnChart 308
Ext.chart.ColumnSeries 308
Ext.chart.LineChart 308
Ext.chart.LineSeries 308
Ext.chart.NumericAxis 308
Ext.chart package

about 154, 194
Theme class 194

Ext.chart.PieChart 308
Ext.chart.PieSeries 308
Ext.chart.series.Bar class 308
Ext.chart.series.Cartesian class 308
Ext.chart.series.Column class 308
Ext.chart.series.Line class 308
Ext.chart.series package 163
Ext.chart.series.Pie class 308
Ext.chart.StackedBarChart 308
Ext.chart.StackedColumnChart 308
Ext.chart.theme.Base 194
Ext.chart.theme.Theme 194
Ext.chart.TimeAxis 308
Ext.ColorPalette 311

[316]

Ext.ComponentManager class 308
Ext.ComponentMgr 308
Ext.ComponentQuery 274
Ext.ComponentQuery class 276
Ext.ComponentQuery.query method 278
Ext.ComponentQuery selector 279, 294
Ext.Container 308
Ext.container.ButtonGroup class 308
Ext.container.Container class 308
Ext.container.Container functions

child function 279
Down function 279
query function 278
up function 280

Ext.container.Viewport class 308
Ext.create 122, 141
Ext.create(Ext.PagingToolbar) 8
Ext.CycleButton 307
Ext.data.AjaxProxy 308
Ext.data.ArrayReader 308
Ext.data.ClientProxy 308
Ext.data.DataProxy 308
Ext.data.DataReader 309
Ext.data.DataWriter 309
Ext.data.DirectProxy 308
Ext.data.Field class 44, 45
Ext.data.HttpProxy 308
Ext.data.JsonReader 308
Ext.data.JsonWriter 309
Ext.data.LocalStorageProxy 308
Ext.data.MemoryProxy 308
Ext.data.Model class 43, 308
Ext.data.Proxy 308
Ext.data.proxy.Ajax class 308
Ext.data.proxy.Client class 308
Ext.data.proxy.Direct class 308
Ext.data.proxy.JsonP class 308
Ext.data.proxy.LocalStorage 64
Ext.data.proxy.LocalStorage class 308
Ext.data.proxy.Memory class 64, 308
Ext.data.proxy.Proxy class 308
Ext.data.proxy.Rest class 308
Ext.data.proxy.Server class 70, 308
Ext.data.proxy.SessionStorage 64
Ext.data.proxy.SessionStorage class 308
Ext.data.proxy.WebStorage class 308
Ext.data.Reader 308

Ext.data.reader.Array class 308
Ext.data.reader.Json class 308
Ext.data.reader.Reader class 308, 309
Ext.data.reader.Xml class 309
Ext.data.Record 308
Ext.data.RestProxy 308
Ext.data.ScriptTagProxy 308
Ext.data.ServerProxy 308
Ext.data.SessionStorageProxy 308
Ext.data.StoreManager class 309
Ext.data.StoreMgr 309
Ext.data.Types class 47
Ext.DataView 312
Ext.data.WebStorageProxy 308
Ext.data.Writer 309
Ext.data.writer.Json class 309
Ext.data.writer.Writer class 309
Ext.data.writer.Xml class 309
Ext.data.XmlReader 309
Ext.data.XmlWriter 309
Ext.DatePicker 311
Ext.dd.DDM 309
Ext.dd.DragDropManager class 309
Ext.dd.DragDropMgr 309
Ext.dd.PanelProxy 311
Ext.Direct.Transaction 309
Ext.direct.Transaction class 309
Ext Draw package

about 144, 145
classes 144-148
transformation, applying 150, 151

Ext.FlashComponent 309
Ext.flash.Component class 309
Ext.FocusManager class 309
Ext.FocusMgr 309
Ext.form.Action 309
Ext.form.action.Action class 309
Ext.form.Action.DirectLoad 309
Ext.form.action.DirectLoad class 309
Ext.form.Action.DirectSubmit 309
Ext.form.action.DirectSubmit class 309
Ext.form.Action.Load 309
Ext.form.action.Load class 309
Ext.form.Action.Submit 309
Ext.form.action.Submit class 309
Ext.form.BaseField 309
Ext.form.Basic class 309

[317]

Ext.form.BasicForm 309
Ext.form.Checkbox 309
Ext.form.ComboBox 309
Ext.form.Date 309
Ext.form.DateField 309
Ext.form.Display 309
Ext.form.DisplayField 309
Ext.form.Field 309
Ext.form.field.Base class 309
Ext.form.field.Checkbox class 309
Ext.form.field.ComboBox class 309
Ext.form.field.Date class 309
Ext.form.field.Display class 309
Ext.form.field.File class 309
Ext.form.field.Hidden class 309
Ext.form.field.HtmlEditor class 309
Ext.form.field.Number class 309
Ext.form.field.Picker class 310
Ext.form.field.Radio class 310
Ext.form.field.Spinner class 310
Ext.form.field.TextArea class 310
Ext.form.field.Text class 310
Ext.form.field.Time class 310
Ext.form.field.Trigger class 310
Ext.form.File 309
Ext.form.FileUploadField 309
Ext.form.FormPanel 310
Ext.form.Hidden 309
Ext.form.HtmlEditor 309
Ext.form.Number 309
Ext.form.NumberField 309
Ext.FormPanel 310
Ext.form.Panel class 310
Ext.form.Picker 310
Ext.form.Radio 310
Ext.form.SliderField 311
Ext.form.Spinner 310
Ext.form.Text 310
Ext.form.TextArea 310
Ext.form.TextField 310
Ext.form.Time 310
Ext.form.TimeField 310
Ext.form.Trigger 310
Ext.form.TriggerField 310
Ext.form.TwinTriggerField 310
Ext.grid.ActionColumn 310
Ext.grid.BooleanColumn 310

Ext.grid.Column 310
Ext.grid.column.Action class 310
Ext.grid.column.Boolean class 310
Ext.grid.column.Column class 310
Ext.grid.column.Date class 310
Ext.grid.column.Number class 310
Ext.grid.column.Template class 310
Ext.grid.DateColumn 310
Ext.grid.Feature class 38
Ext.grid.feature.Grouping 206-208
Ext.grid.feature.GroupingSummary 209, 210
Ext.grid.feature package

classes 206
Ext.grid.feature.RowBody 212, 213
Ext.grid.feature.Summary 211, 212
Ext.grid.GridPanel 310
Ext.grid.NumberColumn 310
Ext.grid.Panel class 310
Ext.grid.plugin.CellEditing 214-216
Ext.grid.plugin.RowEditing 216, 217
Ext.grid.PropertyColumnModel 310
Ext.grid.PropertyGrid 310
Ext.grid.property.Grid class 310
Ext.grid.property.HeaderContainer class

310
Ext.grid.property.Property class 310
Ext.grid.PropertyStore 310
Ext.grid.property.Store class 310
Ext.grid.TemplateColumn 310
Ext.History 311
ext-jquery-adapter.js 28
ext.js 12

comparing, with ext-all.js 13
deploying locally 14

Ext JS
accessing, locally 14

Ext JS 3
about 143
chart, implementing 154-158

Ext JS 3 chart
implementing 154-158
versus Ext JS 4 charts 144, 156, 158

Ext JS 3, to Ext JS 4 migration
about 28
accessibility 39
adapters 28, 29
charts 37
data package 36

[318]

forms 38
grids 38
JavaScript compatibility file 30
Sandbox mode 30-35
Sencha platform 35
theming 39

Ext JS 4
about 7, 8, 41, 143, 163
chart upgrades 144
class system 14
client proxies 64
data packages 41
form panel 228
getting started 7, 8
grid panel 201
namespace updates 8
package 8
proxies 63
server proxies 70
themes 241
tree panel 222
upgraded documentation 9, 10

Ext JS 4 chart package 156, 158
Ext JS 4 charts

versus Ext JS 3 charts 144, 156, 158
Ext JS 4 Class

Ext.button.Button 307
Ext.button.Cycle 307
Ext.button.Split 307
Ext.chart.axis.Axis 307
Ext.chart.axis.Category 307
Ext.chart.axis.Numeric 308
Ext.chart.axis.Time 308
Ext.chart.series.Bar 308
Ext.chart.series.Cartesian 308
Ext.chart.series.Column 308
Ext.chart.series.Line 308
Ext.chart.series.Pie 308
Ext.ComponentManager 308
Ext.container.ButtonGroup 308
Ext.container.Container 308
Ext.container.Viewport 308
Ext.data.Model 308
Ext.data.proxy.Ajax 308
Ext.data.proxy.Client 308
Ext.data.proxy.Direct 308
Ext.data.proxy.JsonP 308
Ext.data.proxy.LocalStorage 308
Ext.data.proxy.Memory 308

Ext.data.proxy.Proxy 308
Ext.data.proxy.Rest 308
Ext.data.proxy.Server 308
Ext.data.proxy.SessionStorage 308
Ext.data.proxy.WebStorage 308
Ext.data.reader.Array 308
Ext.data.reader.Json 308
Ext.data.reader.Reader 308, 309
Ext.data.reader.Xml 309
Ext.data.StoreManager 309
Ext.data.writer.Json 309
Ext.data.writer.Writer 309
Ext.data.writer.Xml 309
Ext.dd.DragDropManager 309
Ext.direct.Transaction 309
Ext.flash.Component 309
Ext.FocusManager 309
Ext.form.action.Action 309
Ext.form.action.DirectLoad 309
Ext.form.action.DirectSubmit 309
Ext.form.action.Load 309
Ext.form.action.Submit 309
Ext.form.Basic 309
Ext.form.field.Base 309
Ext.form.field.Checkbox 309
Ext.form.field.ComboBox 309
Ext.form.field.Date 309
Ext.form.field.Display 309
Ext.form.field.File 309
Ext.form.field.Hidden 309
Ext.form.field.HtmlEditor 309
Ext.form.field.Number 309
Ext.form.field.Picker 310
Ext.form.field.Radio 310
Ext.form.field.Spinner 310
Ext.form.field.Text 310
Ext.form.field.TextArea 310
Ext.form.field.Time 310
Ext.form.field.Trigger 310
Ext.form.Panel 310
Ext.grid.column.Action 310
Ext.grid.column.Boolean 310
Ext.grid.column.Column 310
Ext.grid.column.Date 310
Ext.grid.column.Number 310
Ext.grid.column.Template 310
Ext.grid.Panel 310
Ext.grid.property.Grid 310
Ext.grid.property.HeaderContainer 310

[319]

Ext.grid.property.Property 310
Ext.grid.property.Store 310
Ext.layout.container.Absolute 310
Ext.layout.container.Accordion 310
Ext.layout.container.Anchor 310
Ext.layout.container.Border 310
Ext.layout.container.Box 310
Ext.layout.container.Card 310
Ext.layout.container.Column 310
Ext.layout.container.Container 310
Ext.layout.container.Fit 310
Ext.layout.container.HBox 311
Ext.layout.container.Table 311
Ext.layout.container.VBox 311
Ext.menu.Item 311
Ext.menu.Manager 311
Ext.ModelManager 311
Ext.panel.Panel 311
Ext.panel.Proxy 311
Ext.picker.Date 311
Ext.PluginManager 311
Ext.resizer.Resizer 311
Ext.selection.Model 311
Ext.slider.Multi 311
Ext.slider.Single 311
Ext.tab.Panel 311
Ext.tip.QuickTip 311
Ext.tip.Tip 311
Ext.tip.ToolTip 311
Ext.toolbar.Fill 311
Ext.toolbar.Item 311
Ext.toolbar.Paging 311
Ext.toolbar.Separator 311
Ext.toolbar.Spacer 311
Ext.toolbar.TextItem 311
Ext.toolbar.Toolbar 311
Ext.tree.Panel 311
Ext.util.History 311
Ext.util.KeyMap 311
Ext.util.KeyNav 311
Ext.view.AbstractView 311
Ext.view.BoundList 312
Ext.view.View 312
Ext.window.MessageBox 312
Ext.window.Window 312
Ext.ZIndexManager 312

Ext JS 4 class system
class, extending 15-17
config declaration 19, 21

dynamic class loading 21-25
example code, downloading 15
Mixins 17-19
new class, creating 15
new class, defining 15
statics 26, 27

Ext JS 4 SDK
JavaScript files 11
source codes 12
viewing 11

Ext JS 4 themes
starting with 241, 242

Ext JS components UIs
creating 255-257
ext-theme.scss file, completing 258

Ext.KeyMap 311
Ext.KeyNav 311
Ext.layout.AbsoluteLayout 310
Ext.layout.AccordionLayout 310
Ext.layout.AnchorLayout 310
Ext.layout.BorderLayout 310
Ext.layout.BoxLayout 310
Ext.layout.CardLayout 310
Ext.layout.ColumnLayout 310
Ext.layout.container.Absolute class 310
Ext.layout.container.Accordion class 310
Ext.layout.container.Anchor class 310
Ext.layout.container.Border class 310
Ext.layout.container.Box class 310
Ext.layout.container.Card class 310
Ext.layout.container.Column class 310
Ext.layout.container.Container class 310
Ext.layout.container.Fit class 310
Ext.layout.container.HBox class 311
Ext.layout.ContainerLayout 310
Ext.layout.container.Table class 311
Ext.layout.container.VBox class 311
Ext.layout.FitLayout 310
Ext.layout.HBoxLayout 311
Ext.layout.TableLayout 311
Ext.layout.VBoxLayout 311
Ext.list.ListView 310
Ext.ListView 310
Ext.menu.Item class 311
Ext.menu.Manager class 311
Ext.menu.MenuMgr 311
Ext.menu.TextItem 311
Ext.MessageBox 312

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

[320]

Ext.ModelManager class 311
Ext.ModelMgr 311
Ext.ModelMgr class 46
Ext.onReady function 262
Ext.PagingToolbar 311
Ext.Panel 311
Ext.panel.Panel class 311
Ext.panel.Proxy class 311
Ext.picker.Color class 311
Ext.picker.Date class 311
Ext.PluginManager class 311
Ext.PluginMgr 311
Ext project

about 246
setting up 246-248

Ext.PropGridProperty 310
Ext.QuickTip 311
extraParams 73
Ext.Resizable 311
Ext.resizer.Resizer class 311
Ext.selection.Model class 311
Ext.Slider 311
Ext.slider.Multi class 311
Ext.slider.MultiSlider 311
Ext.slider.Single class 311
Ext.slider.SingleSlider 311
Ext.slider.Slider 311
Ext.SplitButton 307
Ext.StoreManager 309
Ext.StoreMgr 309
Ext.String.format function 210
Ext.TabPanel 311
Ext.tab.Panel class 311
Ext.Tip 311
Ext.tip.QuickTip class 311
Ext.tip.Tip class 311
Ext.tip.ToolTip class 311
Ext.Toolbar 311
Ext.Toolbar.Fill 311
Ext.toolbar.Fill class 311
Ext.Toolbar.Item 311
Ext.toolbar.Item class 311
Ext.toolbar.Paging class 311
Ext.Toolbar.Separator 311
Ext.toolbar.Separator class 311
Ext.toolbar.Spacer class 311
Ext.Toolbar.TextItem 311

Ext.toolbar.TextItem class 311
Ext.toolbar.Toolbar class 311
Ext.ToolTip 311
Ext.TreePanel 311
Ext.tree.Panel class 311
Ext.tree.TreePanel 311
Ext.util.History class 311
Ext.util.KeyMap class 311
Ext.util.KeyNav class 311
Ext.ux.form.FileUploadField 309
Ext.view.AbstractView 311
Ext.view.AbstractView class 311
Ext.view.BoundList class 312
Ext.Viewport 308
Ext.view.View class 312
Ext.Window 312
Ext.WindowGroup 312
Ext.window.MessageBox class 312
Ext.window.Window class 312
Ext.ZIndexManager class 312

F
failure function 61, 62
Fedora 243
fieldDefaults property 231
field layout 133-139
Field Layout 98
FieldLayout 37
fields declaration 54
fill property 177
filtering 94, 95
filter layout 113
filter option 94
filterParam 72
filterProperty object 57
Form Layout 98
form panel

actions 238-240
FieldContainer 228
Fields 228
Fieldset 228
fields, validating 234-237
form fields 229-231
form fields/items, declaring 232-234
label 228, 238
maxLength validations 236
min Length validations 236

[321]

G
Gauge axis

about 162
configuration options 162

Gauge Chart 192-194
getBookModel get function 289
getBookStore get function 289
getModel(name) method 295
getStore(name) method 295
getTitle method 19
getView(name) method 295
grid panel

about 201
columns 203
grid plugins 214
implementing, in Ext JS 4 202
infinite scrolling grid 219-221

grid plugins
CellEditing plugin 214-216
classes 214
data, saving to servers 217-219
RowEditing plugin 216, 217

Grouped Area Chart 182, 183
Grouped Bar Chart 167-169
Grouped Line Chart 177-180
Grouped Radar Chart 191, 192
Grouped Scatter Chart 185, 186
groupHeaderTpl attribute 208
GroupingSummary feature 209, 211
groupParam 72
guaranteeRange method 220

H
handler function 131
hasMany association

filterProperty 56
foreignKey 55, 56
model 55
name 55
primaryKey 55

HBox Layout 105, 106
Header Tools 131
highlightDuration property 188

I
infinite scrolling grid 219-221

initComponent function 292
init function 283
installing

Ruby 242
Sass 243-245

Intelligent Rendering 201
IPAddress function 237
isValid method 49
items property 238

J
JavaScript files

ext-all.js 11
ext.js 11

JSBuilder 12
JsonP proxy

setting up 80
JsonPStore 82
JsonReader 51
JsonStore 82

K
keyboard navigation 39

L
label, form fields

displaying 238
launch function 282-284
layouts, Ext JS 4

about 98
component layout 98
container layout 98

legacy browsers
supporting 259-263

Legend class
about 158
configuration options 159

legend property 156
limitParam 73
Line Chart

about 173-175
customizing 175-177
Grouped Line Chart 177-180
properties 176

Line Chart Series class 175

[322]

Linux, Ruby installation
Debian 243
Fedora 243
Red Hat Enterprise 243
Ubuntu 243

load action 239

M
Mac OS 242
manifest option 263
mapping URL 78
markerConfig property 177
messageProperty config option 85
model 266
Model class

about 43
capabilities 43
data loading, proxies used 51-53
data loading, stores used 51-53
differentiating, with Record class 42
fields, declaring 43-48
model, validating 48, 49
Patient validation, checking 50

model class. creating 287-291
Model Manager class 46
Model-view-controller pattern. See MVC-

like pattern
MVC application

and nested models 296-301
architecture 265, 266
book details panel, adding 291-294
book-mvc application, creating 280, 282
building, for production 301-304
controller class, creating 283, 285
controller class, view contolling in 285-287
controller getter methods 295
creating 280
creating, in traditional way 266-272
developing, tips 296
model class, creating 287-291
store class, creating 287-291

MVC architecture
Ext.ComponentQuery 274
project directory, structure 273, 274
used, for creating app 272
used, for migrating app 272

MVC diagram
drawing, Sprites used 152, 154

MVC-like pattern 266
MyApp.MyWindow class 19

N
nameProperty option 87
new keyword 17
new theme

creating 248-252
earlier version Ext JS 4 bugs 254
variables 252-254

NodeInterface 223
Numeric axis 161
Numeric class 160

O
operation

options, configuring 73, 74

P
pageParam 73
Patient Model

exclusion validation 49
format validation 49
inclusion validation 49
length validation 49
presence validation 49

patient validation 50
Pie Chart

about 186, 187
Donut Chart 188
properties 188

Print button 10
Properties option 10
properties, Reader class

idProperty 83
messageProperty 83
successProperty 83
totalProperty 83

proxies
about 63
client proxies 63
server proxies 63

[323]

Q
query function 278

R
Radar Chart

about 189, 190
Grouped Radar Chart 191, 192

Radial axis 163
Reader class

property 83
Record class 45

differentiating, with Model class 42
Red Hat Enterprise 243
Red Hat Package Manager (RPM) 243
remoteSort store option 93
render event 286
resetTitle method 19
RESTful URLs

principle 78
root config option 86
rotate property 150
rotation transformation 150
rowbody feature 213
RowEditing plugin 217
Ruby

installing 242
Ruby installation

Debian 243
Linux 242
Mac OS 242
Ubuntu 243
Windows 242

S
Sass

about 243-245
installing 243-245

Scalable Vector Graphics. See SVG
scale transformation 151
Scatter Chart

about 183, 184
Grouped Scatter Chart 185, 186

SDK Tools 260
Search box 10
selectionchange event 271

selType property 215
Sencha Touch 36
Series

about 163
Area Chart 180, 181
Bar chart 164-166
Gauge Chart 192-194
Line Chart 173-175
Pie Chart 186-188
Radar Chart 189, 190
Scatter Chart 183, 184

Series class 164
series property 156
server proxies, Ext JS 4

about 70
AjaxProxy 63, 71-77
DirectProxy 63
Ext.data.proxy.Ajax 70
Ext.data.proxy.Direct 70
Ext.data.proxy.JsonP 70
Ext.data.proxy.Rest 70
Ext.data.proxy.Server 70
JsonP proxy 80, 82
Rest proxy 63, 78, 79
ScriptTagProxy 63

setTitle method 19
showMarkers property 177
Slice Tool 260
smooth property 176
sortParam 73
source codes, Ext JS 4 SDK

builds 12
docs 12
examples 12
jsbuilder 12
overview 12
pkgs 12
welcome 12

Sprite 144
Sprites

MVC diagram, drawing 152, 154
types 146-149

Stacked Bar Chart 169, 171
startParam 73
Store class 82
store class, creating 287-291
Stores

about 82

[324]

Reader classes 83-86
writers 86

submit action 240
success function 61, 62
summaryRenderer function 210
summaryType property 209
Super Classes option 10
Surface class 144
SVG

about 144
URL, for info 144

Svg class 144
sync() function 57, 58

T
table layout 110-112
theme

creating 195, 196
Theme class 194
tickmarks 160
ticks 160
Time axis

about 162
configuration options 162

Time class 160
Toolbar 122
Toolbar Layout 98
ToolbarLayout 37
tool layout 131-133
transformations

applying, to Ext Draw package 150, 151
tree grid 226-228
tree panel

about 222, 223
check tree, implementing 225, 226
drag-and-drop feature 223, 224
sorting feature 223, 224
tree grid 226-228

TreeStore 82
TriggerField Layout 98, 139-141

U
up function 280

V
validate method 49
VBox Layout 107, 137
Vector Markup Language. See VML
verticalScrollerType property 221
view 266
viewBox property 146
viewport 271
Viewport class 286
VML 37, 144

W
Window class 277, 278
Windows

URL 242
writeAllFields option 87
writers, Stores

about 86, 87
filtering 94, 95
JsonWriter, declaring 87-89
nameProperty option 87
organizational diagram 87
sorting 90-94
writeAllFields option 87
XML writer 89, 90

X
XmlStore 82
xt.data.proxy.Rest 70

Y
YUI Chart Flash file 144
YUM 243

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Thank you for buying
Ext JS 4 First Look

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Ext JS 3.2
ISBN: 978-1-849511-20-9 Paperback: 432 pages

Build dynamic, desktop-style user interfaces for your
data-driven web applications using Ext JS

1. Learn to build consistent, attractive web
interfaces with the framework components

2. Integrate your existing data and web services
with Ext JS data support

3. Enhance your JavaScript skills by using Ext's
DOM and AJAX helpers

4. Extend Ext JS through custom components

5. An interactive tutorial packed with loads of
example code and illustrative screenshots

Oracle Application Express 4.0
with Ext JS
ISBN: 978-1-84968-106-3 Paperback: 392 pages

Deliver rich desktop-styled Oracle APEX applications
using the powerful Ext JS JavaScript library

1. Build robust, feature-rich web applications
using Oracle APEX and Ext JS

2. Add more sophisticated components and
functionality to an Oracle APEX application
using Ext JS

3. Build your own themes based on Ext JS into
APEX - developing templates for regions,
labels, and lists

Please check www.PacktPub.com for information on our titles

Ext JS 3.0 Cookbook
ISBN: 978-1-847198-70-9 Paperback: 376 pages

Clear step-by-step recipes for building impressive
rich internet applications using the Ext JS JavaScript
library

1. Master the Ext JS widgets and learn to create
custom components to suit your needs

2. Build striking native and custom layouts,
forms, grids, listviews, treeviews, charts, tab
panels, menus, toolbars and much more for
your real-world user interfaces

3. Packed with easy-to-follow examples to
exercise all of the features of the Ext JS library

4. Part of Packt's Cookbook series: Each recipe is a
carefully organized sequence of instructions to
complete the task as efficiently as possible

Learning jQuery, Third Edition
ISBN: 978-1-84951-654-9 Paperback: 428 pages

Create better interaction, design, and web
development with simple JavaScript techniques

1. An introduction to jQuery that requires
minimal programming experience

2. Detailed solutions to specific client-side
problems

3. Revised and updated version of this popular
jQuery book

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:What's New in Ext JS 4?
	Getting started with Ext JS 4
	Package and namespace updates
	Upgraded documentation
	Ext JS 4 SDK quick look
	What is the difference between ext.js and ext-all.js?
	Deploying Ext JS locally

	The new Ext JS 4 class system
	Class definition and creation
	Creating a new class
	Extending a class

	Mixins
	Config (auto setters and getters)
	Dynamic class loading
	Statics

	Migrating from Ext JS 3 to Ext JS 4
	Adapters
	JavaScript compatibility file
	Sandbox mode
	Sencha platform
	Data package
	Draw package and charts
	Layouts
	Grids
	Forms
	Accessibility
	Theming

	Summary

	Chapter 2:The New Data Package
	Broad overview
	The new model class
	Declaring fields
	Validating the model
	Loading/saving data with proxies and stores
	Linking models through associations

	Proxies
	Client proxies
	LocalStorageProxy
	SessionStorageProxy
	MemoryProxy

	Server proxies
	AjaxProxy
	RestProxy
	JsonPProxy

	Stores
	Readers
	Writers
	JsonWriter
	XmlWriter

	Sorting
	Filtering

	Summary

	Chapter 3:Upgraded Layouts
	Ext JS 4 layouts
	Container layouts
	Auto layout
	Anchor layout
	Absolute layout
	HBox layout
	VBox layout
	Accordion layout
	Table layout
	Column layout
	Fit layout
	Card layout
	Border layout

	Component layouts
	Dock layout
	Tool layout
	Field layout
	TriggerField layout

	Summary

	Chapter 4:Upgraded Charts
	Ext JS 4 chart upgrades
	Ext draw package
	Applying transformations to a draw
	Putting it all together

	Ext chart package
	Legend
	Axis
	Category, Numeric, and Time axes
	Gauge axis
	Radial axis

	Series
	Bar chart
	Grouped bar chart
	Stacked bar chart

	Column chart
	Line Chart
	Customizing a Line Chart
	Grouped Line Chart

	Area Chart
	Grouped Area Chart

	Scatter Chart
	Grouped Scatter Chart

	Pie Chart
	Donut Chart

	Radar Chart
	Grouped Radar Chart

	Gauge Chart

	Customizing a Chart
	Summary

	Chapter 5:Upgraded Grid, Tree, and Form
	Grid panel
	Columns
	Feature support
	Ext.grid.feature.Grouping
	Ext.grid.feature.GroupingSummary
	Ext.grid.feature.Summary
	Ext.grid.feature.RowBody

	Grid plugins
	Ext.grid.plugin.CellEditing
	Ext.grid.plugin.RowEditing
	Saving the data to the server

	Infinite scrolling

	Tree panel
	Drag-and-drop and sorting
	Check tree
	Tree grid

	Form
	Form fields
	Validation
	Form label
	Actions

	Summary

	Chapter 6:Ext JS 4 Themes
	Getting started with Ext JS 4 themes
	Installing Ruby
	Windows and Mac OS
	Linux
	Ubuntu and Debian
	Red Hat Enterprise and Fedora

	Installing Sass and Compass
	Setting up an Ext project
	Creating a new theme
	Variables
	Bugs in earlier versions of Ext JS 4.1

	Creating new Ext JS Component UIs
	Complete my-ext-theme.scss file

	Supporting legacy browsers
	Missing custom images
	Summary

	Chapter 7:MVC Application Architecture
	The new MVC application architecture
	Creating a sample application the
old-fashioned way
	Migrating/creating an app using the MVC architecture
	Project directory structure

	Ext.ComponentQuery
	Ext.container.Container functions: query, child, down, and up
	Query function
	Child function
	Down function competency
	Up function

	Creating the MVC application
	Creating the book-mvc application
	Creating the controller class
	Controlling a view in the controller class
	Creating the model and store classes
	Adding the book details panel
	Controller getter methods
	Useful tips to develop an MVC application
	Nested models and MVC

	Building your application for production
	Summary

	Appendix A:Ext JS 4 Versus Ext JS 3 Class Names
	Index

