
www.it-ebooks.info

http://www.it-ebooks.info/

Praise for Michael Hartl’s
Books and Videos
on Ruby on RailsTM

‘‘My former company (CD Baby) was one of the first to loudly switch to Ruby on

Rails, and then even more loudly switch back to PHP (Google me to read about the

drama). This book by Michael Hartl came so highly recommended that I had to try

it, and the Ruby on RailsTM Tutorial is what I used to switch back to Rails again.’’

—From the Foreword by Derek Sivers (sivers.org)

Formerly: Founder, CD Baby

Currently: Founder, Thoughts Ltd.

‘‘Michael Hartl’s Rails Tutorial book is the #1 (and only, in my opinion) place to

start when it comes to books about learning Rails. . . . It’s an amazing piece of work

and, unusually, walks you through building a Rails app from start to finish with

testing. If you want to read just one book and feel like a Rails master by the end of

it, pick the Ruby on RailsTM Tutorial .’’

—Peter Cooper

Editor, Ruby Inside

www.it-ebooks.info

http://www.it-ebooks.info/

‘‘Grounded in the real world.’’

—I Programmer (www.i-programmer.info), by Ian Elliot

‘‘The book gives you the theory and practice, while the videos focus on showing you

in person how its done. Highly recommended combo.’’

—Antonio Cangiano, Software Engineer, IBM

‘‘The author is clearly an expert at the Ruby language and the Rails framework, but

more than that, he is a working software engineer who introduces best practices

throughout the text.’’

—Greg Charles, Senior Software Developer, Fairway Technologies

‘‘Overall, these video tutorials should be a great resource for anyone new to Rails.’’

—Michael Morin, ruby.about.com

‘‘Hands-down, I would recommend this book to anyone wanting to get into Ruby

on Rails development.’’

—Michael Crump, Microsoft MVP

www.it-ebooks.info

www.i-programmer.info
http://www.it-ebooks.info/

RUBY ONRAILS
TM TUTORIAL

Second Edition

www.it-ebooks.info

http://www.it-ebooks.info/

Visit informit.com/ruby for a complete list of available products.

I

he Addison-Wesley Professional Ruby Series provides readers

with practical, people-oriented, and in-depth information aboutT
applying the Ruby platform to create dynamic technology solutions.

The series is based on the premise that the need for expert reference

books, written by experienced practitioners, will never be satisfied solely

by blogs and the Internet.

www.it-ebooks.info

http://www.it-ebooks.info/

RUBY ONRAILS
TM TUTORIAL

Learn Web Developments with Rails

Second Edition

Michael Hartl

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2013 Michael Hartl

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

The source code in Ruby on Rails TM Tutorial is released under the MIT License.

ISBN 13: 978-0-321-83205-4
ISBN 10: 0-321-83205-1
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor,
Michigan.
First printing, July 2012

Editor-in-Chief
Mark Taub

Executive Editor
Debra Williams Cauley

Managing Editor
John Fuller

Full-Service Production
Manager
Julie B. Nahil

Project Manager
Laserwords

Copy Editor
Laserwords

Indexer
Laserwords

Proofreader
Laserwords

Reviewer
Jennifer Lindner

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
Laserwords

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Foreword to the First Edition by Derek Sivers xv

Foreword to the First Edition by Obie Fernandez xvii

Acknowledgments xix

About the Author xxi

Chapter 1 From Zero to Deploy 1

1.1 Introduction 3

1.1.1 Comments for Various Readers 4

1.1.2 ‘‘Scaling’’ Rails 7

1.1.3 Conventions in This Book 7

1.2 Up and Running 9

1.2.1 Development Environments 10

1.2.2 Ruby, RubyGems, Rails, and Git 12

1.2.3 The First Application 17

1.2.4 Bundler 19

1.2.5 rails server 23

1.2.6 Model-view-controller (MVC) 25

1.3 Version Control with Git 27

1.3.1 Installation and Setup 27

1.3.2 Adding and Committing 30

1.3.3 What Good Does Git Do You? 31

vii

www.it-ebooks.info

http://www.it-ebooks.info/

viii Contents

1.3.4 GitHub 32

1.3.5 Branch, Edit, Commit, Merge 34

1.4 Deploying 39

1.4.1 Heroku Setup 39

1.4.2 Heroku Deployment, Step One 40

1.4.3 Heroku Deployment, Step Two 40

1.4.4 Heroku Commands 41

1.5 Conclusion 43

Chapter 2 A Demo App 45

2.1 Planning the Application 45

2.1.1 Modeling Demo Users 47

2.1.2 Modeling Demo Microposts 48

2.2 The Users Resource 49

2.2.1 A User Tour 51

2.2.2 MVC in Action 56

2.2.3 Weaknesses of this Users Resource 62

2.3 The Microposts Resource 63

2.3.1 A Micropost Microtour 63

2.3.2 Putting the micro in Microposts 66

2.3.3 A User has many Microposts 68

2.3.4 Inheritance Hierarchies 70

2.3.5 Deploying the Demo App 73

2.4 Conclusion 74

Chapter 3 Mostly Static Pages 77

3.1 Static Pages 82

3.1.1 Truly Static Pages 82

3.1.2 Static Pages with Rails 85

3.2 Our First Tests 93

3.2.1 Test-driven Development 93

3.2.2 Adding a Page 99

3.3 Slightly Dynamic Pages 103

3.3.1 Testing a Title Change 103

3.3.2 Passing Title Tests 106

3.3.3 Embedded Ruby 108

3.3.4 Eliminating Duplication with Layouts 111

3.4 Conclusion 114

www.it-ebooks.info

http://www.it-ebooks.info/

Contents ix

3.5 Exercises 114

3.6 Advanced Setup 117

3.6.1 Eliminating bundle exec 118

3.6.2 Automated Tests with Guard 120

3.6.3 Speeding up Tests with Spork 123

3.6.4 Tests inside Sublime Text 127

Chapter 4 Rails-Flavored Ruby 129

4.1 Motivation 129

4.2 Strings and Methods 134

4.2.1 Comments 134

4.2.2 Strings 135

4.2.3 Objects and Message Passing 138

4.2.4 Method Definitions 141

4.2.5 Back to the Title Helper 142

4.3 Other Data Structures 142

4.3.1 Arrays and Ranges 142

4.3.2 Blocks 146

4.3.3 Hashes and Symbols 148

4.3.4 CSS revisited 152

4.4 Ruby Classes 153

4.4.1 Constructors 153

4.4.2 Class Inheritance 155

4.4.3 Modifying Built-in Classes 158

4.4.4 A Controller Class 159

4.4.5 A User Class 161

4.5 Conclusion 164

4.6 Exercises 164

Chapter 5 Filling in the Layout 167

5.1 Adding Some Structure 167

5.1.1 Site Navigation 169

5.1.2 Bootstrap and Custom CSS 175

5.1.3 Partials 181

5.2 Sass and the Asset Pipeline 187

5.2.1 The Asset Pipeline 187

5.2.2 Syntactically Awesome Stylesheets 190

www.it-ebooks.info

http://www.it-ebooks.info/

x Contents

5.3 Layout Links 197

5.3.1 Route Tests 200

5.3.2 Rails Routes 202

5.3.3 Named Routes 205

5.3.4 Pretty RSpec 207

5.4 User Signup: A First Step 211

5.4.1 Users Controller 212

5.4.2 Signup URI 213

5.5 Conclusion 215

5.6 Exercises 217

Chapter 6 Modeling Users 221

6.1 User Model 222

6.1.1 Database Migrations 223

6.1.2 The Model File 228

6.1.3 Creating User Objects 230

6.1.4 Finding User Objects 233

6.1.5 Updating User Objects 235

6.2 User Validations 236

6.2.1 Initial User Tests 236

6.2.2 Validating Presence 239

6.2.3 Length Validation 243

6.2.4 Format Validation 245

6.2.5 Uniqueness Validation 249

6.3 Adding a Secure Password 254

6.3.1 An Encrypted Password 255

6.3.2 Password and Confirmation 257

6.3.3 User Authentication 260

6.3.4 User Has Secure Password 263

6.3.5 Creating a User 265

6.4 Conclusion 267

6.5 Exercises 268

Chapter 7 Sign Up 271

7.1 Showing Users 271

7.1.1 Debug and Rails Environments 272

7.1.2 A Users Resource 278

www.it-ebooks.info

http://www.it-ebooks.info/

Contents xi

7.1.3 Testing the User Show Page (with Factories) 282

7.1.4 A Gravatar Image and a Sidebar 286

7.2 Signup Form 292

7.2.1 Tests for User Signup 293

7.2.2 Using form for 297

7.2.3 The Form HTML 301

7.3 Signup Failure 303

7.3.1 A Working Form 303

7.3.2 Signup Error Messages 308

7.4 Signup Success 312

7.4.1 The Finished Signup Form 313

7.4.2 The Flash 315

7.4.3 The First Signup 317

7.4.4 Deploying to Production with SSL 317

7.5 Conclusion 321

7.6 Exercises 321

Chapter 8 Sign In, Sign Out 325

8.1 Sessions and Signin Failure 325

8.1.1 Sessions Controller 326

8.1.2 Signin Tests 330

8.1.3 Signin Form 333

8.1.4 Reviewing Form Submission 336

8.1.5 Rendering with a Flash Message 339

8.2 Signin Success 343

8.2.1 Remember Me 343

8.2.2 A Working sign in Method 349

8.2.3 Current User 351

8.2.4 Changing the Layout Links 355

8.2.5 Signin upon Signup 359

8.2.6 Signing Out 361

8.3 Introduction to Cucumber (Optional) 363

8.3.1 Installation and Setup 364

8.3.2 Features and Steps 365

8.3.3 Counterpoint: RSpec Custom Matchers 368

8.4 Conclusion 371

8.5 Exercises 372

www.it-ebooks.info

http://www.it-ebooks.info/

xii Contents

Chapter 9 Updating, Showing, and Deleting Users 373

9.1 Updating Users 373

9.1.1 Edit Form 374

9.1.2 Unsuccessful Edits 380

9.1.3 Successful Edits 382

9.2 Authorization 385

9.2.1 Requiring Signed-in Users 386

9.2.2 Requiring the Right User 390

9.2.3 Friendly Forwarding 392

9.3 Showing All Users 396

9.3.1 User Index 396

9.3.2 Sample Users 403

9.3.3 Pagination 404

9.3.4 Partial Refactoring 410

9.4 Deleting Users 413

9.4.1 Administrative Users 413

9.4.2 The destroy Action 417

9.5 Conclusion 422

9.6 Exercises 424

Chapter 10 User Microposts 429

10.1 A Micropost Model 429

10.1.1 The Basic Model 430

10.1.2 Accessible Attributes and the First Validation 432

10.1.3 User/Micropost Associations 433

10.1.4 Micropost Refinements 439

10.1.5 Content Validations 443

10.2 Showing Microposts 445

10.2.1 Augmenting the User Show Page 446

10.2.2 Sample Microposts 450

10.3 Manipulating Microposts 454

10.3.1 Access Control 456

10.3.2 Creating Microposts 459

10.3.3 A Proto-feed 467

10.3.4 Destroying Microposts 475

10.4 Conclusion 479

10.5 Exercises 480

www.it-ebooks.info

http://www.it-ebooks.info/

Contents xiii

Chapter 11 Following Users 483

11.1 The Relationship Model 484

11.1.1 A Problem with the Data Model (and a Solution) 485

11.1.2 User/Relationship Associations 491

11.1.3 Validations 495

11.1.4 Followed users 495

11.1.5 Followers 500

11.2 A Web Interface for Following Users 503

11.2.1 Sample Following Data 503

11.2.2 Stats and a Follow Form 505

11.2.3 Following and Followers Pages 515

11.2.4 A Working Follow Button the Standard Way 519

11.2.5 A Working Follow Button with Ajax 524

11.3 The Status Feed 529

11.3.1 Motivation and Strategy 530

11.3.2 A First Feed Implementation 532

11.3.3 Subselects 535

11.3.4 The New Status Feed 538

11.4 Conclusion 539

11.4.1 Extensions to the Sample Application 540

11.4.2 Guide to Further Resources 542

11.5 Exercises 543

Index 545

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword to the First Edition

My former company (CD Baby) was one of the first to loudly switch to Ruby on Rails,

and then even more loudly switch back to PHP (Google me to read about the drama).

This book by Michael Hartl came so highly recommended that I had to try it, and

Ruby on RailsTM 3 Tutorial is what I used to switch back to Rails again.

Though I’ve worked my way through many Rails books, this is the one that finally

made me get it. Everything is done very much ‘‘the Rails way’’—a way that felt very

unnatural to me before, but now after doing this book finally feels natural. This is also

the only Rails book that does test-driven development the entire time, an approach

highly recommended by the experts but which has never been so clearly demonstrated

before. Finally, by including Git, GitHub, and Heroku in the demo examples, the

author really gives you a feel for what it’s like to do a real-world project. The tutorial’s

code examples are not in isolation.

The linear narrative is such a great format. Personally, I powered through the Rails

Tutorial in three long days, doing all the examples and challenges at the end of each

chapter. Do it from start to finish, without jumping around, and you’ll get the ultimate

benefit.

Enjoy!

—Derek Sivers (sivers.org)

Formerly: Founder, CD Baby

Currently: Founder, Thoughts Ltd.

xv

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword to the First Edition

‘‘If you want to learn web development with Ruby on Rails, how should I start?’’ For

years Michael Hartl has provided the answer as author of the RailsSpace tutorial in our

series and now the new Ruby on RailsTM 3 Tutorial that you hold in your hands (or PDF

reader, I guess).

I’m so proud of having Michael on the series roster. He is living, breathing proof

that us Rails folks are some of the luckiest in the wide world of technology. Before

getting into Ruby, Michael taught theoretical and computational physics at Caltech for

six years, where he received the Lifetime Achievement Award for Excellence in Teaching

in 2000. He is a Harvard graduate, has a Ph.D. in Physics from Caltech, and is an

alumnus of Paul Graham’s esteemed Y Combinator program for entrepreneurs. And

what does Michael apply his impressive experience and teaching prowess to? Teaching

new software developers all around the world how to use Ruby on Rails effectively!

Lucky we are indeed!

The availability of this tutorial actually comes at a critical time for Rails adoption.

We’re five years into the history of Rails and today’s version of the platform has

unprecedented power and flexibility. Experienced Rails folks can leverage that power

effectively, but we’re hearing growing cries of frustration from newcomers. The amount

of information out there about Rails is fantastic if you know what you’re doing

already. However, if you’re new, the scope and mass of information about Rails can be

mind-boggling.

Luckily, Michael takes the same approach as his first book in the series, building

a sample application from scratch, and writes in a style that’s meant to be read from

start to finish. Along the way, he explains all the little details that are likely to trip up

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

xviii Foreword to the First Edition

beginners. Impressively, he goes beyond just a straightforward explanation of what Rails

does and ventures into prescriptive advice about good software development practices,

such as test-driven development. Neither does Michael constrain himself to a box

delineated by the extents of the Rails framework—he goes ahead and teaches the reader

to use tools essential to existence in the Rails community, such as Git and GitHub.

In a friendly style, he even provides copious contextual footnotes of benefit to new

programmers, such as the pronunciation of SQL and pointers to the origins of lorem

ipsum. Tying all the content together in a way that remains concise and usable is truly a

tour de force of dedication!

I tell you with all my heart that this book is one of the most significant titles in

my Professional Ruby Series, because it facilitates the continued growth of the Rails

ecosystem. By helping newcomers become productive members of the community

quickly, he ensures that Ruby on Rails continues its powerful and disruptive charge into

the mainstream. The Rails Tutorial is potent fuel for the fire that is powering growth

and riches for so many of us, and for that we are forever grateful.

—Obie Fernandez, Series Editor

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

The Ruby on RailsTM Tutorial owes a lot to my previous Rails book, RailsSpace, and

hence to my coauthor Aurelius Prochazka. I’d like to thank Aure both for the work he

did on that book and for his support of this one. I’d also like to thank Debra Williams

Cauley, my editor on both RailsSpace and the Ruby on RailsTM Tutorial ; as long as she

keeps taking me to baseball games, I’ll keep writing books for her.

I’d like to acknowledge a long list of Rubyists who have taught and inspired me

over the years: David Heinemeier Hansson, Yehuda Katz, Carl Lerche, Jeremy Kemper,

Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Peter Cooper, Matt Aimonetti, Gregg

Pollack, Wayne E. Seguin, Amy Hoy, Dave Chelimsky, Pat Maddox, Tom Preston-

Werner, Chris Wanstrath, Chad Fowler, Josh Susser, Obie Fernandez, Ian McFarland,

Steven Bristol, Wolfram Arnold, Alex Chaffee, Giles Bowkett, Evan Dorn, Long

Nguyen, James Lindenbaum, Adam Wiggins, Tikhon Bernstam, Ron Evans, Wyatt

Greene, Miles Forrest, the good people at Pivotal Labs, the Heroku gang, the thoughtbot

guys, and the GitHub crew. Thanks to Jen Lindner, Patty Donovan (Laserwords), and

Julie Nahil and Michael Thurston from Pearson for their help with the book. Finally,

many, many readers—far too many to list—have contributed a huge number of bug

reports and suggestions during the writing of this book, and I gratefully acknowledge

their help in making it as good as it can be.

xix

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Michael Hartl is the author of the Ruby on RailsTM Tutorial , the leading introduction

to web development with Ruby on Rails. His prior experience includes writing and

developing RailsSpace, an extremely obsolete Rails tutorial book, and developing Insoshi,

a once-popular and now-obsolete social networking platform in Ruby on Rails. In 2011,

Michael received a Ruby Hero Award for his contributions to the Ruby community.

He is a graduate of Harvard College, has a Ph.D. in physics from Caltech, and is an

alumnus of the Y Combinator entrepreneur program.

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

From Zero to Deploy

Welcome to Ruby on Rails™Tutorial . The goal of this book is to be the best answer to the

question, ‘‘If I want to learn web development with Ruby on Rails, where should I start?’’

By the time you finish the Rails Tutorial, you will have all the skills you need to develop

and deploy your own custom web applications with Rails. You will also be ready to benefit

from the many more advanced books, blogs, and screencasts that are part of the thriving

Rails educational ecosystem. Finally, since the Rails Tutorial uses Rails 3, the knowledge

you gain here represents the state of the art in web development. (The most up-to-date

version of the Rails Tutorial can be found on the book’s website at http://railstutorial.org;

if you are reading this book offline, be sure to check the online version of the Rails

Tutorial book at http://railstutorial.org/book for the latest updates.)

Note that the goal of this book is not merely to teach Rails, but rather to teach

web development with Rails, which means acquiring (or expanding) the skills needed to

develop software for the World Wide Web. In addition to Ruby on Rails, this skillset

includes HTML and CSS, databases, version control, testing, and deployment. To

accomplish this goal, Rails Tutorial takes an integrated approach: You will learn Rails

by example by building a substantial sample application from scratch. As Derek Sivers

notes in the foreword, this book is structured as a linear narrative, designed to be read

from start to finish. If you are used to skipping around in technical books, taking this

linear approach might require some adjustment, but I suggest giving it a try. You can

think of the Rails Tutorial as a video game where you are the main character and where

you level up as a Rails developer in each chapter. (The exercises are the minibosses.)

1

www.it-ebooks.info

http://railstutorial.org
http://railstutorial.org/book
http://www.it-ebooks.info/

2 Chapter 1: From Zero to Deploy

In this first chapter, we’ll get started with Ruby on Rails by installing all the necessary

software and by setting up our development environment (Section 1.2). We’ll then

create our first Rails application, called (appropriately enough) first_app. The Rails

Tutorial emphasizes good software development practices, so immediately after creating

our fresh new Rails project we’ll put it under version control with Git (Section 1.3).

And, believe it or not, in this chapter we’ll even put our first app on the wider web by

deploying it to production (Section 1.4).

In Chapter 2, we’ll make a second project, whose purpose is to demonstrate the

basic workings of a Rails application. To get up and running quickly, we’ll build this

demo app (called demo_app) using scaffolding (Box 1.1) to generate code; since this

code is both ugly and complex, Chapter 2 will focus on interacting with the demo app

through its URIs (sometimes called URLs)1 using a web browser.

The rest of the tutorial focuses on developing a single large sample application (called

sample_app), writing all the code from scratch. We’ll develop the sample app using

test-driven development (TDD), getting started in Chapter 3 by creating static pages

and then adding a little dynamic content. We’ll take a quick detour in Chapter 4 to

learn a little about the Ruby language underlying Rails. Then, in Chapter 5 through

Chapter 9, we’ll complete the foundation for the sample application by making a site

layout, a user data model, and a full registration and authentication system. Finally,

in Chapter 10 and Chapter 11 we’ll add microblogging and social features to make a

working example site.

The final sample application will bear more than a passing resemblance to a certain

popular social microblogging site—a site that, coincidentally, was also originally written

in Rails. Although of necessity our efforts will focus on this specific sample application,

the emphasis throughout the Rails Tutorial will be on general principles, so that you will

have a solid foundation no matter what kinds of web applications you want to build.

Box 1.1 Scaffolding: Quicker, Easier, More Seductive

From the beginning, Rails has benefited from a palpable sense of excitement,

starting with the famous 15-minute weblog video by Rails creator David Heinemeier

Hansson. That video and its successors are a great way to get a taste of Rails’ power,

1. URI stands for Uniform Resource Identifier, while the slightly less general URL stands for Uniform Resource
Locator. In practice, the URI is usually equivalent to ‘‘the thing you see in the address bar of your browser.’’

www.it-ebooks.info

http://www.it-ebooks.info/

1.1 Introduction 3

and I recommend watching them. But be warned: They accomplish their amazing

15-minute feat using a feature called scaffolding, which relies heavily on generated

code, magically created by the Rails generate command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffolding

approach—it’s quicker, easier, more seductive. But the complexity and sheer amount

of code in the scaffolding can be utterly overwhelming to a beginning Rails developer;

you may be able to use it, but you probably won’t understand it. Following the

scaffolding approach risks turning you into a virtuoso script generator with little (and

brittle) actual knowledge of Rails.

In the Rails Tutorial, we’ll take the (nearly) polar opposite approach: Although

Chapter 2 will develop a small demo app using scaffolding, the core of the Rails

Tutorial is the sample app, which we’ll start writing in Chapter 3. At each stage of

developing the sample application, we will write small, bite-sized pieces of code—sim-

ple enough to understand, yet novel enough to be challenging. The cumulative effect

will be a deeper, more flexible knowledge of Rails, giving you a good background

for writing nearly any type of web application.

1.1 Introduction

Since its debut in 2004, Ruby on Rails has rapidly become one of the most powerful

and popular frameworks for building dynamic web applications. Everyone from scrappy

startups to huge companies have used Rails: 37signals, GitHub, Shopify, Scribd, Twitter,

LivingSocial, Groupon, Hulu, the Yellow Pages—the list of sites using Rails goes on

and on. There are also many web development shops that specialize in Rails, such

as ENTP, thoughtbot, Pivotal Labs, and Hashrocket, plus innumerable independent

consultants, trainers, and contractors.

What makes Rails so great? First of all, Ruby on Rails is 100 percent open-source,

available under the permissive MIT License, and as a result it also costs nothing to

download or use. Rails also owes much of its success to its elegant and compact design;

by exploiting the malleability of the underlying Ruby language, Rails effectively creates

a domain-specific language for writing web applications. As a result, many common

web programming tasks—such as generating HTML, making data models, and routing

URIs—are easy with Rails, and the resulting application code is concise and readable.

Rails also adapts rapidly to new developments in web technology and framework

design. For example, Rails was one of the first frameworks to fully digest and implement

the REST architectural style for structuring web applications (which we’ll be learning

www.it-ebooks.info

http://www.it-ebooks.info/

4 Chapter 1: From Zero to Deploy

about throughout this tutorial). And when other frameworks develop successful new

techniques, Rails creator David Heinemeier Hansson and the Rails core team don’t

hesitate to incorporate their ideas. Perhaps the most dramatic example is the merger of

Rails and Merb, a rival Ruby web framework, so that Rails now benefits from Merb’s

modular design, stable API, and improved performance.

Finally, Rails benefits from an unusually enthusiastic and diverse community. The

results include hundreds of open-source contributors, well-attended conferences, a huge

number of plugins and gems (self-contained solutions to specific problems such as

pagination and image upload), a rich variety of informative blogs, and a cornucopia

of discussion forums and IRC channels. The large number of Rails programmers also

makes it easier to handle the inevitable application errors: The ‘‘Google the error

message’’ algorithm nearly always produces a relevant blog post or discussion-forum

thread.

1.1.1 Comments for Various Readers

The Rails Tutorial contains integrated tutorials not only for Rails, but also for the

underlying Ruby language, the RSpec testing framework, HTML, CSS, a small amount

of JavaScript, and even a little SQL. This means that, no matter where you currently

are in your knowledge of web development, by the time you finish this tutorial you

will be ready for more advanced Rails resources, as well as for the more systematic

treatments of the other subjects mentioned. It also means that there’s a lot of material

to cover; if you don’t already have experience programming computers, you might find

it overwhelming. The comments below contain some suggestions for approaching the

Rails Tutorial depending on your background.

All readers: One common question when learning Rails is whether to learn Ruby

first. The answer depends on your personal learning style and how much programming

experience you already have. If you prefer to learn everything systematically from the

ground up, or if you have never programmed before, then learning Ruby first might

work well for you, and in this case I recommend Beginning Ruby by Peter Cooper.

On the other hand, many beginning Rails developers are excited about making web

applications, and would rather not slog through a 500-page book on pure Ruby before

ever writing a single web page. In this case, I recommend following the short interactive

www.it-ebooks.info

http://www.it-ebooks.info/

1.1 Introduction 5

tutorial at TryRuby,2 and then optimally do the free tutorial at Rails for Zombies3 to

get a taste of what Rails can do.

Another common question is whether to use tests from the start. As noted in

the introduction, the Rails Tutorial uses test-driven development (also called test-first

development), which in my view is the best way to develop Rails applications, but it

does introduce a substantial amount of overhead and complexity. If you find yourself

getting bogged down by the tests, I suggest either skipping them on a first reading or

(even better) using them as a tool to verify your code’s correctness without worrying

about how they work. This latter strategy involves creating the necessary test files (called

specs) and filling them with the test code exactly as it appears in the book. You can then

run the test suite (as described in Chapter 5) to watch it fail, then write the application

code as described in the tutorial, and finally re-run the test suite to watch it pass.

Inexperienced programmers: The Rails Tutorial is not aimed principally at beginning

programmers, and web applications, even relatively simple ones, are by their nature

fairly complex. If you are completely new to web programming and find the Rails

Tutorial too difficult, I suggest learning the basics of HTML and CSS and then

giving the Rails Tutorial another go. (Unfortunately, I don’t have a personal recom-

mendation here, but Head First HTML looks promising, and one reader recommends

CSS: The Missing Manual by David Sawyer McFarland.) You might also consider read-

ing the first few chapters of Beginning Ruby by Peter Cooper, which starts with sample

applications much smaller than a full-blown web app. That said, a surprising number

of beginners have used this tutorial to learn web development, so I suggest giving it

a try, and I especially recommend the Rails Tutorial screencast series4 to give you an

‘‘over-the-shoulder’’ look at Rails software development.

Experienced programmers new to web development: Your previous experience means

you probably already understand ideas like classes, methods, data structures, and others,

which is a big advantage. Be warned that if your background is in C/C++ or Java, you

2. http://tryruby.org

3. http://railsforzombies.org

4. http://railstutorial.org/screencasts

www.it-ebooks.info

http://tryruby.org
http://railsforzombies.org
http://railstutorial.org/screencasts
http://www.it-ebooks.info/

6 Chapter 1: From Zero to Deploy

may find Ruby a bit of an odd duck, and it might take time to get used to it; just stick

with it and eventually you’ll be fine. (Ruby even lets you put semicolons at the ends of

lines if you miss them too much.) The Rails Tutorial covers all the web-specific ideas

you’ll need, so don’t worry if you don’t currently know a PUT from a POST.

Experienced web developers new to Rails: You have a great head start, especially if

you have used a dynamic language such as PHP or (even better) Python. The basics of

what we cover will likely be familiar, but test-driven development may be new to you,

as may be the structured REST style favored by Rails. Ruby has its own idiosyncrasies,

so those will likely be new, too.

Experienced Ruby programmers: The set of Ruby programmers who don’t know

Rails is a small one nowadays, but if you are a member of this elite group you can fly

through this book and then move on to The Rails 3 Way by Obie Fernandez.

Inexperienced Rails programmers: You’ve perhaps read some other tutorials and made

a few small Rails apps yourself. Based on reader feedback, I’m confident that you can

still get a lot out of this book. Among other things, the techniques here may be more

up-to-date than the ones you picked up when you originally learned Rails.

Experienced Rails programmers: This book is unnecessary for you, but many expe-

rienced Rails developers have expressed surprise at how much they learned from this

book, and you might enjoy seeing Rails from a different perspective.

After finishing the Ruby on Rails Tutorial, I recommend that experienced program-

mers read The Well-Grounded Rubyist by David A. Black, which is an excellent in-depth

discussion of Ruby from the ground up, or The Ruby Way by Hal Fulton, which is also

fairly advanced but takes a more topical approach. Then move on to The Rails 3 Way

to deepen your Rails expertise.

At the end of this process, no matter where you started, you should be ready for

the many more intermediate-to-advanced Rails resources out there. Here are some I

particularly recommend:

• RailsCasts by Ryan Bates: Excellent (mostly) free Rails screencasts

• PeepCode: Excellent commercial screencasts

www.it-ebooks.info

http://www.it-ebooks.info/

1.1 Introduction 7

• Code School: Interactive programming courses

• Rails Guides: Good topical and up-to-date Rails references

• RailsCasts by Ryan Bates: Did I already mention RailsCasts? Seriously: RailsCasts.

1.1.2 ‘‘Scaling’’ Rails

Before moving on with the rest of the introduction, I’d like to take a moment to

address the one issue that dogged the Rails framework the most in its early days: the

supposed inability of Rails to ‘‘scale’’—i.e., to handle large amounts of traffic. Part

of this issue relied on a misconception; you scale a site, not a framework, and Rails, as

awesome as it is, is only a framework. So the real question should have been, ‘‘Can a

site built with Rails scale?’’ In any case, the question has now been definitively answered

in the affirmative: Some of the most heavily trafficked sites in the world use Rails.

Actually doing the scaling is beyond the scope of just Rails, but rest assured that if your

application ever needs to handle the load of Hulu or the Yellow Pages, Rails won’t stop

you from taking over the world.

1.1.3 Conventions in This Book

The conventions in this book are mostly self-explanatory. In this section, I’ll mention

some that may not be.

Both the HTML and PDF editions of this book are full of links, both to internal

sections (such as Section 1.2) and to external sites (such as the main Ruby on Rails

download page).5

Many examples in this book use command-line commands. For simplicity, all

command line examples use a Unix-style command line prompt (a dollar sign), as

follows:

$ echo "hello, world"

hello, world

5. When reading the Rails Tutorial, you may find it convenient to follow an internal section link to look at
the reference and then immediately go back to where you were before. This is easy when reading the book
as a web page, since you can just use the Back button of your browser, but both Adobe Reader and OS X’s
Preview allow you to do this with the PDF as well. In Reader, you can right-click on the document and select
‘‘Previous View’’ to go back. In Preview, use the Go menu: Go > Back.

www.it-ebooks.info

http://www.it-ebooks.info/

8 Chapter 1: From Zero to Deploy

Windows users should understand that their systems will use the analogous angle

prompt >:

C:\Sites> echo "hello, world"

hello, world

On Unix systems, some commands should be executed with sudo, which stands

for ‘‘substitute user do.’’ By default, a command executed with sudo is run as an

administrative user, which has access to files and directories that normal users can’t

touch, such as in this example from Section 1.2.2:

$ sudo ruby setup.rb

Most Unix/Linux/OS X systems require sudo by default, unless you are using Ruby

Version Manager as suggested in Section 1.2.2; in this case, you would type this

instead:

$ ruby setup.rb

Rails comes with lots of commands that can be run at the command line. For

example, in Section 1.2.5 we’ll run a local development web server as follows:

$ rails server

As with the command-line prompt, the Rails Tutorial uses the Unix convention for

directory separators (i.e., a forward slash /). My Rails Tutorial sample application, for

instance, lives in

/Users/mhartl/rails projects/sample app

On Windows, the analogous directory would be

C:\Sites\sample app

The root directory for any given app is known as the Rails root, but this terminology

is confusing and many people mistakenly believe that the ‘‘Rails root’’ is the root

directory for Rails itself. For clarity, the Rails Tutorial will refer to the Rails root as

www.it-ebooks.info

http://www.it-ebooks.info/

1.2 Up and Running 9

the application root, and henceforth all directories will be relative to this directory. For

example, the config directory of my sample application is

/Users/mhartl/rails projects/sample app/config

The application root directory here is everything before config, that is,

/Users/mhartl/rails projects/sample app

For brevity, when referring to the file

/Users/mhartl/rails projects/sample app/config/routes.rb

I’ll omit the application root and simply write config/routes.rb.

The Rails Tutorial often shows output from various programs (shell commands,

version control status, Ruby programs, etc.). Because of the innumerable small differ-

ences between different computer systems, the output you see may not always agree

exactly with what is shown in the text, but this is not cause for concern.

Some commands may produce errors depending on your system; rather than

attempt the Sisyphean task of documenting all such errors in this tutorial, I will

delegate to the ‘‘Google the error message’’ algorithm, which among other things is

good practice for real-life software development. If you run into any problems while

following the tutorial, I suggest consulting the resources listed on the Rails Tutorial

help page.6

1.2 Up and Running

I think of Chapter 1 as the ‘‘weeding out phase’’ in law school—if you can get your

dev environment set up, the rest is easy to get through.

—Bob Cavezza, Rails Tutorial reader

It’s time now to get going with a Ruby on Rails development environment and

our first application. There is quite a bit of overhead here, especially if you don’t have

6. http://railstutorial.org/help

www.it-ebooks.info

http://railstutorial.org/help
http://www.it-ebooks.info/

10 Chapter 1: From Zero to Deploy

extensive programming experience, so don’t get discouraged if it takes a while to get

started. It’s not just you; every developer goes through it (often more than once), but

rest assured that the effort will be richly rewarded.

1.2.1 Development Environments

Considering various idiosyncratic customizations, there are probably as many devel-

opment environments as there are Rails programmers, but there are at least two

broad types: text editor/command line environments, and integrated development envi-

ronments (IDEs). Let’s consider the latter first.

IDEs

There is no shortage of Rails IDEs, including RadRails, RubyMine, and 3rd Rail.

I’ve heard especially good things about RubyMine, and one reader (David Loeffler)

has assembled notes on how to use RubyMine with this tutorial.7 If you’re comfortable

using an IDE, I suggest taking a look at the options mentioned to see what fits with the

way you work.

Text Editors and Command Lines

Instead of using an IDE, I prefer to use a text editor to edit text, and a command line to

issue commands (Figure 1.1). Which combination you use depends on your tastes and

your platform.

• Text editor: I recommend Sublime Text 2, an outstanding cross-platform text

editor that is in beta as of this writing but has already proven to be exceptionally

powerful. Sublime Text is heavily influenced by TextMate, and in fact is compatible

with most TextMate customizations, such as snippets and color schemes. (TextMate,

which is available only on OS X, is still a good choice if you use a Mac.) A second

excellent choice is Vim,8 versions of which are available for all major platforms.

Sublime Text is a commercial product, whereas Vim is free and open-source;

both are industrial-strength editors, but Sublime Text is much more accessible to

beginners.

7. https://github.com/perfectionist/sample project/wiki

8. The vi editor is one of the most ancient yet powerful weapons in the Unix arsenal, and Vim is ‘‘vi improved.’’

www.it-ebooks.info

https://github.com/perfectionist/sample_project/wiki
http://www.it-ebooks.info/

1.2 Up and Running 11

Figure 1.1 A text editor/command line development environment (TextMate/iTerm).

• Terminal: On OS X, I recommend either use iTerm or the native Terminal

app. On Linux, the default terminal is fine. On Windows, many users prefer to

develop Rails applications in a virtual machine running Linux, in which case your

command-line options reduce to the previous case. If developing within Windows

itself, I recommend using the command prompt that comes with Rails Installer

(Section 1.2.2).

If you decide to use Sublime Text, you might want to follow the setup instructions

for Rails Tutorial Sublime Text.9 Note: Such configuration settings are fiddly and

error-prone, so this step should only be attempted by advanced users.

Browsers

Although there are many web browsers to choose from, the vast majority of Rails

programmers use Firefox, Safari, or Chrome when developing. The screenshots in Rails

9. https://github.com/mhartl/rails tutorial sublime text

www.it-ebooks.info

https://github.com/mhartl/rails_tutorial_sublime_text
http://www.it-ebooks.info/

12 Chapter 1: From Zero to Deploy

Tutorial will generally be of a Firefox browser. If you use Firefox, I suggest using

the Firebug add-on, which lets you perform all sorts of magic, such as dynamically

inspecting (and even editing) the HTML structure and CSS rules on any page. For

those not using Firefox, both Safari and Chrome have a built-in ‘‘Inspect element’’

feature available by right-clicking on any part of the page.

A Note about Tools

In the process of getting your development environment up and running, you may

find that you spend a lot of time getting everything just right. The learning process for

editors and IDEs is particularly long; you can spend weeks on Sublime Text or Vim

tutorials alone. If you’re new to this game, I want to assure you that spending time

learning tools is normal. Everyone goes through it. Sometimes it is frustrating, and it’s

easy to get impatient when you have an awesome web app in your head and you just

want to learn Rails already, but have to spend a week learning some weird ancient Unix

editor just to get started. But a craftsman has to know his tools, and in the end the

reward is worth the effort.

1.2.2 Ruby, RubyGems, Rails, and Git

Practically all the software in the world is either broken or very difficult to use.

So users dread software. They’ve been trained that whenever they try to install

something, or even fill out a form online, it’s not going to work. I dread installing

stuff, and I have a Ph.D. in computer science.

—Paul Graham, Founders at Work

Now it’s time to install Ruby and Rails. I’ve done my best to cover as many bases

as possible, but systems vary, and many things can go wrong during these steps. Be

sure to Google the error message or consult the Rails Tutorial help page if you run into

trouble.

Unless otherwise noted, you should use the exact versions of all software used

in the tutorial, including Rails itself, if you want the same results. Sometimes

minor version differences will yield identical results, but you shouldn’t count on this,

especially with respect to Rails versions. The main exception is Ruby itself: 1.9.2

and 1.9.3 are virtually identical for the purposes of this tutorial, so feel free to use

either one.

www.it-ebooks.info

http://www.it-ebooks.info/

1.2 Up and Running 13

Rails Installer (Windows)

Installing Rails on Windows used to be a real pain, but thanks to the efforts of the good

people at Engine Yard—especially Dr. Nic Williams and Wayne E. Seguin—installing

Rails and related software on Windows is now easy. If you are using Windows, go

to Rails Installer and download the Rails Installer executable and view the excellent

installation video. Double-click the executable and follow the instructions to install

Git (so you can skip Section 1.2.2), Ruby (skip Section 1.2.2), RubyGems (skip

Section 1.2.2), and Rails itself (skip Section 1.2.2). Once the installation has finished,

you can skip right to the creation of the first application in Section 1.2.3.

Bear in mind that the Rails Installer might use a slightly different version of Rails

from the one installed in Section 1.2.2, which might cause incompatibilities. To fix this,

I am currently working with Nic and Wayne to create a list of Rails Installers ordered

by Rails version number.

Install Git

Much of the Rails ecosystem depends in one way or another on a version control system

called Git (covered in more detail in Section 1.3). Because its use is ubiquitous, you

should install Git even at this early stage; I suggest following the installation instructions

for your platform at the Installing Git section of Pro Git.

Install Ruby

The next step is to install Ruby. It’s possible that your system already has it; try

running

$ ruby -v

ruby 1.9.3

to see the version number. Rails 3 requires Ruby 1.8.7 or later and works best with

Ruby 1.9.x. This tutorial assumes that most readers are using Ruby 1.9.2 or 1.9.3, but

Ruby 1.8.7 should work as well (although there is one syntax difference, covered in

Chapter 4, and assorted minor differences in output).

As part of installing Ruby, if you are using OS X or Linux, I strongly recom-

mend using Ruby Version Manager (RVM), which allows you to install and manage

multiple versions of Ruby on the same machine. (The Pik project accomplishes a

similar feat on Windows.) This is particularly important if you want to run different

www.it-ebooks.info

http://www.it-ebooks.info/

14 Chapter 1: From Zero to Deploy

versions of Ruby or Rails on the same machine. If you run into any problems with

RVM, you can often find its creator, Wayne E. Seguin, on the RVM IRC channel

(#rvm on freenode.net).10 If you are running Linux, I particularly recommend the

installation tutorial for Linux Ubuntu and Linux Mint by Mircea Goia.

After installing RVM, you can install Ruby as follows:11

$ rvm get head && rvm reload

$ rvm install 1.9.3

<wait a while>

Here the first command updates and reloads RVM itself, which is a good practice since

RVM gets updated frequently. The second installs the 1.9.3 version of Ruby; depending

on your system, it might take a while to download and compile, so don’t worry if it

seems to be taking forever.

Some Linux users report having to include the path to a library called OpenSSL:

$ rvm install 1.9.3 --with-openssl-dir=$HOME/.rvm.usr

On some older OS X systems, you might have to include the path to the readline

library:

$ rvm install 1.9.3 --with-readline-dir=/opt/local

(Like I said, lots of things can go wrong. The only solution is web searches and

determination.)

After installing Ruby, you should configure your system for the other software

needed to run Rails applications. This typically involves installing gems, which are

self-contained packages of Ruby code. Since gems with different version numbers

sometimes conflict, it is often convenient to create separate gemsets, which are self-

contained bundles of gems. For the purposes of this tutorial, I suggest creating a gemset

called rails3tutorial2ndEd:

$ rvm use 1.9.3@rails3tutorial2ndEd --create --default

Using /Users/mhartl/.rvm/gems/ruby-1.9.3 with gemset rails3tutorial2ndEd

10. If you haven’t used IRC before, I suggest you start by searching the web for ‘‘irc client <your platform>.’’
Two good native clients for OS X are Colloquy and LimeChat. And of course there’s always the web interface
at http://webchat.freenode.net/?channels=rvm.

11. You might have to install the Subversion version control system to get this to work.

www.it-ebooks.info

http://webchat.freenode.net/?channels=rvm
http://www.it-ebooks.info/

1.2 Up and Running 15

This command creates (--create) the gemset rails3tutorial2ndEd associated with

Ruby 1.9.3 while arranging to start using it immediately (use) and setting it as the

default (--default) gemset, so that any time we open a new terminal window the

1.9.3@rails3tutorial2ndEd Ruby/gemset combination is automatically selected.

RVM supports a large variety of commands for manipulating gemsets; see the docu-

mentation at http://rvm.beginrescueend.com/gemsets. If you ever get stuck with RVM,

running commands like these should help you get your bearings:

$ rvm --help

$ rvm gemset --help

Install RubyGems

RubyGems is a package manager for Ruby projects, and there are many useful libraries

(including Rails) available as Ruby packages, or gems. Installing RubyGems should

be easy once you install Ruby. In fact, if you have installed RVM, you already have

RubyGems, since RVM includes it automatically:

$ which gem

/Users/mhartl/.rvm/rubies/ruby-1.9.3-p0/bin/gem

If you don’t already have it, you should download RubyGems, extract it, and then go

to the rubygems directory and run the setup program:

$ ruby setup.rb

(If you get a permissions error here, recall from Section 1.1.3 that you may have to use

sudo.)

If you already have RubyGems installed, you should make sure your system uses

the version used in this tutorial:

$ gem update --system 1.8.24

Freezing your system to this particular version will help prevent conflicts as RubyGems

changes in the future.

When installing gems, by default RubyGems generates two different kinds of

documentation (called ri and rdoc), but many Ruby and Rails developers find that

the time to build them isn’t worth the benefit. (Many programmers rely on online

documentation instead of the native ri and rdoc documents.) To prevent the automatic

www.it-ebooks.info

http://rvm.beginrescueend.com/gemsets
http://www.it-ebooks.info/

16 Chapter 1: From Zero to Deploy

generation of the documentation, I recommend making a gem configuration file called

.gemrc in your home directory as in Listing 1.1 with the line in Listing 1.2. (The

tilde ‘‘˜’’ means ‘‘home directory,’’ while the dot . in .gemrc makes the file hidden,

which is a common convention for configuration files.)

Listing 1.1 Creating a gem configuration file.

$ subl ˜/.gemrc

Here subl is the command-line command to launch Sublime Text on OS X, which

you can set up using the Sublime Text 2 documentation for the OS X command line.

If you’re on a different platform, or if you’re using a different editor, you should replace

this command as necessary (i.e., by double-clicking the application icon or by using an

alternate command such as mate, vim, gvim, or mvim). For brevity, throughout the rest

of this tutorial I’ll use subl as a shorthand for ‘‘open with your favorite text editor.’’

Listing 1.2 Suppressing the ri and rdoc documentation in .gemrc.

install: --no-rdoc --no-ri

update: --no-rdoc --no-ri

Install Rails

Once you’ve installed RubyGems, installing Rails should be easy. This tutorial stan-

dardizes on Rails 3.2, which we can install as follows:

$ gem install rails -v 3.2.3

To check your Rails installation, run the following command to print out the version

number:

$ rails -v

Rails 3.2.3

Note: If you installed Rails using the Rails Installer in Section 1.2.2, there might be

slight version differences. As of this writing, those differences are not relevant, but in

the future, as the current Rails version diverges from the one used in this tutorial, these

differences may become significant. I am currently working with Engine Yard to create

links to specific versions of the Rails Installer.

www.it-ebooks.info

http://www.it-ebooks.info/

1.2 Up and Running 17

If you’re running Linux, you might have to install a couple of other packages at

this point:

$ sudo apt-get install libxslt-dev libxml2-dev libsqlite3-dev # Linux only

1.2.3 The First Application

Virtually all Rails applications start the same way, with the rails command. This

handy program creates a skeleton Rails application in a directory of your choice. To get

started, make a directory for your Rails projects and then run the rails command to

make the first application (Listing 1.3):

Listing 1.3 Running rails to generate a new application.

$ mkdir rails projects

$ cd rails projects

$ rails new first app

create

create README.rdoc

create Rakefile

create config.ru

create .gitignore

create Gemfile

create app

create app/assets/images/rails.png

create app/assets/javascripts/application.js

create app/assets/stylesheets/application.css

create app/controllers/application controller.rb

create app/helpers/application helper.rb

create app/mailers

create app/models

create app/views/layouts/application.html.erb

create app/mailers/.gitkeep

create app/models/.gitkeep

create config

create config/routes.rb

create config/application.rb

create config/environment.rb

.

.

.

create vendor/plugins

create vendor/plugins/.gitkeep

run bundle install

www.it-ebooks.info

http://www.it-ebooks.info/

18 Chapter 1: From Zero to Deploy

Fetching source index for https://rubygems.org/

.

.

.

Your bundle is complete! Use 'bundle show [gemname]' to see where a bundled

gem is installed.

As seen at the end of Listing 1.3, running rails automatically runs the bundle

install command after the file creation is done. If that step doesn’t work right now,

don’t worry; follow the steps in Section 1.2.4 and you should be able to get it to work.

Notice how many files and directories the rails command creates. This standard

directory and file structure (Figure 1.2) is one of the many advantages of Rails; it

immediately gets you from zero to a functional (if minimal) application. Moreover,

since the structure is common to all Rails apps, you can immediately get your bearings

when looking at someone else’s code. A summary of the default Rails files appears in

Table 1.1; we’ll learn about most of these files and directories throughout the rest of this

book. In particular, starting in Section 5.2.1 we’ll discuss the app/assets directory,

Figure 1.2 The directory structure for a newly hatched Rails app.

www.it-ebooks.info

http://www.it-ebooks.info/

1.2 Up and Running 19

Table 1.1 A summary of the default Rails directory structure.

File/Directory Purpose

app/ Core application (app) code, including models, views, controllers, and

helpers

app/assets Applications assets such as cascading style sheets (CSS), JavaScript files, and

images

config/ Application configuration

db/ Database files

doc/ Documentation for the application

lib/ Library modules

lib/assets Library assets such as cascading style sheets (CSS), JavaScript files, and

images

log/ Application log files

public/ Data accessible to the public (e.g., web browsers), such as error pages

script/rails A script for generating code, opening console sessions, or starting a local

server

test/ Application tests (made obsolete by the spec/ directory in Section 3.1.2)

tmp/ Temporary files

vendor/ Third-party code such as plugins and gems

vendor/assets Third-party assets such as cascading style sheets (CSS), JavaScript files, and

images

README.rdoc A brief description of the application

Rakefile Utility tasks available via the rake command

Gemfile Gem requirements for this app

Gemfile.lock A list of gems used to ensure that all copies of the app use the same gem

versions

config.ru A configuration file for Rack middleware

.gitignore Patterns for files that should be ignored by Git

part of the asset pipeline (new as of Rails 3.1) that makes it easier than ever to organize

and deploy assets such as cascading style sheets and JavaScript files.

1.2.4 Bundler

After creating a new Rails application, the next step is to use Bundler to install and

include the gems needed by the app. As noted briefly in Section 1.2.3, Bundler is

run automatically (via bundle install) by the rails command, but in this section

www.it-ebooks.info

http://www.it-ebooks.info/

20 Chapter 1: From Zero to Deploy

we’ll make some changes to the default application gems and run Bundler again. This

involves opening the Gemfile with your favorite text editor:

$ cd first app/

$ subl Gemfile

The result should look something like Listing 1.4. The code in this file is Ruby, but

don’t worry at this point about the syntax; Chapter 4 will cover Ruby in more depth.

Listing 1.4 The default Gemfile in the first_app directory.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

Bundle edge Rails instead:

gem 'rails', :git => 'git://github.com/rails/rails.git'

gem 'sqlite3'

Gems used only for assets and not required

in production environments by default.

group :assets do

gem 'sass-rails', '˜> 3.2.3'

gem 'coffee-rails', '˜> 3.2.2'

gem 'uglifier', '>= 1.2.3'

end

gem 'jquery-rails'

To use ActiveModel has secure password

gem 'bcrypt-ruby', '˜> 3.0.0'

To use Jbuilder templates for JSON

gem 'jbuilder'

Use unicorn as the web server

gem 'unicorn'

Deploy with Capistrano

gem 'capistrano'

To use debugger

gem 'ruby-debug19', :require => 'ruby-debug'

www.it-ebooks.info

http://www.it-ebooks.info/

1.2 Up and Running 21

Many of these lines are commented out with the hash symbol #; they are there to show

you some commonly needed gems and to give examples of the Bundler syntax. For

now, we won’t need any gems other than the defaults: Rails itself, some gems related

to the asset pipeline (Section 5.2.1), the gem for the jQuery JavaScript library, and the

gem for the Ruby interface to the SQLite database.

Unless you specify a version number to the gem command, Bundler will automati-

cally install the latest version of the gem. Unfortunately, gem updates often cause minor

but potentially confusing breakage, so in this tutorial we’ll include explicit version

numbers known to work, as seen in Listing 1.5 (which also omits the commented-out

lines from Listing 1.4).

Listing 1.5 A Gemfile with an explicit version of each Ruby gem.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

group :development do

gem 'sqlite3', '1.3.5'

end

Gems used only for assets and not required

in production environments by default.

group :assets do

gem 'sass-rails', '3.2.4'

gem 'coffee-rails', '3.2.2'

gem 'uglifier', '1.2.3'

end

gem 'jquery-rails', '2.0.0'

Listing 1.5 changes the line for jQuery, the default JavaScript library used by Rails,

from

gem 'jquery-rails'

to

gem 'jquery-rails', '2.0.0'

www.it-ebooks.info

http://www.it-ebooks.info/

22 Chapter 1: From Zero to Deploy

We’ve also changed

gem 'sqlite3'

to

group :development do

gem 'sqlite3', '1.3.5'

end

which forces Bundler to install version 1.3.5 of the sqlite3 gem. Note that we’ve

also taken this opportunity to arrange for SQLite to be included only in a development

environment (Section 7.1.1), which prevents potential conflicts with the database used

by Heroku (Section 1.4).

Listing 1.5 also changes a few other lines, converting

group :assets do

gem 'sass-rails', '˜> 3.2.3'

gem 'coffee-rails', '˜> 3.2.2'

gem 'uglifier', '>= 1.2.3'

end

to

group :assets do

gem 'sass-rails', '3.2.4'

gem 'coffee-rails', '3.2.2'

gem 'uglifier', '1.2.3'

end

The syntax

gem 'uglifier', '>= 1.2.3'

installs the latest version of the uglifier gem (which handles file compression for the

asset pipeline) as long as it’s greater than version 1.2.3—even if it’s, say, version 7.2.

Meanwhile, the code

gem 'coffee-rails', '˜> 3.2.2'

installs the gem coffee-rails (also needed by the asset pipeline) as long as it’s lower

than version 3.3. In other words, the >= notation always performs upgrades, whereas

www.it-ebooks.info

http://www.it-ebooks.info/

1.2 Up and Running 23

the ˜> 3.2.2 notation only performs upgrades to minor point releases (e.g., from 3.1.1

to 3.1.2), but not to major point releases (e.g., from 3.1 to 3.2). Unfortunately,

experience shows that even minor point releases often break things, so for the Rails

Tutorial we’ll err on the side of caution by including exact version numbers for virtually

all gems. (The only exception is gems that are in release candidate or beta stage as of

this writing; for those gems, we’ll use ˜> so that the final versions will be loaded once

they’re done.)

Once you’ve assembled the proper Gemfile, install the gems using bundle

install:

$ bundle install

Fetching source index for https://rubygems.org/

.

.

.

(If you’re running OS X and you get an error about missing Ruby header files (e.g.,

ruby.h) at this point, you may need to install Xcode. These are developer tools that came

with your OS X installation disk, but to avoid the full installation I recommend the

much smaller Command Line Tools for Xcode.12) The bundle install command

might take a few moments, but when it’s done our application will be ready to

run. Note: This setup is fine for the first app, but it isn’t ideal. Chapter 3 covers a

more powerful (and slightly more advanced) method for installing Ruby gems with

Bundler.

1.2.5 rails server

Thanks to running rails new in Section 1.2.3 and bundle install in Section 1.2.4,

we already have an application we can run—but how? Happily, Rails comes with a

command-line program, or script, that runs a local web server, visible only from your

development machine:13

$ rails server

=> Booting WEBrick

=> Rails application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

12. https://developer.apple.com/downloads

13. Recall from Section 1.1.3 that Windows users might have to type ruby rails server instead.

www.it-ebooks.info

https://developer.apple.com/downloads
http://www.it-ebooks.info/

24 Chapter 1: From Zero to Deploy

Figure 1.3 The default Rails page.

(If your system complains about the lack of a JavaScript runtime, visit the execjs page at

GitHub for a list of possibilities. I particularly recommend installing Node.js.) This

tells us that the application is running on port number 300014 at the address 0.0.0.0.

This address tells the computer to listen on every available IP address configured on that

specific machine; in particular, we can view the application using the special address

127.0.0.1, which is also known as localhost. We can see the result of visiting

http://localhost:3000/ in Figure 1.3.

To see information about our first application, click on the link ‘‘About your

application’s environment.’’ The result is shown in Figure 1.4. (Figure 1.4 represents

the environment on my machine when I made the screenshot; your results may

differ.)

14. Normally, websites run on port 80, but this usually requires special privileges, so Rails picks a less restricted
higher-numbered port for the development server.

www.it-ebooks.info

http://www.it-ebooks.info/

1.2 Up and Running 25

Figure 1.4 The default page with the app environment.

Of course, we don’t need the default Rails page in the long run, but it’s nice to see

it working for now. We’ll remove the default page (and replace it with a custom home

page) in Section 5.3.2.

1.2.6 Model-view-controller (MVC)

Even at this early stage, it’s helpful to get a high-level overview of how Rails applications

work (Figure 1.5). You might have noticed that the standard Rails application structure

(Figure 1.2) has an application directory called app/ with three subdirectories: models,

views, and controllers. This is a hint that Rails follows the model-view-controller

(MVC) architectural pattern, which enforces a separation between ‘‘domain logic’’

(also called ‘‘business logic’’) from the input and presentation logic associated with a

graphical user interface (GUI). In the case of web applications, the ‘‘domain logic’’

www.it-ebooks.info

http://www.it-ebooks.info/

26 Chapter 1: From Zero to Deploy

Figure 1.5 A schematic representation of the model-view-controller (MVC) architecture.

typically consists of data models for things like users, articles, and products, and the

GUI is just a web page in a web browser.

When interacting with a Rails application, a browser sends a request, which is

received by a web server and passed on to a Rails controller, which is in charge of what

to do next. In some cases, the controller will immediately render a view, which is a

template that gets converted to HTML and sent back to the browser. More commonly

for dynamic sites, the controller interacts with a model, which is a Ruby object that

represents an element of the site (such as a user) and is in charge of communicating

with the database. After invoking the model, the controller then renders the view and

returns the complete web page to the browser as HTML.

If this discussion seems a bit abstract right now, worry not; we’ll refer back to this

section frequently. In addition, Section 2.2.2 has a more detailed discussion of MVC in

www.it-ebooks.info

http://www.it-ebooks.info/

1.3 Version Control with Git 27

the context of the demo app. Finally, the sample app will use all aspects of MVC; we’ll

cover controllers and views starting in Section 3.1.2, models starting in Section 6.1, and

we’ll see all three working together in Section 7.1.2.

1.3 Version Control with Git

Now that we have a fresh and working Rails application, we’ll take a moment for a

step that, while technically optional, would be viewed by many Rails developers as

practically essential, namely, placing our application source code under version control.

Version control systems allow us to track changes to our project’s code, collaborate

more easily, and roll back any inadvertent errors (such as accidentally deleting files).

Knowing how to use a version control system is a required skill for every software

developer.

There are many options for version control, but the Rails community has largely

standardized on Git, a distributed version control system originally developed by Linus

Torvalds to host the Linux kernel. Git is a large subject, and we’ll only be scratching

the surface in this book, but there are many good free resources online; I especially

recommend Pro Git by Scott Chacon (Apress, 2009). Putting your source code under

version control with Git is strongly recommended, not only because it’s nearly a

universal practice in the Rails world, but also because it will allow you to share your code

more easily (Section 1.3.4) and deploy your application right here in the first chapter

(Section 1.4).

1.3.1 Installation and Setup

The first step is to install Git if you haven’t yet followed the steps in Section 1.2.2. (As

noted in that section, this involves following the instructions in the Installing Git section

of Pro Git.)

First-time System Setup

After installing Git, you should perform a set of one-time setup steps. These are system

setups, meaning you only have to do them once per computer:

$ git config --global user.name "Your Name"

$ git config --global user.email your.email@example.com

www.it-ebooks.info

http://www.it-ebooks.info/

28 Chapter 1: From Zero to Deploy

I also like to use co in place of the more verbose checkout command, which we can

arrange as follows:

$ git config --global alias.co checkout

This tutorial will usually use the full checkout command, which works for systems

that don’t have co configured, but in real life I nearly always use git co.

As a final setup step, you can optionally set the editor Git will use for commit

messages. If you use a graphical editor such as Sublime Text, TextMate, gVim, or

MacVim, you need to use a flag to make sure that the editor stays attached to the shell

instead of detaching immediately:15

$ git config --global core.editor "subl -w"

Replace "subl -w" with "mate -w" for TextMate, "gvim -f" for gVim, or "mvim

-f" for MacVim.

First-time Repository Setup

Now we come to some steps that are necessary each time you create a new repository.

First, navigate to the root directory of the first app and initialize a new repository:

$ git init

Initialized empty Git repository in /Users/mhartl/rails projects/first app/.git/

The next step is to add the project files to the repository. There’s a minor

complication, though: By default Git tracks the changes of all the files, but there are

some files we don’t want to track. For example, Rails creates log files to record the

behavior of the application; these files change frequently, and we don’t want our version

control system to have to update them constantly. Git has a simple mechanism to ignore

such files: Simply include a file called .gitignore in the application root directory

with some rules telling Git which files to ignore.16

15. Normally this is a feature, since it lets you continue to use the command line after launching your editor,
but Git interprets the detachment as closing the file with an empty commit message, which prevents the
commit from going through. I only mention this point because it can be seriously confusing if you try to set
your editor to subl or gvim without the flag. If you find this note confusing, feel free to ignore it.

16. If you can’t see the .gitignore file in your directory, you may need to configure your directory viewer to
show hidden files.

www.it-ebooks.info

http://www.it-ebooks.info/

1.3 Version Control with Git 29

Looking again at Table 1.1, we see that the rails command creates a default

.gitignore file in the application root directory, as shown in Listing 1.6.

Listing 1.6 The default .gitignore created by the rails command.

See http://help.github.com/ignore-files/ for more about ignoring files.

#

If you find yourself ignoring temporary files generated by your text editor

or operating system, you probably want to add a global ignore instead:

git config --global core.excludesfile ˜/.gitignore global

Ignore bundler config

/.bundle

Ignore the default SQLite database.

/db/*.sqlite3

Ignore all logfiles and tempfiles.

/log/*.log

/tmp

Listing 1.6 causes Git to ignore files such as log files, Rails temporary (tmp) files, and

SQLite databases. (For example, to ignore log files, which live in the log/ directory, we

use log/*.log to ignore all files that end in .log.) Most of these ignored files change

frequently and automatically, so including them under version control is inconvenient;

moreover, when collaborating with others they can cause frustrating and irrelevant

conflicts.

The .gitignore file in Listing 1.6 is probably sufficient for this tutorial, but

depending on your system you may find Listing 1.7 more convenient. This augmented

.gitignore arranges to ignore Rails documentation files, Vim and Emacs swap files,

and (for OS X users) the weird .DS_Store directories created by the Mac Finder

application. If you want to use this broader set of ignored files, open up .gitignore

in your favorite text editor and fill it with the contents of Listing 1.7.

Listing 1.7 An augmented .gitignore file.

Ignore bundler config

/.bundle

Ignore the default SQLite database.

/db/*.sqlite3

www.it-ebooks.info

http://www.it-ebooks.info/

30 Chapter 1: From Zero to Deploy

Ignore all logfiles and tempfiles.

/log/*.log

/tmp

Ignore other unneeded files.

doc/

*.swp

*˜

.project

.DS Store

1.3.2 Adding and Committing

Finally, we’ll add the files in your new Rails project to Git and then commit the

results. You can add all the files (apart from those that match the ignore patterns in

.gitignore) as follows:

$ git add .

Here the dot ‘‘.’’ represents the current directory, and Git is smart enough to add the

files recursively, so it automatically includes all the subdirectories. This command adds

the project files to a staging area, which contains pending changes to your project; you

can see which files are in the staging area using the status command:17

$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

new file: README.rdoc

new file: Rakefile

.

.

.

(The results are long, so I’ve used vertical dots to indicate omitted output.)

17. If in the future any unwanted files start showing up when you type git status, just add them to your
.gitignore file from Listing 1.7.

www.it-ebooks.info

http://www.it-ebooks.info/

1.3 Version Control with Git 31

To tell Git you want to keep the changes, use the commit command:

$ git commit -m "Initial commit"

[master (root-commit) df0a62f] Initial commit

42 files changed, 8461 insertions(+), 0 deletions(-)

create mode 100644 README.rdoc

create mode 100644 Rakefile

.

.

.

The -m flag lets you add a message for the commit; if you omit -m, Git will open the

editor you set in Section 1.3.1 and have you enter the message there.

It is important to note that Git commits are local, recorded only on the machine

on which the commits occur. This is in contrast to the popular open-source version

control system called Subversion, in which a commit necessarily makes changes on a

remote repository. Git divides a Subversion-style commit into its two logical pieces: A

local recording of the changes (git commit) and a push of the changes up to a remote

repository (git push). We’ll see an example of the push step in Section 1.3.5.

By the way, you can see a list of your commit messages using the log command:

$ git log

commit df0a62f3f091e53ffa799309b3e32c27b0b38eb4

Author: Michael Hartl <michael@michaelhartl.com>

Date: Thu Oct 15 11:36:21 2009 -0700

Initial commit

To exit git log, you may have to type q to quit.

1.3.3 What Good Does Git Do You?

It’s probably not entirely clear at this point why putting your source under version

control does you any good, so let me give just one example. (We’ll see many others

in the chapters ahead.) Suppose you’ve made some accidental changes, such as (D’oh!)

deleting the critical app/controllers/ directory:

$ ls app/controllers/

application controller.rb

$ rm -rf app/controllers/

$ ls app/controllers/

ls: app/controllers/: No such file or directory

www.it-ebooks.info

http://www.it-ebooks.info/

32 Chapter 1: From Zero to Deploy

Here we’re using the Unix ls command to list the contents of the app/controllers/

directory and the rm command to remove it. The -rf flag means ‘‘recursive force’’,

which recursively removes all files, directories, subdirectories, and so on, without asking

for explicit confirmation of each deletion.

Let’s check the status to see what’s up:

$ git status

On branch master

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

deleted: app/controllers/application controller.rb

#

no changes added to commit (use "git add" and/or "git commit -a")

We see here that a file has been deleted, but the changes are only on the ‘‘working tree’’;

they haven’t been committed yet. This means we can still undo the changes easily by

having Git check out the previous commit with the checkout command (and a -f flag

to force overwriting the current changes):

$ git checkout -f

$ git status

On branch master

nothing to commit (working directory clean)

$ ls app/controllers/

application controller.rb

The missing directory and file are back. That’s a relief!

1.3.4 GitHub

Now that you’ve put your project under version control with Git, it’s time to push

your code up to GitHub, a social code site optimized for hosting and sharing Git

repositories. Putting a copy of your Git repository at GitHub serves two purposes: It’s

a full backup of your code (including the full history of commits), and it makes any

future collaboration much easier. This step is optional, but being a GitHub member

will open the door to participating in a wide variety of open-source projects.

www.it-ebooks.info

http://www.it-ebooks.info/

1.3 Version Control with Git 33

Figure 1.6 Creating the first app repository at GitHub.

GitHub has a variety of paid plans, but for open-source code their services are

free, so sign up for a free GitHub account if you don’t have one already. (You might

have to follow the GitHub tutorial on creating SSH keys first.) After signing up, click

on the link to create a repository and fill in the information as in Figure 1.6. (Take

care not to initialize the repository with a README file, as rails new creates one

of those automatically.) After submitting the form, push up your first application

as follows:

$ git remote add origin git@github.com:<username>/first app.git

$ git push -u origin master

These commands tell Git that you want to add GitHub as the origin for your main

(master) branch and then push your repository up to GitHub. (Don’t worry about what

the -u flag does; if you’re curious, do a web search for ‘‘git set upstream’’.) Of course,

www.it-ebooks.info

http://www.it-ebooks.info/

34 Chapter 1: From Zero to Deploy

Figure 1.7 A GitHub repository page.

you should replace <username> with your actual username. For example, the command

I ran for the railstutorial user was

$ git remote add origin git@github.com:railstutorial/first app.git

The result is a page at GitHub for the first application repository, with file browsing,

full commit history, and lots of other goodies (Figure 1.7).

1.3.5 Branch, Edit, Commit, Merge

If you’ve followed the steps in Section 1.3.4, you might notice that GitHub auto-

matically shows the contents of the README file on the main repository page. In our

case, since the project is a Rails application generated using the rails command, the

README file is the one that comes with Rails (Figure 1.8). Because of the .rdoc exten-

sion on the file, GitHub ensures that it is formatted nicely, but the contents aren’t

www.it-ebooks.info

http://www.it-ebooks.info/

1.3 Version Control with Git 35

Figure 1.8 The initial (rather useless) README file for our project at GitHub.

helpful at all, so in this section we’ll make our first edit by changing the README to

describe our project rather than the Rails framework itself. In the process, we’ll see a

first example of the branch, edit, commit, merge workflow that I recommend using

with Git.

Branch

Git is incredibly good at making branches, which are effectively copies of a repository

where we can make (possibly experimental) changes without modifying the parent files.

In most cases, the parent repository is the master branch, and we can create a new topic

branch by using checkout with the -b flag:

$ git checkout -b modify-README

Switched to a new branch 'modify-README'

$ git branch

master

* modify-README

www.it-ebooks.info

http://www.it-ebooks.info/

36 Chapter 1: From Zero to Deploy

Here the second command, git branch, just lists all the local branches, and the

asterisk * identifies which branch we’re currently on. Note that git checkout

-b modify-README both creates a new branch and switches to it, as indicated by

the asterisk in front of the modify-README branch. (If you set up the co alias in

Section 1.3, you can use git co -b modify-README instead.)

The full value of branching only becomes clear when working on a project with

multiple developers,18 but branches are helpful even for a single-developer tutorial such

as this one. In particular, the master branch is insulated from any changes we make

to the topic branch, so even if we really screw things up, we can always abandon the

changes by checking out the master branch and deleting the topic branch. We’ll see

how to do this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother with a new

branch, but it’s never too early to start practicing good habits.

Edit

After creating the topic branch, we’ll edit it to make it a little more descriptive. I prefer

the Markdown markup language to the default RDoc for this purpose, and if you use

the file extension .md then GitHub will automatically format it nicely for you. So, first

we’ll use Git’s version of the Unix mv (‘‘move’’) command to change the name, and

then fill it in with the contents of Listing 1.8:

$ git mv README.rdoc README.md

$ subl README.md

Listing 1.8 The new README file, README.md.

Ruby on Rails Tutorial: first application

This is the first application for

[*Ruby on Rails Tutorial: Learn Rails by Example*](http://railstutorial.org/)

by [Michael Hartl](http://michaelhartl.com/).

Commit

With the changes made, we can take a look at the status of our branch:

18. See the chapter Git Branching in Pro Git for details.

www.it-ebooks.info

http://www.it-ebooks.info/

1.3 Version Control with Git 37

$ git status

On branch modify-README

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: README.rdoc -> README.md

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: README.md

#

At this point, we could use git add . as in Section 1.3.2, but Git provides the -a flag

as a shortcut for the (very common) case of committing all modifications to existing

files (or files created using git mv, which don’t count as new files to Git):

$ git commit -a -m "Improve the README file"

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README.rdoc

create mode 100644 README.md

Be careful about using the -a flag improperly; if you have added any new files to the

project since the last commit, you still have to tell Git about them using git add first.

Note that we write the commit message in the present tense. Git models commits as

a series of patches, and in this context it makes sense to describe what each commit does,

rather than what it did. Moreover, this usage matches up with the commit messages

generated by Git commands themselves. See the GitHub post Shiny new commit styles

for more information.

Merge

Now that we’ve finished making our changes, we’re ready to merge the results back into

our master branch:

$ git checkout master

Switched to branch 'master'

$ git merge modify-README

Updating 34f06b7..2c92bef

Fast forward

README.rdoc | 243 --

www.it-ebooks.info

http://www.it-ebooks.info/

38 Chapter 1: From Zero to Deploy

README.md | 5 +

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README.rdoc

create mode 100644 README.md

Note that the Git output frequently includes things like 34f06b7, which are related to

Git’s internal representation of repositories. Your exact results will differ in these details,

but otherwise should essentially match the output shown above.

After you’ve merged in the changes, you can tidy up your branches by deleting the

topic branch using git branch -d if you’re done with it:

$ git branch -d modify-README

Deleted branch modify-README (was 2c92bef).

This step is optional, and in fact it’s quite common to leave the topic branch intact. This

way you can switch back and forth between the topic and master branches, merging in

changes every time you reach a natural stopping point.

As mentioned above, it’s also possible to abandon your topic branch changes, in

this case with git branch -D:

For illustration only; don't do this unless you mess up a branch

$ git checkout -b topic-branch

$ <really screw up the branch>

$ git add .

$ git commit -a -m "Major screw up"

$ git checkout master

$ git branch -D topic-branch

Unlike the -d flag, the -D flag will delete the branch even though we haven’t merged in

the changes.

Push

Now that we’ve updated the README, we can push the changes up to GitHub to see the

result. Since we have already done one push (Section 1.3.4), on most systems we can

omit origin master and simply run git push:

$ git push

As promised, GitHub nicely formats the new file using Markdown (Figure 1.9).

www.it-ebooks.info

http://www.it-ebooks.info/

1.4 Deploying 39

Figure 1.9 The improved README file formatted with Markdown.

1.4 Deploying

Even at this early stage, we’re already going to deploy our (still-empty) Rails application

to production. This step is optional, but deploying early and often allows us to catch

any deployment problems early in our development cycle. The alternative—deploying

only after laborious effort sealed away in a development environment—often leads to

terrible integration headaches when launch time comes.19

Deploying Rails applications used to be a pain, but the Rails deployment ecosystem

has matured rapidly in the past few years, and now there are several great options.

These include shared hosts or virtual private servers running Phusion Passenger (a

module for the Apache and Nginx20 web servers), full-service deployment companies

such as Engine Yard and Rails Machine, and cloud deployment services such as

Engine Yard Cloud and Heroku.

My favorite Rails deployment option is Heroku, which is a hosted platform built

specifically for deploying Rails and other Ruby web applications.21 Heroku makes

deploying Rails applications ridiculously easy—as long as your source code is under

version control with Git. (This is yet another reason to follow the Git setup steps in

Section 1.3 if you haven’t already.) The rest of this section is dedicated to deploying

our first application to Heroku.

1.4.1 Heroku Setup

After signing up for a Heroku account, install the Heroku gem:

$ gem install heroku

19. Though it shouldn’t matter for the example applications in the Rails Tutorial, if you’re worried about
accidentally making your app public too soon there are several options; see Section 1.4.4 for one.

20. Pronounced ‘‘Engine X.’’

21. Heroku works with any Ruby web platform that uses Rack middleware, which provides a standard interface
between web frameworks and web servers. Adoption of the Rack interface has been extraordinarily strong in
the Ruby community, including frameworks as varied as Sinatra, Ramaze, Camping, and Rails, which means
that Heroku basically supports any Ruby web app.

www.it-ebooks.info

http://www.it-ebooks.info/

40 Chapter 1: From Zero to Deploy

As with GitHub (Section 1.3.4), when using Heroku you will need to create SSH keys

if you haven’t already, and then tell Heroku your public key so that you can use Git to

push the sample application repository up to their servers:

$ heroku keys:add

Finally, use the heroku command to create a place on the Heroku servers for the sample

app to live (Listing 1.9).

Listing 1.9 Creating a new application at Heroku.

$ heroku create --stack cedar

Created http://stormy-cloud-5881.herokuapp.com/ |

git@heroku.com:stormy-cloud-5881.herokuapp.com

Git remote heroku added

(The --stack cedar argument arranges to use the latest and greatest version of

Heroku, called the Celadon Cedar Stack.) Yes, that’s it. The heroku command creates

a new subdomain just for our application, available for immediate viewing. There’s

nothing there yet, though, so let’s get busy deploying.

1.4.2 Heroku Deployment, Step One

To deploy to Heroku, the first step is to use Git to push the application to Heroku:

$ git push heroku master

1.4.3 Heroku Deployment, Step Two

There is no step two! We’re already done (Figure 1.10). To see your newly deployed

application, you can visit the address that you saw when you ran heroku create (i.e.,

Listing 1.9, but with the address for your app, not the address for mine). You can also

use an argument to the heroku command that automatically opens your browser with

the right address:

$ heroku open

Because of the details of their setup, the ‘‘About your application’s environment’’ link

doesn’t work on Heroku. Don’t worry; this is normal. The error will go away (in

www.it-ebooks.info

http://www.it-ebooks.info/

1.4 Deploying 41

Figure 1.10 The first Rails Tutorial application running on Heroku.

the context of the full sample application) when we remove the default Rails page in

Section 5.3.2.

Once you’ve deployed successfully, Heroku provides a beautiful interface for

administering and configuring your application (Figure 1.11).

1.4.4 Heroku Commands

There are many Heroku commands, and we’ll barely scratch the surface in this

book. Let’s take a minute to show just one of them by renaming the application as

follows:

$ heroku rename railstutorial

Don’t use this name yourself; it’s already taken by me! In fact, you probably shouldn’t

bother with this step right now; using the default address supplied by Heroku is fine.

www.it-ebooks.info

http://www.it-ebooks.info/

42 Chapter 1: From Zero to Deploy

Figure 1.11 The beautiful interface at Heroku.

But if you do want to rename your application, you can arrange for it to be reasonably

secure by using a random or obscure subdomain, such as the following:

hwpcbmze.heroku.com

seyjhflo.heroku.com

jhyicevg.heroku.com

With a random subdomain like this, someone could visit your site only if you gave him

or her the address. (By the way, as a preview of Ruby’s compact awesomeness, here’s

the code I used to generate the random subdomains:

('a'..'z').to a.shuffle[0..7].join

Pretty sweet.)

In addition to supporting subdomains, Heroku also supports custom domains. (In

fact, the Ruby on Rails Tutorial site lives at Heroku; if you’re reading this book online,

you’re looking at a Heroku-hosted site right now!) See the Heroku documentation for

more information about custom domains and other Heroku topics.

www.it-ebooks.info

http://www.it-ebooks.info/

1.5 Conclusion 43

1.5 Conclusion

We’ve come a long way in this chapter: installation, development environment setup,

version control, and deployment. If you want to share your progress at this point, feel

free to send a tweet or Facebook status update with something like this:

I’m learning Ruby on Rails with @railstutorial! http://railstutorial.org

All that’s left is to actually start learning Rails! Let’s get to it.

www.it-ebooks.info

http://railstutorial.org
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

A Demo App

In this chapter, we’ll develop a simple demonstration application to show off some

of the power of Rails. The purpose is to get a high-level overview of Ruby on Rails

programming (and web development in general) by rapidly generating an application

using scaffold generators. As discussed in Box 1.1, the rest of the book will take the

opposite approach, developing a full application incrementally and explaining each new

concept as it arises, but for a quick overview (and some instant gratification) there is

no substitute for scaffolding. The resulting demo app will allow us to interact with it

through its URIs, giving us insight into the structure of a Rails application, including a

first example of the REST architecture favored by Rails.

As with the forthcoming sample application, the demo app will consist of users

and their associated microposts (thus constituting a minimalist Twitter-style app). The

functionality will be utterly underdeveloped, and many of the steps will seem like

magic, but worry not: The full sample app will develop a similar application from the

ground up starting in Chapter 3, and I will provide plentiful forward-references to later

material. In the meantime, have patience and a little faith—the whole point of this

tutorial is to take you beyond this superficial, scaffold-driven approach to achieve a

deeper understanding of Rails.

2.1 Planning the Application

In this section, we’ll outline our plans for the demo application. As in Section 1.2.3,

we’ll start by generating the application skeleton using the rails command:

$ cd ˜/rails projects

$ rails new demo app

$ cd demo app

45

www.it-ebooks.info

http://www.it-ebooks.info/

46 Chapter 2: A Demo App

Next, we’ll use a text editor to update the Gemfile needed by Bundler with the

contents of Listing 2.1.

Listing 2.1 A Gemfile for the demo app.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

group :development do

gem 'sqlite3', '1.3.5'

end

Gems used only for assets and not required

in production environments by default.

group :assets do

gem 'sass-rails', '3.2.4'

gem 'coffee-rails', '3.2.2'

gem 'uglifier', '1.2.3'

end

gem 'jquery-rails', '2.0.0'

group :production do

gem 'pg', '0.12.2'

end

Note that Listing 2.1 is identical to Listing 1.5 except for the addition of a gem needed

in production at Heroku:

group :production do

gem 'pg', '0.12.2'

end

The pg gem is needed to access PostgreSQL (‘‘post-gres-cue-ell’’), the database used by

Heroku.

We then install and include the gems using the bundle install command:

$ bundle install --without production

www.it-ebooks.info

http://www.it-ebooks.info/

2.1 Planning the Application 47

The --without production option prevents the installation of the production gems,

which in this case is just the PostgreSQL gem pg. (If Bundler complains about

no such file to load -- readline (LoadError)

try adding gem ’rb-readline’ to your Gemfile.)

Finally, we’ll put the demo app under version control. Recall that the rails

command generates a default .gitignore file, but depending on your system you may

find the augmented file from Listing 1.7 to be more convenient. Then initialize a Git

repository and make the first commit:

$ git init

$ git add .

$ git commit -m "Initial commit"

You can also optionally create a new repository (Figure 2.1) and push it up to

GitHub:

$ git remote add origin git@github.com:<username>/demo app.git

$ git push -u origin master

(As with the first app, take care not to initialize the GitHub repository with a README

file.)

Now we’re ready to start making the app itself. The typical first step when making

a web application is to create a data model, which is a representation of the structures

needed by our application. In our case, the demo app will be a microblog, with only

users and short (micro)posts. Thus, we’ll begin with a model for users of the app

(Section 2.1.1), then we’ll add a model for microposts (Section 2.1.2).

2.1.1 Modeling Demo Users

There are as many choices for a user data model as there are different registration forms

on the web; we’ll go with a distinctly minimalist approach. Users of our demo app will

have a unique integer identifier called id, a publicly viewable name (of type string),

and an email address (also a string) that will double as a username. A summary of

the data model for users appears in Figure 2.2.

www.it-ebooks.info

http://www.it-ebooks.info/

48 Chapter 2: A Demo App

Figure 2.1 Creating a demo app repository at GitHub.

As we’ll see starting in Section 6.1.1, the label users in Figure 2.2 corresponds to

a table in a database, and the id, name, and email attributes are columns in that table.

2.1.2 Modeling Demo Microposts

The core of the micropost data model is even simpler than the one for users: a micropost

has only an id and a content field for the micropost’s text (of type string).1 There’s an

Figure 2.2 The data model for users.

1. When modeling longer posts, such as those for a normal (non-micro) blog, you should use the text type in
place of string.

www.it-ebooks.info

http://www.it-ebooks.info/

2.2 The Users Resource 49

Figure 2.3 The data model for microposts.

additional complication, though: We want to associate each micropost with a particular

user; we’ll accomplish this by recording the user_id of the owner of the post. The

results are shown in Figure 2.3.

We’ll see in Section 2.3.3 (and more fully in Chapter 10) how this user_id

attribute allows us to succinctly express the notion that a user potentially has many

associated microposts.

2.2 The Users Resource

In this section, we’ll implement the users data model in Section 2.1.1, along with a

web interface to that model. The combination will constitute a Users resource, which

will allow us to think of users as objects that can be created, read, updated, and deleted

through the web via the HTTP protocol. As promised in the introduction, our Users

resource will be created by a scaffold generator program, which comes standard with

each Rails project. I urge you not to look too closely at the generated code; at this stage,

it will only serve to confuse you.

Rails scaffolding is generated by passing the scaffold command to the rails

generate script. The argument of the scaffold command is the singular version of

the resource name (in this case, User), together with optional parameters for the data

model’s attributes:2

$ rails generate scaffold User name:string email:string

invoke active record

create db/migrate/20111123225336 create users.rb

create app/models/user.rb

invoke test unit

create test/unit/user test.rb

2. The name of the scaffold follows the convention of models, which are singular, rather than resources and
controllers, which are plural. Thus, we have User instead Users.

www.it-ebooks.info

http://www.it-ebooks.info/

50 Chapter 2: A Demo App

create test/fixtures/users.yml

route resources :users

invoke scaffold controller

create app/controllers/users controller.rb

invoke erb

create app/views/users

create app/views/users/index.html.erb

create app/views/users/edit.html.erb

create app/views/users/show.html.erb

create app/views/users/new.html.erb

create app/views/users/ form.html.erb

invoke test unit

create test/functional/users controller test.rb

invoke helper

create app/helpers/users helper.rb

invoke test unit

create test/unit/helpers/users helper test.rb

invoke assets

invoke coffee

create app/assets/javascripts/users.js.coffee

invoke scss

create app/assets/stylesheets/users.css.scss

invoke scss

create app/assets/stylesheets/scaffolds.css.scss

By including name:string and email:string, we have arranged for the User model

to have the form shown in Figure 2.2. (Note that there is no need to include a

parameter for id; it is created automatically by Rails for use as the primary key in the

database.)

To proceed with the demo application, we first need to migrate the database using

Rake (Box 2.1):

$ bundle exec rake db:migrate

== CreateUsers: migrating ==

-- create table(:users)

-> 0.0017s

== CreateUsers: migrated (0.0018s) ===

This simply updates the database with our new users data model. (We’ll learn more

about database migrations starting in Section 6.1.1.) Note that, in order to ensure that

the command uses the version of Rake corresponding to our Gemfile, we need to run

rake using bundle exec.

www.it-ebooks.info

http://www.it-ebooks.info/

2.2 The Users Resource 51

With that, we can run the local web server using rails s, which is a shortcut for

rails server:

$ rails s

Now the demo application should be ready to go at http://localhost:3000/.

Box 2.1 Rake

In the Unix tradition, the make utility has played an important role in building

executable programs from source code; many a computer hacker has committed to

muscle memory the line

$./configure && make && sudo make install

commonly used to compile code on Unix systems (including Linux and Mac OS X).

Rake is Ruby make, a make-like language written in Ruby. Rails uses Rake

extensively, especially for the innumerable little administrative tasks necessary when

developing database-backed web applications. The rake db:migrate command

is probably the most common, but there are many others; you can see a list of

database tasks using -T db:

$ bundle exec rake -T db

To see all the Rake tasks available, run

$ bundle exec rake -T

The list is likely to be overwhelming, but don’t worry, you don’t have to know all (or

even most) of these commands. By the end of the Rails Tutorial, you’ll know all the

most important ones.

2.2.1 A User Tour

Visiting the root url http://localhost:3000 shows the same default Rails page shown

in Figure 1.3, but in generating the Users resource scaffolding we have also created

a large number of pages for manipulating users. For example, the page for listing all

users is at /users, and the page for making a new user is at /users/new. The rest of this

www.it-ebooks.info

http://www.it-ebooks.info/

52 Chapter 2: A Demo App

Table 2.1 The correspondence between pages and URIs for the Users resource.

URI Action Purpose

/users index page to list all users

/users/1 show page to show user with id 1

/users/new new page to make a new user

/users/1/edit edit page to edit user with id 1

section is dedicated to taking a whirlwind tour through these user pages. As we proceed,

it may help to refer to Table 2.1, which shows the correspondence between pages

and URIs.

We start with the page to show all the users in our application, called index; as

you might expect, initially there are no users at all (Figure 2.4).

To make a new user, we visit the new page, as shown in Figure 2.5. (Since the

http://localhost:3000 part of the address is implicit whenever we are developing locally,

I’ll usually omit it from now on.) In Chapter 7, this will become the user signup page.

Figure 2.4 The initial index page for the Users resource (/users).

www.it-ebooks.info

http://www.it-ebooks.info/

2.2 The Users Resource 53

Figure 2.5 The new user page (/users/new).

We can create a user by entering name and email values in the text fields and then

clicking the Create User button. The result is the user show page, as seen in Figure 2.6.

(The green welcome message is accomplished using the flash, which we’ll learn about

in Section 7.4.2.) Note that the URI is /users/1; as you might suspect, the number 1

is simply the user’s id attribute from Figure 2.2. In Section 7.1, this page will become

the user’s profile.

To change a user’s information, we visit the edit page (Figure 2.7). By modifying

the user information and clicking the Update User button, we arrange to change the

information for the user in the demo application (Figure 2.8). (As we’ll see in detail

starting in Chapter 6, this user data is stored in a database back-end.) We’ll add user

edit/update functionality to the sample application in Section 9.1.

Now we’ll create a second user by revisiting the new page and submitting a second

set of user information; the resulting user index is shown in Figure 2.9. Section 7.1

will develop the user index into a more polished page for showing all users.

www.it-ebooks.info

http://www.it-ebooks.info/

54 Chapter 2: A Demo App

Figure 2.6 The page to show a user (/users/1).

Figure 2.7 The user edit page (/users/1/edit).

www.it-ebooks.info

http://www.it-ebooks.info/

2.2 The Users Resource 55

Figure 2.8 A user with updated information.

Figure 2.9 The user index page (/users) with a second user.

www.it-ebooks.info

http://www.it-ebooks.info/

56 Chapter 2: A Demo App

Figure 2.10 Destroying a user.

Having shown how to create, show, and edit users, we come finally to destroying

them (Figure 2.10). You should verify that clicking on the link in Figure 2.10 destroys

the second user, yielding an index page with only one user. (If it doesn’t work, be sure

that JavaScript is enabled in your browser; Rails uses JavaScript to issue the request

needed to destroy a user.) Section 9.4 adds user deletion to the sample app, taking care

to restrict its use to a special class of administrative users.

2.2.2 MVC in Action

Now that we’ve completed a quick overview of the Users resource, let’s examine one

particular part of it in the context of the Model-View-Controller (MVC) pattern

introduced in Section 1.2.6. Our strategy will be to describe the results of a typical

browser hit—a visit to the user index page at /users—in terms of MVC (Figure 2.11).

1. The browser issues a request for the /users URI.

2. Rails routes /users to the index action in the Users controller.

www.it-ebooks.info

http://www.it-ebooks.info/

2.2 The Users Resource 57

Figure 2.11 A detailed diagram of MVC in Rails.

3. The index action asks the User model to retrieve all users (User.all).

4. The User model pulls all the users from the database.

5. The User model returns the list of users to the controller.

6. The controller captures the users in the @users variable, which is passed to the

index view.

www.it-ebooks.info

http://www.it-ebooks.info/

58 Chapter 2: A Demo App

7. The view uses embedded Ruby to render the page as HTML.

8. The controller passes the HTML back to the browser.3

We start with a request issued from the browser—that is, the result of typing a URI

in the address bar or clicking on a link (Step 1 in Figure 2.11). This request hits the

Rails router (Step 2), which dispatches to the proper controller action based on the URI

(and, as we’ll see in Box 3.2, the type of request). The code to create the mapping of

user URIs to controller actions for the Users resource appears in Listing 2.2; this code

effectively sets up the table of URI/action pairs seen in Table 2.1. (The strange notation

:users is a symbol, which we’ll learn about in Section 4.3.3.)

Listing 2.2 The Rails routes, with a rule for the Users resource.

config/routes.rb

DemoApp::Application.routes.draw do

resources :users

.

.

.

end

The pages from the tour in Section 2.2.1 correspond to actions in the Users controller,

which is a collection of related actions; the controller generated by the scaffolding is

shown schematically in Listing 2.3. Note the notation class UsersController

< ApplicationController; this is an example of a Ruby class with inheritance. (We’ll

discuss inheritance briefly in Section 2.3.4 and cover both subjects in more detail in

Section 4.4.)

Listing 2.3 The Users controller in schematic form.

app/controllers/users_controller.rb

class UsersController < ApplicationController

def index

.

.

.

end

3. Some references indicate that the view returns the HTML directly to the browser (via a web server such as
Apache or Nginx). Regardless of the implementation details, I prefer to think of the controller as a central hub
through which all the application’s information flows.

www.it-ebooks.info

http://www.it-ebooks.info/

2.2 The Users Resource 59

def show

.

.

.

end

def new

.

.

.

end

def create

.

.

.

end

def edit

.

.

.

end

def update

.

.

.

end

def destroy

.

.

.

end

end

You may notice that there are more actions than there are pages; the index, show,

new, and edit actions all correspond to pages from Section 2.2.1, but there are

additional create, update, and destroy actions as well. These actions don’t typically

render pages (although they sometimes do); instead, their main purpose is to modify

information about users in the database. This full suite of controller actions, summarized

in Table 2.2, represents the implementation of the REST architecture in Rails (Box 2.2),

which is based on the ideas of representational state transfer identified and named by

www.it-ebooks.info

http://www.it-ebooks.info/

60 Chapter 2: A Demo App

Table 2.2 RESTful routes provided by the Users resource in Listing 2.2.

HTTP request URI Action Purpose

GET /users index page to list all users

GET /users/1 show page to show user with id 1

GET /users/new new page to make a new user

POST /users create create a new user

GET /users/1/edit edit page to edit user with id 1

PUT /users/1 update update user with id 1

DELETE /users/1 destroy delete user with id 1

computer scientist Roy Fielding.4 Note from Table 2.2 that there is some overlap in the

URIs; for example, both the user show action and the update action correspond to the

URI /users/1. The difference between them is the HTTP request method they respond

to. We’ll learn more about HTTP request methods starting in Section 3.2.1.

Box 2.2 REpresentational State Transfer (REST)

If you read much about Ruby on Rails web development, you’ll see a lot of ref-

erences to ‘‘REST,’’ which is an acronym for REpresentational State Transfer. REST

is an architectural style for developing distributed, networked systems and soft-

ware applications such as the World Wide Web and web applications. Although

REST theory is rather abstract, in the context of Rails applications REST means

that most application components (such as users and microposts) are modeled as

resources that can be created, read, updated, and deleted—operations that corre-

spond both to the CRUD operations of relational databases and the four fundamental

HTTP request methods: POST, GET, PUT, and DELETE. (We’ll learn more about HTTP

requests in Section 3.2.1 and especially Box 3.2.)

As a Rails application developer, the RESTful style of development helps you

make choices about which controllers and actions to write: You simply structure

the application using resources that get created, read, updated, and deleted. In

the case of users and microposts, this process is straightforward, since they are

naturally resources in their own right. In Chapter 11, we’ll see an example where

REST principles allow us to model a subtler problem, ‘‘following users,’’ in a natural

and convenient way.

4. Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.

www.it-ebooks.info

http://www.it-ebooks.info/

2.2 The Users Resource 61

To examine the relationship between the Users controller and the User model, let’s

focus on a simplified version of the index action, shown in Listing 2.4. (The scaffold

code is ugly and confusing, so I’ve suppressed it.)

Listing 2.4 The simplified user index action for the demo application.

app/controllers/users_controller.rb

class UsersController < ApplicationController

def index

@users = User.all

end

.

.

.

end

This index action has the line @users = User.all (Step 3), which asks the User

model to retrieve a list of all the users from the database (Step 4), and then places them

in the variable @users (pronounced ‘‘at-users’’) (Step 5). The User model itself appears

in Listing 2.5; although it is rather plain, it comes equipped with a large amount of

functionality because of inheritance (Section 2.3.4 and Section 4.4). In particular, by

using the Rails library called Active Record, the code in Listing 2.5 arranges for User.all

to return all the users. (We’ll learn about the attr_accessible line in Section 6.1.2.

Note: This line will not appear if you are using Rails 3.2.2 or earlier.)

Listing 2.5 The User model for the demo application.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :email, :name

end

Once the @users variable is defined, the controller calls the view (Step 6), shown in

Listing 2.6. Variables that start with the @ sign, called instance variables, are automatically

available in the view; in this case, the index.html.erb view in Listing 2.6 iterates

through the @users list and outputs a line of HTML for each one. (Remember, you

aren’t supposed to understand this code right now. It is shown only for purposes of

illustration.)

www.it-ebooks.info

http://www.it-ebooks.info/

62 Chapter 2: A Demo App

Listing 2.6 The view for the user index.

app/views/users/index.html.erb

<h1>Listing users</h1>

<table>

<tr>

<th>Name</th>

<th>Email</th>

<th></th>

<th></th>

<th></th>

</tr>

<% @users.each do |user| %>

<tr>

<td><%= user.name %></td>

<td><%= user.email %></td>

<td><%= link to 'Show', user %></td>

<td><%= link to 'Edit', edit user path(user) %></td>

<td><%= link to 'Destroy', user, confirm: 'Are you sure?',

method: :delete %></td>

</tr>

<% end %>

</table>

<%= link to 'New User', new user path %>

The view converts its contents to HTML (Step 7), which is then returned by the

controller to the browser for display (Step 8).

2.2.3 Weaknesses of this Users Resource

Although good for getting a general overview of Rails, the scaffold Users resource suffers

from a number of severe weaknesses.

• No data validations. Our User model accepts data such as blank names and invalid

email addresses without complaint.

• No authentication. We have no notion signing in or out and no way to prevent

any user from performing any operation.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3 The Microposts Resource 63

• No tests. This isn’t technically true—the scaffolding includes rudimentary tests—

but the generated tests are ugly and inflexible, and they don’t test for data validation,

authentication, or any other custom requirements.

• No layout. There is no consistent site styling or navigation.

• No real understanding. If you understand the scaffold code, you probably shouldn’t

be reading this book.

2.3 The Microposts Resource

Having generated and explored the Users resource, we turn now to the associated

Microposts resource. Throughout this section, I recommend comparing the elements of

the Microposts resource with the analogous user elements from Section 2.2; you should

see that the two resources parallel each other in many ways. The RESTful structure of

Rails applications is best absorbed by this sort of repetition of form; indeed, seeing the

parallel structure of Users and Microposts even at this early stage is one of the prime

motivations for this chapter. (As we’ll see, writing applications more robust than the

toy example in this chapter takes considerable effort—we won’t see the Microposts

resource again until Chapter 10—and I didn’t want to defer its first appearance quite

that far.)

2.3.1 A Micropost Microtour

As with the Users resource, we’ll generate scaffold code for the Microposts resource

using rails generate scaffold, in this case implementing the data model from

Figure 2.3:5

$ rails generate scaffold Micropost content:string user id:integer

invoke active record

create db/migrate/20111123225811 create microposts.rb

create app/models/micropost.rb

invoke test unit

create test/unit/micropost test.rb

create test/fixtures/microposts.yml

5. As with the User scaffold, the scaffold generator for microposts follows the singular convention of Rails
models; thus, we have generate Micropost.

www.it-ebooks.info

http://www.it-ebooks.info/

64 Chapter 2: A Demo App

route resources :microposts

invoke scaffold controller

create app/controllers/microposts controller.rb

invoke erb

create app/views/microposts

create app/views/microposts/index.html.erb

create app/views/microposts/edit.html.erb

create app/views/microposts/show.html.erb

create app/views/microposts/new.html.erb

create app/views/microposts/ form.html.erb

invoke test unit

create test/functional/microposts controller test.rb

invoke helper

create app/helpers/microposts helper.rb

invoke test unit

create test/unit/helpers/microposts helper test.rb

invoke assets

invoke coffee

create app/assets/javascripts/microposts.js.coffee

invoke scss

create app/assets/stylesheets/microposts.css.scss

invoke scss

identical app/assets/stylesheets/scaffolds.css.scss

To update our database with the new data model, we need to run a migration as in

Section 2.2:

$ bundle exec rake db:migrate

== CreateMicroposts: migrating ===

-- create table(:microposts)

-> 0.0023s

== CreateMicroposts: migrated (0.0026s) ======================================

Now we are in a position to create microposts in the same way we created users

in Section 2.2.1. As you might guess, the scaffold generator has updated the Rails

routes file with a rule for Microposts resource, as seen in Listing 2.7.6 As with users,

the resources :microposts routing rule maps micropost URIs to actions in the

Microposts controller, as seen in Table 2.3.

6. The scaffold code may have extra newlines compared to Listing 2.7. This is not a cause for concern, as Ruby
ignores extra newlines.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3 The Microposts Resource 65

Table 2.3 RESTful routes provided by the Microposts resource in Listing 2.7.

HTTP request URI Action Purpose

GET /microposts index page to list all microposts

GET /microposts/1 show page to show micropost with id 1

GET /microposts/new new page to make a new micropost

POST /microposts create create a new micropost

GET /microposts/1/edit edit page to edit micropost with id 1

PUT /microposts/1 update update micropost with id 1

DELETE /microposts/1 destroy delete micropost with id 1

Listing 2.7 The Rails routes, with a new rule for Microposts resources.

config/routes.rb

DemoApp::Application.routes.draw do

resources :microposts

resources :users

.

.

.

end

The Microposts controller itself appears in schematic form Listing 2.8. Note that,

apart from having MicropostsController in place of UsersController, Listing 2.8

is identical to the code in Listing 2.3. This is a reflection of the REST architecture

common to both resources.

Listing 2.8 The Microposts controller in schematic form.

app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

def index

.

.

.

end

def show

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

66 Chapter 2: A Demo App

def new

.

.

.

end

def create

.

.

.

end

def edit

.

.

.

end

def update

.

.

.

end

def destroy

.

.

.

end

end

To make some actual microposts, we enter information at the new microposts page,

/microposts/new, as seen in Figure 2.12.

At this point, go ahead and create a micropost or two, taking care to make sure that

at least one has a user_id of 1 to match the id of the first user created in Section 2.2.1.

The result should look something like Figure 2.13.

2.3.2 Putting the micro in Microposts

Any micropost worthy of the name should have some means of enforcing the length

of the post. Implementing this constraint in Rails is easy with validations; to accept

www.it-ebooks.info

http://www.it-ebooks.info/

2.3 The Microposts Resource 67

Figure 2.12 The new micropost page (/microposts/new).

`microposts with at most 140 characters (a la Twitter), we use a length validation. At

this point, you should open the file app/models/micropost.rb in your text editor or

IDE and fill it with the contents of Listing 2.9. (The use of validates in Listing 2.9 is

characteristic of Rails 3; if you’ve previously worked with Rails 2.3, you should compare

this to the use of validates_length_of.)

Listing 2.9 Constraining microposts to be at most 140 characters.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

attr accessible :content, :user id

validates :content, :length => { :maximum => 140 }

end

The code in Listing 2.9 may look rather mysterious—we’ll cover validations more

thoroughly starting in Section 6.2—but its effects are readily apparent if we go to the

www.it-ebooks.info

http://www.it-ebooks.info/

68 Chapter 2: A Demo App

Figure 2.13 The micropost index page (/microposts).

new micropost page and enter more than 140 characters for the content of the post. As

seen in Figure 2.14, Rails renders error messages indicating that the micropost’s content

is too long. (We’ll learn more about error messages in Section 7.3.2.)

2.3.3 A User has many Microposts

One of the most powerful features of Rails is the ability to form associations between

different data models. In the case of our User model, each user potentially has many

microposts. We can express this in code by updating the User and Micropost models as

in Listing 2.10 and Listing 2.11.

Listing 2.10 A user has many microposts.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :email, :name

has many :microposts

end

www.it-ebooks.info

http://www.it-ebooks.info/

2.3 The Microposts Resource 69

Figure 2.14 Error messages for a failed micropost creation.

Listing 2.11 A micropost belongs to a user.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

attr accessible :content, :user id

belongs to :user

validates :content, :length => { :maximum => 140 }

end

We can visualize the result of this association in Figure 2.15. Because of the

user_id column in the microposts table, Rails (using Active Record) can infer the

microposts associated with each user.

In Chapter 10 and Chapter 11, we will use the association of users and microposts

both to display all a user’s microposts and to construct a Twitter-like micropost feed.

For now, we can examine the implications of the user-micropost association by using

www.it-ebooks.info

http://www.it-ebooks.info/

70 Chapter 2: A Demo App

Figure 2.15 The association between microposts and users.

the console, which is a useful tool for interacting with Rails applications. We first

invoke the console with rails console at the command line, and then retrieve the

first user from the database using User.first (putting the results in the variable

first_user):7

$ rails console

>> first user = User.first

=> #<User id: 1, name: "Michael Hartl", email: "michael@example.org",

created at: "2011-11-03 02:01:31", updated at: "2011-11-03 02:01:31">

>> first user.microposts

=> [#<Micropost id: 1, content: "First micropost!", user id: 1, created at:

"2011-11-03 02:37:37", updated at: "2011-11-03 02:37:37">, #<Micropost id: 2,

content: "Second micropost", user id: 1, created at: "2011-11-03 02:38:54",

updated at: "2011-11-03 02:38:54">]

>> exit

(I include the last line just to demonstrate how to exit the console, and on most systems

you can Ctrl-d for the same purpose.) Here we have accessed the user’s microposts

using the code first_user.microposts: With this code, Active Record automatically

returns all the microposts with user_id equal to the id of first_user (in this case, 1).

We’ll learn much more about the association facilities in Active Record in Chapter 10

and Chapter 11.

2.3.4 Inheritance Hierarchies

We end our discussion of the demo application with a brief description of the

controller and model class hierarchies in Rails. This discussion will only make sense if

you have some experience with object-oriented programming (OOP); if you haven’t

studied OOP, feel free to skip this section. In particular, if you are unfamiliar

7. Your console prompt might be something like ruby-1.9.3-head >, but the examples use >> since Ruby
versions will vary.

www.it-ebooks.info

http://www.it-ebooks.info/

2.3 The Microposts Resource 71

with classes (discussed in Section 4.4), I suggest looping back to this section at a

later time.

We start with the inheritance structure for models. Comparing Listing 2.12 and

Listing 2.13, we see that both the User model and the Micropost model inherit (via

the left angle bracket <) from ActiveRecord::Base, which is the base class for

models provided by ActiveRecord; a diagram summarizing this relationship appears in

Figure 2.16. It is by inheriting from ActiveRecord::Base that our model objects

gain the ability to communicate with the database, treat the database columns as Ruby

attributes, and so on.

Listing 2.12 The User class, with inheritance.

app/models/user.rb

class User < ActiveRecord::Base

.

.

.

end

Listing 2.13 The Micropost class, with inheritance.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

.

.

.

end

Figure 2.16 The inheritance hierarchy for the User and Micropost models.

www.it-ebooks.info

http://www.it-ebooks.info/

72 Chapter 2: A Demo App

The inheritance structure for controllers is only slightly more complicated. Com-

paring Listing 2.14 and Listing 2.15, we see that both the Users controller and the

Microposts controller inherit from the Application controller. Examining Listing 2.16,

we see that ApplicationController itself inherits from ActionController::Base;

this is the base class for controllers provided by the Rails library Action Pack. The

relationships between these classes is illustrated in Figure 2.17.

Listing 2.14 The UsersController class, with inheritance.

app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

end

Listing 2.15 The MicropostsController class, with inheritance.

app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

.

.

.

end

Listing 2.16 The ApplicationController class, with inheritance.

app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

.

.

.

end

As with model inheritance, by inheriting ultimately from ActionController::

Base both the Users and Microposts controllers gain a large amount of functionality,

www.it-ebooks.info

http://www.it-ebooks.info/

2.3 The Microposts Resource 73

Figure 2.17 The inheritance hierarchy for the Users and Microposts controllers.

such as the ability to manipulate model objects, filter inbound HTTP requests, and ren-

der views as HTML. Since all Rails controllers inherit from ApplicationController,

rules defined in the Application controller automatically apply to every action in the

application. For example, in Section 8.2.1 we’ll see how to include helpers for signing

in and signing out of all of the sample application’s controllers.

2.3.5 Deploying the Demo App

With the completion of the Microposts resource, now is a good time to push the

repository up to GitHub:

$ git add .

$ git commit -m "Finish demo app"

$ git push

Ordinarily, you should make smaller, more frequent commits, but for the purposes of

this chapter a single big commit at the end is fine.

www.it-ebooks.info

http://www.it-ebooks.info/

74 Chapter 2: A Demo App

At this point, you can also deploy the demo app to Heroku as in Section 1.4:

$ heroku create --stack cedar

$ git push heroku master

Finally, migrate the production database (see below if you get a deprecation

warning):

$ heroku run rake db:migrate

This updates the database at Heroku with the necessary user/micropost data model.

You may get a deprecation warning regarding assets in vendor/plugins, which you

should ignore since there aren’t any plugins in that directory.

2.4 Conclusion

We’ve come now to the end of the 30,000-foot view of a Rails application. The demo

app developed in this chapter has several strengths and a host of weaknesses.

Strengths

• High-level overview of Rails

• Introduction to MVC

• First taste of the REST architecture

• Beginning data modeling

• A live, database-backed web application in production

Weaknesses

• No custom layout or styling

• No static pages (like ‘‘Home’’ or ‘‘About’’)

• No user passwords

• No user images

• No signing in

www.it-ebooks.info

http://www.it-ebooks.info/

2.4 Conclusion 75

• No security

• No automatic user/micropost association

• No notion of ‘‘following’’ or ‘‘followed’’

• No micropost feed

• No test-driven development

• No real understanding

The rest of this tutorial is dedicated to building on the strengths and eliminating the

weaknesses.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Mostly Static Pages

In this chapter, we will begin developing the sample application that will serve as our

example throughout the rest of this tutorial. Although the sample app will eventually

have users, microposts, and a full login and authentication framework, we will begin with

a seemingly limited topic: the creation of static pages. Despite its apparent simplicity,

making static pages is a highly instructive exercise, rich in implications—a perfect start

for our nascent application.

Although Rails is designed for making database-backed dynamic websites, it also

excels at making the kind of static pages we might make with raw HTML files. In fact,

using Rails even for static pages yields a distinct advantage: We can easily add just a

small amount of dynamic content. In this chapter we’ll learn how. Along the way, we’ll

get our first taste of automated testing, which will help us be more confident that our

code is correct. Moreover, having a good test suite will allow us to refactor our code

with confidence, changing its form without changing its function.

There’s a lot of code in this chapter, especially in Section 3.2 and Section 3.3, and

if you’re new to Ruby you shouldn’t worry about understanding the details right now.

As noted in Section 1.1.1, one strategy is to copy-and-paste the tests and use them to

verify the application code, without worrying at this point how they work. In addition,

Chapter 4 covers Ruby in more depth, so there is plenty of opportunity for these ideas

to sink in. Finally, RSpec tests will recur throughout the tutorial, so if you get stuck

now I recommend forging ahead; you’ll be amazed how, after just a few more chapters,

initially inscrutable code will suddenly look simple.

As in Chapter 2, before getting started we need to create a new Rails project, this

time called sample_app:

$ cd ˜/rails projects

$ rails new sample app --skip-test-unit

$ cd sample app

77

www.it-ebooks.info

http://www.it-ebooks.info/

78 Chapter 3: Mostly Static Pages

Here the --skip-test-unit option to the rails command tells Rails not to generate

a test directory associated with the default Test::Unit framework. This is not because

we won’t be writing tests; on the contrary, starting in Section 3.2 we will be using an

alternate testing framework called RSpec to write a thorough test suite.

As in Section 2.1, our next step is to use a text editor to update the Gemfile with

the gems needed by our application. On the other hand, for the sample application

we’ll also need two gems we didn’t need before: the gem for RSpec and the gem for the

RSpec library specific to Rails. The code to include them is shown in Listing 3.1. (Note:

If you would like to install all the gems needed for the sample application, you should

use the code in Listing 9.49 at this time.)

Listing 3.1 A Gemfile for the sample app.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

group :development, :test do

gem 'sqlite3', '1.3.5'

gem 'rspec-rails', '2.9.0'

end

Gems used only for assets and not required

in production environments by default.

group :assets do

gem 'sass-rails', '3.2.4'

gem 'coffee-rails', '3.2.2'

gem 'uglifier', '1.2.3'

end

gem 'jquery-rails', '2.0.0'

group :test do

gem 'capybara', '1.1.2'

end

group :production do

gem 'pg', '0.12.2'

end

www.it-ebooks.info

http://www.it-ebooks.info/

Mostly Static Pages 79

This includes rspec-rails in development mode so that we have access to RSpec-

specific generators, and it includes it in test mode in order to run the tests. We don’t

have to install RSpec itself because it is a dependency of rspec-rails and will thus be

installed automatically. We also include the Capybara gem, which allows us to simulate

a user’s interaction with the sample application using a natural English-like syntax.1 As

in Chapter 2, we also must include the PostgreSQL gem in production for deployment

to Heroku:

group :production do

gem 'pg', '0.12.2'

end

Heroku recommends against using different databases in development and production,

but for the sample application it won’t make any difference, and SQLite is much easier

than PostgreSQL to install and configure. Installing and configuring PostgreSQL on

your local machine is left as an exercise (Section 3.5).

To install and include the new gems, we run bundle install:

$ bundle install --without production

As in Chapter 2, we suppress the installation of production gems using the option

--without production. This is a ‘‘remembered option,’’ which means that we don’t

have to include it in future invocations of Bundler. Instead, we can write simply bundle

install.2

Next, we need to configure Rails to use RSpec in place of Test::Unit. This can

be accomplished with rails generate rspec:install:

$ rails generate rspec:install

If your system complains about the lack of a JavaScript runtime, visit the execjs page at

GitHub for a list of possibilities. I particularly recommend installing Node.js.

1. The successor to Webrat, Capybara is named after the world’s largest rodent.

2. In fact, you can even leave off install. The bundle command by itself is an alias for bundle install.

www.it-ebooks.info

http://www.it-ebooks.info/

80 Chapter 3: Mostly Static Pages

With that, all we have left is to initialize the Git repository:3

$ git init

$ git add .

$ git commit -m "Initial commit"

As with the first application, I suggest updating the README file (located in the root

directory of the application) to be more helpful and descriptive, as shown in Listing 3.2.

Listing 3.2 An improved README file for the sample app.

Ruby on Rails Tutorial: sample application

This is the sample application for

[*Ruby on Rails Tutorial: Learn Rails by Example*](http://railstutorial.org/)

by [Michael Hartl](http://michaelhartl.com/).

Then change it to use the Markdown extension .md and commit the changes:

$ git mv README.rdoc README.md

$ git commit -a -m "Improve the README"

Since we’ll be using this sample app throughout the rest of the book, it’s a good

idea to make a repository at GitHub (Figure 3.1) and push it up:

$ git remote add origin git@github.com:<username>/sample app.git

$ git push -u origin master

As a result of my performing this step, you can find the Rails Tutorial sample application

code on GitHub (under a slightly different name).4

Of course, we can optionally deploy the app to Heroku even at this early stage:

$ heroku create --stack cedar

$ git push heroku master

3. As before, you may find the augmented file from Listing 1.7 to be more convenient depending on your
system.

4. https://github.com/railstutorial/sample app 2nd ed

www.it-ebooks.info

https://github.com/railstutorial/sample_app_2nd_ed
http://www.it-ebooks.info/

Mostly Static Pages 81

Figure 3.1 Creating the sample app repository at GitHub.

As you proceed through the rest of the book, I recommend pushing and deploying

the application regularly:

$ git push

$ git push heroku

This provides remote backups and lets you catch any production errors as soon as

possible. If you run into problems at Heroku, make sure to take a look at the production

logs to try to diagnose the problem:

$ heroku logs

With all the preparation finished, we’re finally ready to get started developing the

sample application.

www.it-ebooks.info

http://www.it-ebooks.info/

82 Chapter 3: Mostly Static Pages

3.1 Static Pages

Rails has two main ways of making static web pages. First, Rails can handle truly

static pages consisting of raw HTML files. Second, Rails allows us to define views

containing raw HTML, which Rails can render so that the web server can send it to the

browser.

In order to get our bearings, it’s helpful to recall the Rails directory structure

from Section 1.2.3 (Figure 1.2). In this section, we’ll be working mainly in the

app/controllers and app/views directories. (In Section 3.2, we’ll even add a new

directory of our own.)

This is the first section where it’s useful to be able to open the entire Rails directory

in your text editor or IDE. Unfortunately, how to do this is system-dependent, but in

many cases you can open the current application directory, represented in Unix by a

dot ., using the command-line command for your editor of choice:

$ cd ˜/rails projects/sample app

$ <editor name> .

For example, to open the sample app in Sublime Text, you type

$ subl .

For Vim, you type vim ., gvim ., or mvim ., depending on which flavor of Vim

you use.

3.1.1 Truly Static Pages

We start with truly static pages. Recall from Section 1.2.5 that every Rails application

comes with a minimal working application thanks to the rails script, with a default

welcome page at the address http://localhost:3000 (Figure 1.3).

To learn where this page comes from, take a look at the file public/index.html

(Figure 3.2). Because the file contains its own stylesheet information, it’s a little messy,

but it gets the job done: By default, Rails serves any files in the public directory directly

to the browser.5 In the case of the special index.html file, you don’t even have to

indicate the file in the URI, as index.html is the default. You can include it if you

5. In fact, Rails ensures that requests for such files never hit the main Rails stack; they are delivered directly
from the filesystem. (See The Rails 3 Way for more details.)

www.it-ebooks.info

http://www.it-ebooks.info/

3.1 Static Pages 83

Figure 3.2 The public/index.html file.

want, though; the addresses http://localhost:3000 and http://localhost:3000/index.html

are equivalent.

As you might expect, if we want we can make our own static HTML files and put

them in the same public directory as index.html. For example, let’s create a file with

a friendly greeting (Listing 3.3):6

$ subl public/hello.html

6. As usual, replace subl with the command for your text editor.

www.it-ebooks.info

http://www.it-ebooks.info/

84 Chapter 3: Mostly Static Pages

Listing 3.3 A typical HTML file, with a friendly greeting.

public/hello.html

<!DOCTYPE html>

<html>

<head>

<title>Greeting</title>

</head>

<body>

<p>Hello, world!</p>

</body>

</html>

We see in Listing 3.3 the typical structure of an HTML document: A document

type, or doctype, declaration at the top to tell browsers which version of HTML we’re

using (in this case, HTML5);7 a head section, in this case with ‘‘Greeting’’ inside a

title tag; and a body section, in this case with ‘‘Hello, world!’’ inside a p (paragraph)

tag. (The indentation is optional—HTML is not sensitive to whitespace and ignores

both tabs and spaces—but it makes the document’s structure easier to see.)

Now run a local server using

$ rails server

and navigate to http://localhost:3000/hello.html. As promised, Rails renders the page

straightaway (Figure 3.3). Note that the title displayed at the top of the browser window

in Figure 3.3 is just the contents inside the title tag, namely, ‘‘Greeting.’’

Since this file is just for demonstration purposes, we don’t really want it to be part

of our sample application, so it’s probably best to remove it once the thrill of creating it

has worn off:

$ rm public/hello.html

7. HTML changes with time; by explicitly making a doctype declaration we make it likelier that browsers will
render our pages properly in the future. The extremely simple doctype <!DOCTYPE html> is characteristic of
the latest HTML standard, HTML5.

www.it-ebooks.info

http://www.it-ebooks.info/

3.1 Static Pages 85

Figure 3.3 A new static HTML file.

We’ll leave the index.html file alone for now, but of course eventually we should

remove it: We don’t want the root of our application to be the Rails default page shown

in Figure 1.3. We’ll see in Section 5.3 how to change the address http://localhost:3000

to point to something other than public/index.html.

3.1.2 Static Pages with Rails

The ability to return static HTML files is nice, but it’s not particularly useful for making

dynamic web applications. In this section, we’ll take a first step toward making dynamic

pages by creating a set of Rails actions, which are a more powerful way to define URIs

www.it-ebooks.info

http://www.it-ebooks.info/

86 Chapter 3: Mostly Static Pages

than static files.8 Rails actions come bundled together inside controllers (the C in MVC

from Section 1.2.6), which contain sets of actions related by a common purpose. We

got a glimpse of controllers in Chapter 2 and will come to a deeper understanding

once we explore the REST architecture more fully (starting in Chapter 6); in essence, a

controller is a container for a group of (possibly dynamic) web pages.

To get started, recall from Section 1.3.5 that, when using Git, it’s a good practice

to do our work on a separate topic branch rather than the master branch. If you’re using

Git for version control, you should run the following command:

$ git checkout -b static-pages

Rails comes with a script for making controllers called generate; all it needs to

work its magic is the controller’s name. In order to use generate with RSpec, you

need to run the RSpec generator command if you didn’t run it when following the

introduction to this chapter:

$ rails generate rspec:install

Since we’ll be making a controller to handle static pages, we’ll call it the StaticPages

controller. We’ll also plan to make actions for a Home page, a Help page, and an About

page. The generate script takes an optional list of actions, so we’ll include two of the

initial actions directly on the command line (Listing 3.4).

Listing 3.4 Generating a StaticPages controller.

$ rails generate controller StaticPages home help --no-test-framework

create app/controllers/static pages controller.rb

route get "static pages/help"

route get "static pages/home"

invoke erb

create app/views/static pages

create app/views/static pages/home.html.erb

create app/views/static pages/help.html.erb

8. Our method for making static pages is probably the simplest, but it’s not the only way. The optimal
method really depends on your needs; if you expect a large number of static pages, using a Static-
Pages controller can get quite cumbersome, but in our sample app we’ll only need a few. See this
blog post on simple pages at has many :through for a survey of techniques for making static pages with
Rails. Warning: The discussion is fairly advanced, so you might want to wait a while before trying to
understand it.

www.it-ebooks.info

http://www.it-ebooks.info/

3.1 Static Pages 87

invoke helper

create app/helpers/static pages helper.rb

invoke assets

invoke coffee

create app/assets/javascripts/static pages.js.coffee

invoke scss

create app/assets/stylesheets/static pages.css.scss

Note that we’ve used the option --no-test-framework to suppress the generation

of the default RSpec tests, which we won’t be using. Instead, we’ll create the tests by

hand starting in Section 3.2. We’ve also intentionally left off the about action from

the command line arguments in Listing 3.4 so that we can see how to add it using

test-driven development, or TDD (Section 3.2).

By the way, if you ever make a mistake when generating code, it’s useful to know

how to reverse the process. See Box 3.1 for some techniques on how to undo things in

Rails.

Box 3.1 Undoing Things

Even when you’re very careful, things can sometimes go wrong when developing

Rails applications. Happily, Rails has some facilities to help you recover.

One common scenario is wanting to undo code generation—for example, if

you change your mind on the name of a controller. When generating a controller,

Rails creates many more files than the controller file itself (as seen in Listing 3.4).

Undoing the generation means removing not only the principal generated file, but

all the ancillary files as well. (In fact, we also want to undo any automatic edits made

to the routes.rb file.) In Rails, this can be accomplished with rails destroy. In

particular, these two commands cancel each other out:

$ rails generate controller FooBars baz quux

$ rails destroy controller FooBars baz quux

Similarly, in Chapter 6 we’ll generate a model as follows:

$ rails generate model Foo bar:string baz:integer

This can be undone using

$ rails destroy model Foo

www.it-ebooks.info

http://www.it-ebooks.info/

88 Chapter 3: Mostly Static Pages

(In this case, it turns out we can omit the other command-line arguments. When you

get to Chapter 6, see if you can figure out why.)

Another technique related to models involves undoing migrations, which we

saw briefly in Chapter 2 and will see much more of starting in Chapter 6. Migrations

change the state of the database using

$ rake db:migrate

We can undo a single migration step using

$ rake db:rollback

To go all the way back to the beginning, we can use

$ rake db:migrate VERSION=0

As you might guess, substituting any other number for 0 migrates to that version

number, where the version numbers come from listing the migrations sequentially.

With these techniques in hand, we are well equipped to recover from the

inevitable development snafus.

The StaticPages controller generation in Listing 3.4 automatically updates the routes

file, called config/routes.rb, which Rails uses to find the correspondence between

URIs and web pages. This is our first encounter with the config directory, so it’s

helpful to take a quick look at it (Figure 3.4). The config directory is where Rails

collects files needed for the application configuration—hence the name.

Since we generated home and help actions, the routes file already has a rule for

each one, as seen in Listing 3.5.

Listing 3.5 The routes for the home and help actions in the StaticPages controller.

config/routes.rb

SampleApp::Application.routes.draw do

get "static pages/home"

get "static pages/help"

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

3.1 Static Pages 89

Figure 3.4 Contents of the sample app’s config directory.

Here, the rule

get "static pages/home"

maps requests for the URI /static pages/home to the home action in the StaticPages

controller. Moreover, by using get we arrange for the route to respond to a GET request,

which is one of the fundamental HTTP verbs supported by the hypertext transfer

protocol (Box 3.2). In our case, this means that when we generate a home action inside

the StaticPages controller we automatically get a page at the address /static pages/home.

To see the results, navigate to /static pages/home (Figure 3.5).

Box 3.2 GET, et cetera

The hypertext transfer protocol (HTTP) defines four basic operations, corresponding

to the four verbs get, post, put, and delete. These refer to operations between a

client computer (typically running a web browser such as Firefox or Safari) and a

server (typically running a web server such as Apache or Nginx). (It’s important to

www.it-ebooks.info

http://www.it-ebooks.info/

90 Chapter 3: Mostly Static Pages

understand that, when developing Rails applications on a local computer, the client

and server are the same physical machine, but in general they are different.) An

emphasis on HTTP verbs is typical of web frameworks (including Rails) influenced by

the REST architecture, which we saw briefly in Chapter 2 and will start learning about

more in Chapter 7.

GET is the most common HTTP operation, used for reading data on the web;

it just means ‘‘get a page,’’ and every time you visit a site like google.com or

wikipedia.org, your browser is submitting a GET request. POST is the next most

common operation; it is the request sent by your browser when you submit a form.

In Rails applications, POST requests are typically used for creating things (although

HTTP also allows POST to perform updates); for example, the POST request sent

when you submit a registration form creates a new user on the remote site. The other

two verbs, PUT and DELETE, are designed for updating and destroying things on the

remote server. These requests are less common than GET and POST since browsers

are incapable of sending them natively, but some web frameworks (including Ruby

on Rails) have clever ways of making it seem like browsers are issuing such requests.

Figure 3.5 The raw home view (/static pages/home).

www.it-ebooks.info

http://www.it-ebooks.info/

3.1 Static Pages 91

To understand where this page comes from, let’s start by taking a look at the

StaticPages controller in a text editor; you should see something like Listing 3.6. You

may note that, unlike the demo Users and Microposts controllers from Chapter 2, the

StaticPages controller does not use the standard REST actions. This is normal for a

collection of static pages—the REST architecture isn’t the best solution to every problem.

Listing 3.6 The StaticPages controller made by Listing 3.4.

app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

end

def help

end

end

We see from the class keyword in Listing 3.6 that static_pages_

controller.rb defines a class called StaticPagesController. Classes are sim-

ply a convenient way to organize functions (also called methods) like the home and help

actions, which are defined using the def keyword. The angle bracket < indicates that

StaticPagesController inherits from the Rails class ApplicationController; as

we’ll see momentarily, this means that our pages come equipped with a large amount

of Rails-specific functionality. (We’ll learn more about both classes and inheritance in

Section 4.4.)

In the case of the StaticPages controller, both its methods are initially empty:

def home

end

def help

end

In plain Ruby, these methods would simply do nothing. In Rails, the situation is

different. StaticPagesController is a Ruby class, but because it inherits from

ApplicationController, the behavior of its methods is specific to Rails. When

visiting the URI /static pages/home, Rails looks in the StaticPages controller and

executes the code in the home action, and then renders the view (the V in MVC from

Section 1.2.6) corresponding to the action. In the present case, the home action is

www.it-ebooks.info

http://www.it-ebooks.info/

92 Chapter 3: Mostly Static Pages

empty, so all visiting /static pages/home does is render the view. So, what does a view

look like, and how do we find it?

If you take another look at the output in Listing 3.4, you might be able to guess the

correspondence between actions and views: An action like home has a corresponding

view called home.html.erb. We’ll learn in Section 3.3 what the .erb part means;

from the .html part you probably won’t be surprised that it basically looks like HTML

(Listing 3.7).

Listing 3.7 The generated view for the Home page.

app/views/static_pages/home.html.erb

<h1>StaticPages#home</h1>

<p>Find me in app/views/static pages/home.html.erb</p>

The view for the help action is analogous (Listing 3.8).

Listing 3.8 The generated view for the Help page.

app/views/static_pages/help.html.erb

<h1>StaticPages#help</h1>

<p>Find me in app/views/static pages/help.html.erb</p>

Both of these views are just placeholders: They have a top-level heading (inside

the h1 tag) and a paragraph (p tag) with the full path to the relevant file. We’ll add

some (very slightly) dynamic content starting in Section 3.3, but as they stand these

views underscore an important point: Rails views can simply contain static HTML.

As far as the browser is concerned, the raw HTML files from Section 3.1.1 and the

controller/action method of delivering pages are indistinguishable: All the browser ever

sees is HTML.

In the remainder of this chapter, we’ll add some custom content to the Home and

Help pages, then add in the About page we left off in Section 3.1.2. Then we’ll add a

very small amount of dynamic content by changing the title on a per-page basis.

Before moving on, if you’re using Git, it’s a good idea to add the files for the

StaticPages controller to the repository:

$ git add .

$ git commit -m "Add a StaticPages controller"

www.it-ebooks.info

http://www.it-ebooks.info/

3.2 Our First Tests 93

3.2 Our First Tests

The Rails Tutorial takes an intuitive approach to testing that emphasizes the behavior

of the application rather than its precise implementation, a variant of test-driven

development (TDD) known as behavior-driven development (BDD). Our main tools

will be integration tests (starting in this section) and unit tests (starting in Chapter 6).

Integration tests, known as request specs in the context of RSpec, allow us to simulate the

actions of a user interacting with our application using a web browser. Together with

the natural-language syntax provided by Capybara, integration tests provide a powerful

method to test our application’s functionality without having to manually check each

page with a browser. (Another popular choice for BDD, called Cucumber, is introduced

in Section 8.3.)

The defining quality of TDD is writing tests first, before the application code.

Initially, this might take some getting used to, but the benefits are significant. By writing

a failing test first and then implementing the application code to get it to pass, we

increase our confidence that the test is actually covering the functionality we think it

is. Moreover, the fail-implement-pass development cycle induces a flow state, leading

to enjoyable coding and high productivity. Finally, the tests act as a client for the

application code, often leading to more elegant software designs.

It’s important to understand that TDD is not always the right tool for the job.

There’s no reason to dogmatically insist that tests always should be written first, that

they should cover every single feature, or that there should necessarily be any tests at all.

For example, when you aren’t at all sure how to solve a given programming problem,

it’s often useful to skip the tests and write only application code, just to get a sense of

what the solution will look like. (In the language of Extreme Programming [XP], this

exploratory step is called a spike.) Once you see the general shape of the solution, you

can then use TDD to implement a more polished version.

In this section, we’ll be running the tests using the rspec command supplied by

the RSpec gem. This practice is straightforward but not ideal, and if you are a more

advanced user I suggest setting up your system as described in Section 3.6.

3.2.1 Test-driven Development

In test-driven development, we first write a failing test, represented in many testing tools

by the color red. We then implement code to get the test to pass, represented by the

color green. Finally, if necessary, we refactor the code, changing its form (by eliminating

www.it-ebooks.info

http://www.it-ebooks.info/

94 Chapter 3: Mostly Static Pages

duplication, for example) without changing its function. This cycle is known as ‘‘Red,

Green, Refactor.’’

We’ll begin by adding some content to the Home page using test-driven develop-

ment, including a top-level heading (<h1>) with the content Sample App. The first

step is to generate an integration test (request spec) for our static pages:

$ rails generate integration test static pages

invoke rspec

create spec/requests/static pages spec.rb

This creates the static_pages_spec.rb in the spec/requests directory. As with

most generated code, the result is not pretty, so let’s open static_pages_spec.rb

with a text editor and replace it with the contents of Listing 3.9.

Listing 3.9 Code to test the contents of the Home page.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

describe "Home page" do

it "should have the content 'Sample App'" do

visit '/static pages/home'

page.should have content('Sample App')

end

end

end

The code in Listing 3.9 is pure Ruby, but even if you’ve studied Ruby before it

probably won’t look very familiar. This is because RSpec uses the general malleability

of Ruby to define a domain-specific language (DSL) built just for testing. The important

point is that you do not need to understand RSpec’s syntax to be able to use RSpec. It may

seem like magic at first, but RSpec and Capybara are designed to read more or less

like English, and if you follow the examples from the generate script and the other

examples in this tutorial, you’ll pick it up fairly quickly.

Listing 3.9 contains a describe block with one example, i.e., a block starting with

it "..." do:

www.it-ebooks.info

http://www.it-ebooks.info/

3.2 Our First Tests 95

describe "Home page" do

it "should have the content 'Sample App'" do

visit '/static pages/home'

page.should have content('Sample App')

end

end

The first line indicates that we are describing the Home page. This is just a

string, and it can be anything you want; RSpec doesn’t care, but you and other

human readers probably do. Then the spec says that when you visit the Home page at

/static_pages/home, the content should contain the words ‘‘Sample App.’’ As with

the first line, what goes inside the quote marks is irrelevant to RSpec and is intended to

be descriptive to human readers. Then the line

visit '/static pages/home'

uses the Capybara function visit to simulate visiting the URI /static_pages/home

in a browser, while the line

page.should have content('Sample App')

uses the page variable (also provided by Capybara) to test that the resulting page has

the right content.

To run the test, we have several options, including some convenient but rather

advanced tools discussed in Section 3.6. For now, we’ll use the rspec command at

the command line (executed with bundle exec to ensure that RSpec runs in the

environment specified by our Gemfile):9

$ bundle exec rspec spec/requests/static pages spec.rb

This yields a failing test. The appearance of the result depends on your system; on my

system, the red failing test appears as in Figure 3.6.10 (The screenshot, which predates,

9. Running bundle exec every time is rather cumbersome; see Section 3.6 for some options to eliminate it.

10. I actually use a dark background for both my terminal and editor, but the light background looks better in
the screenshots.

www.it-ebooks.info

http://www.it-ebooks.info/

96 Chapter 3: Mostly Static Pages

Figure 3.6 A red (failing) test.

the current Git branching strategy, shows work on the master branch instead the

static-pages branch, but this is not cause for concern.)

To get the test to pass, we’ll replace the default Home page test with the HTML in

Listing 3.10.

Listing 3.10 Code to get a passing test for the Home page.

app/views/static_pages/home.html.erb

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

www.it-ebooks.info

http://www.it-ebooks.info/

3.2 Our First Tests 97

This arranges for a top-level heading (<h1>) with the content Sample App, which

should get the test to pass. We also include an anchor tag a, which creates links to the

given URI (called an ‘‘href,’’ or ‘‘hypertext reference,’’ in the context of an anchor tag):

Ruby on Rails Tutorial

Now re-run the test to see the effect:

$ bundle exec rspec spec/requests/static pages spec.rb

On my system, the passing test appears as in Figure 3.7.

Based on the example for the Home page, you can probably guess the analogous

test and application code for the Help page. We start by testing for the relevant content,

in this case the string ’Help’ (Listing 3.11).

Figure 3.7 A green (passing) test.

www.it-ebooks.info

http://www.it-ebooks.info/

98 Chapter 3: Mostly Static Pages

Listing 3.11 Adding code to test the contents of the Help page.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

describe "Home page" do

it "should have the content 'Sample App'" do

visit '/static pages/home'

page.should have content('Sample App')

end

end

describe "Help page" do

it "should have the content 'Help'" do

visit '/static pages/help'

page.should have content('Help')

end

end

end

Then run the tests:

$ bundle exec rspec spec/requests/static pages spec.rb

One test should fail. (Since systems will vary, and since keeping track of how many tests

there are at each stage of the tutorial is a maintenance nightmare, I’ll omit the RSpec

output from now on.)

The application code (which for now is raw HTML) is similar to the code in

Listing 3.10, as seen in Listing 3.12.

Listing 3.12 Code to get a passing test for the Help page.

app/views/static_pages/help.html.erb

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial help page.

To get help on this sample app, see the

Rails Tutorial book.

</p>

www.it-ebooks.info

http://www.it-ebooks.info/

3.2 Our First Tests 99

The tests should now pass:

$ bundle exec rspec spec/requests/static pages spec.rb

3.2.2 Adding a Page

Having seen test-driven development in action in a simple example, we’ll use the same

technique to accomplish the slightly more complicated task of adding a new page,

namely, the About page that we intentionally left off in Section 3.1.2. By writing a

test and running RSpec at each step, we’ll see how TDD can guide us through the

development of our application code.

Red

We’ll get to the Red part of the Red-Green cycle by writing a failing test for the About

page. Following the models from Listing 3.11, you can probably guess the right test

(Listing 3.13).

Listing 3.13 Adding code to test the contents of the About page.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

describe "Home page" do

it "should have the content 'Sample App'" do

visit '/static pages/home'

page.should have content('Sample App')

end

end

describe "Help page" do

it "should have the content 'Help'" do

visit '/static pages/help'

page.should have content('Help')

end

end

describe "About page" do

www.it-ebooks.info

http://www.it-ebooks.info/

100 Chapter 3: Mostly Static Pages

it "should have the content 'About Us'" do

visit '/static pages/about'

page.should have content('About Us')

end

end

end

Green

Recall from Section 3.1.2 that we can generate a static page in Rails by creating an

action and corresponding view with the page’s name. In our case, the About page will

first need an action called about in the StaticPages controller. Having written a failing

test, we can now be confident that, in getting it to pass, we will actually have created a

working About page.

If you run the RSpec example using

$ bundle exec rspec spec/requests/static pages spec.rb

the output includes the following complaint:

No route matches [GET] "/static pages/about"

This is a hint that we need to add /static_pages/about to the routes file,

which we can accomplish by following the pattern in Listing 3.5, as shown in

Listing 3.14.

Listing 3.14 Adding the about route.

config/routes.rb

SampleApp::Application.routes.draw do

get "static pages/home"

get "static pages/help"

get "static pages/about"

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

3.2 Our First Tests 101

Now running

$ bundle exec rspec spec/requests/static pages spec.rb

complains that

The action 'about' could not be found for StaticPagesController

To solve this problem, we follow the model provided by home and help from

Listing 3.6 by adding an about action in the StaticPages controller (Listing 3.15).

Listing 3.15 The StaticPages controller with added about action.

app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

end

def help

end

def about

end

end

Now running

$ bundle exec rspec spec/requests/static pages spec.rb

says that we are missing a ‘‘template,’’ i.e., a view:

ActionView::MissingTemplate:

Missing template static pages/about

To solve this issue, we add the about view. This involves creating a new file called

about.html.erb in the app/views/static_pages directory with the contents

shown in Listing 3.16.

www.it-ebooks.info

http://www.it-ebooks.info/

102 Chapter 3: Mostly Static Pages

Listing 3.16 Code for the About page.

app/views/static_pages/about.html.erb

<h1>About Us</h1>

<p>

The Ruby on Rails Tutorial

is a project to make a book and screencasts to teach web development

with Ruby on Rails. This

is the sample application for the tutorial.

</p>

Running RSpec should now get us back to Green:

$ bundle exec rspec spec/requests/static pages spec.rb

Of course, it’s never a bad idea to take a look at the page in a browser to make sure

our tests aren’t completely crazy (Figure 3.8).

Figure 3.8 The new About page (/static pages/about).

www.it-ebooks.info

http://www.it-ebooks.info/

3.3 Slightly Dynamic Pages 103

Refactor

Now that we’ve gotten to Green, we are free to refactor our code with confidence.

Oftentimes code will start to ‘‘smell,’’ meaning that it gets ugly, bloated, or filled with

repetition. The computer doesn’t care, of course, but humans do, so it is important

to keep the code base clean by refactoring frequently. Having a good test suite is

an invaluable tool in this regard, because it dramatically lowers the probability of

introducing bugs while refactoring.

Our sample app is a little too small to refactor right now, but code smell seeps

in at every crack, so we won’t have to wait long: We’ll already get busy refactoring in

Section 3.3.4.

3.3 Slightly Dynamic Pages

Now that we’ve created the actions and views for some static pages, we’ll make them very

slightly dynamic by adding some content that changes on a per-page basis: We’ll have

the title of each page change to reflect its content. Whether a changing title represents

truly dynamic content is debatable, but in any case it lays the necessary foundation for

unambiguously dynamic content in Chapter 7.

If you skipped the TDD material in Section 3.2, be sure to create an About page at

this point using the code from Listing 3.14, Listing 3.15, and Listing 3.16.

3.3.1 Testing a Title Change

Our plan is to edit the Home, Help, and About pages to make page titles that change

on each page. This will involve using the <title> tag in our page views. Most browsers

display the contents of the title tag at the top of the browser window (Google Chrome

is an odd exception), and it is also important for search-engine optimization. We’ll start

by writing tests for the titles, then add the titles themselves, and then use a layout file to

refactor the resulting pages and eliminate duplication.

You may have noticed that the rails new command already created a layout file.

We’ll learn its purpose shortly, but for now you should rename it before proceeding:

$ mv app/views/layouts/application.html.erb foobar # temporary change

(mv is a Unix command; on Windows you may need to rename the file using the file

browser or the rename command.) You wouldn’t normally do this in a real application,

but it’s easier to understand the purpose of the layout file if we start by disabling it.

www.it-ebooks.info

http://www.it-ebooks.info/

104 Chapter 3: Mostly Static Pages

Table 3.1 The (mostly) static pages for the sample app.

Page URI Base title Variable title

Home /static pages/home "Ruby on Rails Tutorial Sample App" "Home"

Help /static pages/help "Ruby on Rails Tutorial Sample App" "Help"

About /static pages/about "Ruby on Rails Tutorial Sample App" "About"

By the end of this section, all three of our static pages will have titles of the form

‘‘Ruby on Rails Tutorial Sample App | Home,’’ where the last part of the title will vary

depending on the page (Table 3.1). We’ll build on the tests in Listing 3.13, adding title

tests following the model in Listing 3.17.

Listing 3.17 A title test.

it "should have the right title" do

visit '/static pages/home'

page.should have selector('title',

:text => "Ruby on Rails Tutorial Sample App | Home")

end

This uses the have_selector method, which checks for an HTML element (the

‘‘selector’’) with the given content. In other words, the code

page.should have selector('title',

:text => "Ruby on Rails Tutorial Sample App | Home")

checks to see that the content inside the title tag is

"Ruby on Rails Tutorial Sample App | Home"

(We’ll learn in Section 4.3.3 that the :text => "..." syntax is a hash using a symbol

as the key.) It’s worth mentioning that the content need not be an exact match; any

substring works as well, so that

page.should have selector('title', :text => " | Home")

will also match the full title.

www.it-ebooks.info

http://www.it-ebooks.info/

3.3 Slightly Dynamic Pages 105

Note that in Listing 3.17 we’ve broken the material inside have_selector into

two lines; this tells you something important about Ruby syntax: Ruby doesn’t care

about newlines.11 The reason I chose to break the code into pieces is that I prefer to

keep lines of source code under 80 characters for legibility.12 As it stands, this code

formatting is still rather ugly; Section 3.5 has a refactoring exercise that makes them

prettier, and Section 5.3.4 completely rewrites the StaticPages tests to take advantage of

the latest features in RSpec.

Adding new tests for each of our three static pages, following the model of

Listing 3.17, gives us our new StaticPages test (Listing 3.18).

Listing 3.18 The StaticPages controller spec with title tests.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

describe "Home page" do

it "should have the h1 'Sample App'" do

visit '/static pages/home'

page.should have selector('h1', :text => 'Sample App')

end

it "should have the title 'Home'" do

visit '/static pages/home'

page.should have selector('title',

:text => "Ruby on Rails Tutorial Sample App | Home")

end

end

11. A newline is what comes at the end of a line, thereby starting a new line. In code, it is represented by the
character \n.

12. Actually counting columns could drive you crazy, which is why many text editors have a visual aid to help
you. For example, if you take a look back at Figure 1.1, you’ll see a small vertical line on the right to help keep
code under 80 characters. (It’s actually at 78 columns, which gives you a little margin for error.) If you use
TextMate, you can find this feature under View > Wrap Column > 78. In Sublime Text, you can use View

> Ruler > 78 or View > Ruler > 80.

www.it-ebooks.info

http://www.it-ebooks.info/

106 Chapter 3: Mostly Static Pages

describe "Help page" do

it "should have the h1 'Help'" do

visit '/static pages/help'

page.should have selector('h1', :text => 'Help')

end

it "should have the title 'Help'" do

visit '/static pages/help'

page.should have selector('title',

:text => "Ruby on Rails Tutorial Sample App | Help")

end

end

describe "About page" do

it "should have the h1 'About Us'" do

visit '/static pages/about'

page.should have selector('h1', :text => 'About Us')

end

it "should have the title 'About Us'" do

visit '/static pages/about'

page.should have selector('title',

:text => "Ruby on Rails Tutorial Sample App | About Us")

end

end

end

Note that we’ve changed have_content to the more specific have_selector(’h1’,

...). See if you can figure out why. (Hint: What would happen if the title contained,

say, ‘Help’, but the content inside h1 tag had ‘Helf’ instead?)

With the tests from Listing 3.18 in place, you should run

$ bundle exec rspec spec/requests/static pages spec.rb

to verify that our code is now Red (failing tests).

3.3.2 Passing Title Tests

Now we’ll get our title tests to pass and at the same time add the full HTML structure

needed to make valid web pages. Let’s start with the Home page (Listing 3.19), using

the same basic HTML skeleton as in the ‘‘hello’’ page from Listing 3.3.

www.it-ebooks.info

http://www.it-ebooks.info/

3.3 Slightly Dynamic Pages 107

Listing 3.19 The view for the Home page with full HTML structure.

app/views/static_pages/home.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Ruby on Rails Tutorial Sample App | Home</title>

</head>

<body>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

</body>

</html>

Listing 3.19 uses the title tested for in Listing 3.18:

<title>Ruby on Rails Tutorial Sample App | Home</title>

As a result, the tests for the Home page should now pass. We’re still Red because of the

failing Help and About tests, and we can get to Green with the code in Listing 3.20 and

Listing 3.21.

Listing 3.20 The view for the Help page with full HTML structure.

app/views/static_pages/help.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Ruby on Rails Tutorial Sample App | Help</title>

</head>

<body>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial help page.

To get help on this sample app, see the

Rails Tutorial book.

</p>

</body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

108 Chapter 3: Mostly Static Pages

Listing 3.21 The view for the About page with full HTML structure.

app/views/static_pages/about.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Ruby on Rails Tutorial Sample App | About Us</title>

</head>

<body>

<h1>About Us</h1>

<p>

The Ruby on Rails Tutorial

is a project to make a book and screencasts to teach web development

with Ruby on Rails. This

is the sample application for the tutorial.

</p>

</body>

</html>

3.3.3 Embedded Ruby

We’ve achieved a lot already in this section, generating three valid pages using Rails

controllers and actions, but they are purely static HTML and hence don’t show off the

power of Rails. Moreover, they suffer from terrible duplication:

• The page titles are almost (but not quite) exactly the same.

• ‘‘Ruby on Rails Tutorial Sample App’’ is common to all three titles.

• The entire HTML skeleton structure is repeated on each page.

This repeated code is a violation of the important ‘‘Don’t Repeat Yourself’’ (DRY)

principle; in this section and the next we’ll ‘‘DRY out our code’’ by removing the

repetition.

Paradoxically, we’ll take the first step toward eliminating duplication by first

adding some more: We’ll make the titles of the pages, which are currently quite

similar, match exactly. This will make it much simpler to remove all the repetition at

a stroke.

The technique involves using Embedded Ruby in our views. Since the Home, Help,

and About page titles have a variable component, we’ll use a special Rails function

called provide to set a different title on each page. We can see how this works

www.it-ebooks.info

http://www.it-ebooks.info/

3.3 Slightly Dynamic Pages 109

by replacing the literal title ‘‘Home’’ in the home.html.erb view with the code in

Listing 3.22.

Listing 3.22 The view for the Home page with an Embedded Ruby title.

app/views/static_pages/home.html.erb

<% provide(:title, 'Home') %>

<!DOCTYPE html>

<html>

<head>

<title>Ruby on Rails Tutorial Sample App | <%= yield(:title) %></title>

</head>

<body>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

</body>

</html>

Listing 3.22 is our first example of Embedded Ruby, also called ERb. (Now you know

why HTML views have the file extension .html.erb.) ERb is the primary template

system for including dynamic content in web pages.13 The code

<% provide(:title, 'Home') %>

indicates using <% ... %> that Rails should call the provide function and associate

the string ’Home’ with the label :title.14 Then, in the title, we use the closely

related notation <%= ... %> to insert the title into the template using Ruby’s yield

function:15

<title>Ruby on Rails Tutorial Sample App | <%= yield(:title) %></title>

13. There is a second popular template system called Haml, which I personally love, but it’s not quite standard
enough yet for use in an introductory tutorial.

14. Experienced Rails developers might have expected the use of content_for at this point, but it doesn’t
work well with the asset pipeline. The provide function is its replacement.

15. If you’ve studied Ruby before, you might suspect that Rails is yielding the contents to a block, and your
suspicion would be correct. But you don’t need to know this to develop applications with Rails.

www.it-ebooks.info

http://www.it-ebooks.info/

110 Chapter 3: Mostly Static Pages

(The distinction between the two types of embedded Ruby is that <% ... %> executes

the code inside, while <%= ... %> executes it and inserts the result into the template.)

The resulting page is exactly the same as before, only now the variable part of the title

is generated dynamically by ERb.

We can verify that all this works by running the tests from Section 3.3.1 and see

that they still pass:

$ bundle exec rspec spec/requests/static pages spec.rb

Then we can make the corresponding replacements for the Help and About pages

(Listing 3.23 and Listing 3.24).

Listing 3.23 The view for the Help page with an Embedded Ruby title.

app/views/static_pages/help.html.erb

<% provide(:title, 'Help') %>

<!DOCTYPE html>

<html>

<head>

<title>Ruby on Rails Tutorial Sample App | <%= yield(:title) %></title>

</head>

<body>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial help page.

To get help on this sample app, see the

Rails Tutorial book.

</p>

</body>

</html>

Listing 3.24 The view for the About page with an Embedded Ruby title.

app/views/static_pages/about.html.erb

<% provide(:title, 'About Us') %>

<!DOCTYPE html>

<html>

<head>

<title>Ruby on Rails Tutorial Sample App | <%= yield(:title) %></title>

</head>

www.it-ebooks.info

http://www.it-ebooks.info/

3.3 Slightly Dynamic Pages 111

<body>

<h1>About Us</h1>

<p>

The Ruby on Rails Tutorial

is a project to make a book and screencasts to teach web development

with Ruby on Rails. This

is the sample application for the tutorial.

</p>

</body>

</html>

3.3.4 Eliminating Duplication with Layouts

Now that we’ve replaced the variable part of the page titles with ERb, each of our pages

looks something like this:

<% provide(:title, 'Foo') %>

<!DOCTYPE html>

<html>

<head>

<title>Ruby on Rails Tutorial Sample App | <%= yield(:title) %></title>

</head>

<body>

Contents

</body>

</html>

In other words, all our pages are identical in structure, including the contents of the

title tag, with the sole exception of the material inside the body tag.

In order to factor out this common structure, Rails comes with a special layout file

called application.html.erb, which we renamed in Section 3.3.1 and which we’ll

now restore:

$ mv foobar app/views/layouts/application.html.erb

To get the layout to work, we have to replace the default title with the Embedded

Ruby from the examples above:

<title>Ruby on Rails Tutorial Sample App | <%= yield(:title) %></title>

www.it-ebooks.info

http://www.it-ebooks.info/

112 Chapter 3: Mostly Static Pages

The resulting layout appears in Listing 3.25.

Listing 3.25 The sample application site layout.

app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Ruby on Rails Tutorial Sample App | <%= yield(:title) %></title>

<%= stylesheet link tag "application", :media => "all" %>

<%= javascript include tag "application" %>

<%= csrf meta tags %>

</head>

<body>

<%= yield %>

</body>

</html>

Note here the special line

<%= yield %>

This code is responsible for inserting the contents of each page into the layout. It’s

not important to know exactly how this works; what matters is that using this layout

ensures that, for example, visiting the page /static pages/home converts the contents of

home.html.erb to HTML and then inserts it in place of <%= yield %>.

It’s also worth noting that the default Rails layout includes several additional lines:

<%= stylesheet link tag "application", :media => "all" %>

<%= javascript include tag "application" %>

<%= csrf meta tags %>

This code arranges to include the application stylesheet and JavaScript, which are part

of the asset pipeline (Section 5.2.1), together with the Rails method csrf_meta_tags,

which prevents cross-site request forgery (CSRF), a type of malicious web attack.

Of course, the views in Listing 3.22, Listing 3.23, and Listing 3.24 are still filled

with all the HTML structure included in the layout, so we have to remove it, leaving

only the interior contents. The resulting cleaned-up views appear in Listing 3.26,

Listing 3.27, and Listing 3.28.

www.it-ebooks.info

http://www.it-ebooks.info/

3.3 Slightly Dynamic Pages 113

Listing 3.26 The Home page with HTML structure removed.

app/views/static_pages/home.html.erb

<% provide(:title, 'Home') %>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

Listing 3.27 The Help page with HTML structure removed.

app/views/static_pages/help.html.erb

<% provide(:title, 'Help') %>

<h1>Help</h1>

<p>

Get help on the Ruby on Rails Tutorial at the

Rails Tutorial help page.

To get help on this sample app, see the

Rails Tutorial book.

</p>

Listing 3.28 The About page with HTML structure removed.

app/views/static_pages/about.html.erb

<% provide(:title, 'About Us') %>

<h1>About Us</h1>

<p>

The Ruby on Rails Tutorial

is a project to make a book and screencasts to teach web development

with Ruby on Rails. This

is the sample application for the tutorial.

</p>

With these views defined, the Home, Help, and About pages are the same as before,

but they have much less duplication. Verifying that the test suite still passes gives us

confidence that this code refactoring was successful:

$ bundle exec rspec spec/requests/static pages spec.rb

www.it-ebooks.info

http://www.it-ebooks.info/

114 Chapter 3: Mostly Static Pages

3.4 Conclusion

Seen from the outside, this chapter hardly accomplished anything: We started with

static pages, and ended with . . . mostly static pages. But appearances are deceiving: By

developing in terms of Rails controllers, actions, and views, we are now in a position to

add arbitrary amounts of dynamic content to our site. Seeing exactly how this plays out

is the task for the rest of this tutorial.

Before moving on, let’s take a minute to commit our changes and merge them into

the master branch. Back in Section 3.1.2 we created a Git branch for the development

of static pages. If you haven’t been making commits as we’ve been moving along, first

make a commit indicating that we’ve reached a stopping point:

$ git add .

$ git commit -m "Finish static pages"

Then merge the changes back into the master branch using the same technique as in

Section 1.3.5:

$ git checkout master

$ git merge static-pages

Once you reach a stopping point like this, it’s usually a good idea to push your

code up to a remote repository (which, if you followed the steps in Section 1.3.4, will

be GitHub):

$ git push

If you like, at this point you can even deploy the updated application to

Heroku:

$ git push heroku

3.5 Exercises

1. Make a Contact page for the sample app. First write a test for the existence of a

page at the URI /static pages/contact. (Hint: Test for the right title.) Then write a

second test for the title ‘‘Ruby on Rails Tutorial Sample App | Contact.’’ Get your

www.it-ebooks.info

http://www.it-ebooks.info/

3.5 Exercises 115

tests to pass, then fill in the Contact page with the content from Listing 3.29. (This

exercise is solved as part of Section 5.3.)

2. You may have noticed some repetition in the StaticPages controller spec (Listing

3.18). In particular, the base title, ‘‘Ruby on Rails Tutorial Sample App,’’ is

the same for every title test. Using the RSpec let function, which creates a

variable corresponding to its argument, verify that the tests in Listing 3.30 still

pass. Listing 3.30 introduces string interpolation, which is covered further in

Section 4.2.2.

3. (advanced) As noted on the Heroku page on using sqlite3 for development, it’s

a good idea to use the same database in development, test, and production

environments to minimize the possibility of subtle incompatibilities. Follow the

Heroku instructions for local PostgreSQL installation to install the PostgreSQL

database on your local system. Update your Gemfile to eliminate the sqlite3

gem and use the pg gem exclusively, as shown in Listing 3.31. You will also have to

learn about the config/database.yml file and how to run PostgreSQL locally.

Your goal should be to create and configure both the development database and the

test database to use PostgreSQL. Warning: You may find this exercise challenging,

and I recommend it only for advanced users. If you get stuck, don’t hesitate to

skip it; as noted previously, the sample application developed in this tutorial is fully

compatible with both SQLite and PostgreSQL.

Listing 3.29 Code for a proposed Contact page.

app/views/static_pages/contact.html.erb

<% provide(:title, 'Contact') %>

<h1>Contact</h1>

<p>

Contact Ruby on Rails Tutorial about the sample app at the

contact page.

</p>

Listing 3.30 The StaticPages controller spec with a base title.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

let(:base title) { "Ruby on Rails Tutorial Sample App" }

www.it-ebooks.info

http://www.it-ebooks.info/

116 Chapter 3: Mostly Static Pages

describe "Home page" do

it "should have the h1 'Sample App'" do

visit '/static pages/home'

page.should have selector('h1', :text => 'Sample App')

end

it "should have the title 'Home'" do

visit '/static pages/home'

page.should have selector('title', :text => "#{base title} | Home")

end

end

describe "Help page" do

it "should have the h1 'Help'" do

visit '/static pages/help'

page.should have selector('h1', :text => 'Help')

end

it "should have the title 'Help'" do

visit '/static pages/help'

page.should have selector('title', :text => "#{base title} | Help")

end

end

describe "About page" do

it "should have the h1 'About Us'" do

visit '/static pages/about'

page.should have selector('h1', :text => 'About Us')

end

it "should have the title 'About Us'" do

visit '/static pages/about'

page.should have selector('title', :text => "#{base title} | About Us")

end

end

describe "Contact page" do

it "should have the h1 'Contact'" do

visit '/static pages/contact'

page.should have selector('h1', :text => 'Contact')

end

it "should have the title 'Contact'" do

visit '/static pages/contact'

www.it-ebooks.info

http://www.it-ebooks.info/

3.6 Advanced Setup 117

page.should have selector('title', :text => "#{base title} | Contact")

end

end

end

Listing 3.31 The Gemfile needed to use PostgreSQL instead of SQLite.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

gem 'pg', '0.12.2'

group :development, :test do

gem 'rspec-rails', '2.9.0'

end

Gems used only for assets and not required

in production environments by default.

group :assets do

gem 'sass-rails', '3.2.4'

gem 'coffee-rails', '3.2.2'

gem 'uglifier', '1.2.3'

end

gem 'jquery-rails', '2.0.0'

group :test do

gem 'capybara', '1.1.2'

end

3.6 Advanced Setup

As mentioned briefly in Section 3.2, using the rspec command directly is not ideal.

In this section, we’ll first discuss a method to eliminate the necessity of typing bundle

exec, and then set up testing setup to automate the running of the test suite using

Guard (Section 3.6.2) and, optionally, Spork (Section 3.6.3). Finally, we’ll mention a

method for running tests directly inside Sublime Text, a technique especially useful

when used in concert with Spork.

This section should only be attempted by fairly advanced users and can be skipped

without loss of continuity. Among other things, this material is likely to go out of date

faster than the rest of the tutorial, so you shouldn’t expect everything on your system

www.it-ebooks.info

http://www.it-ebooks.info/

118 Chapter 3: Mostly Static Pages

to match the examples exactly, and you may have to Google around to get everything

to work.

3.6.1 Eliminating bundle exec

As mentioned briefly in Section 3.2.1, it is necessary in general to prefix commands

such as rake or rspec with bundle exec so that the programs run in the exact gem

environment specified by the Gemfile. (For technical reasons, the only exception to

this is the rails command itself.) This practice is rather cumbersome, and in this

section we discuss two ways to eliminate its necessity.

RVM Bundler Integration

The first and preferred method is to use the RVM Bundler integration16 to configure

the Ruby Version Manager to include the proper executables automatically in the

local environment. The steps are simple if somewhat mysterious. First, run these two

commands:

$ rvm get head && rvm reload

$ chmod +x $rvm path/hooks/after cd bundler

Then run these:

$ cd ˜/rails projects/sample app

$ bundle install --without production --binstubs=./bundler stubs

Together, these commands combine RVM and Bundler magic to ensure that commands

such as rake and rspec are automatically executed in the right environment. Since

these files are specific to your local setup, you should add the bundler_stubs directory

to your .gitignore file (Listing 3.32).

Listing 3.32 Adding bundler_stubs to the .gitignore file.

Ignore bundler config

/.bundle

Ignore the default SQLite database.

/db/*.sqlite3

16. www.beginrescueend.com/integration/bundler

www.it-ebooks.info

www.beginrescueend.com/integration/bundler
http://www.it-ebooks.info/

3.6 Advanced Setup 119

Ignore all logfiles and tempfiles.

/log/*.log

/tmp

Ignore other unneeded files.

doc/

*.swp

*˜

.project

.DS Store

bundler stubs/

If you add another executable (such as guard in Section 3.6.2), you should re-run

the bundle install command:

$ bundle install --binstubs=./bundler stubs

binstubs

If you’re not using RVM, you can still avoid typing bundle exec. Bundler allows the

creation of the associated binaries as follows:

$ bundle --binstubs

(In fact, this step, with a different target directory, is also used when using RVM.) This

command creates all the necessary executables in the bin/ directory of the application,

so that we can now run the test suite as follows:

$ bin/rspec spec/

The same goes for rake, etc.:

$ bin/rake db:migrate

If you add another executable (such as guard in Section 3.6.2), you should re-run the

bundle --binstubs command.

For the sake of readers who skip this section, the rest of this tutorial will err on the

side of caution and explicitly use bundle exec, but of course you should feel free to

use the more compact version if your system is properly configured.

www.it-ebooks.info

http://www.it-ebooks.info/

120 Chapter 3: Mostly Static Pages

3.6.2 Automated Tests with Guard

One annoyance associated with using the rspec command is having to switch to the

command line and run the tests by hand. (A second annoyance, the slow start-up time

of the test suite, is addressed in Section 3.6.3.) In this section, we’ll show how to use

Guard to automate the running of the tests. Guard monitors changes in the filesystem

so that, for example, when we change the static_pages_spec.rb file only those test

get run. Even better, we can configure Guard so that when, say, the home.html.erb

file is modified, the static_pages_spec.rb automatically runs.

First we add guard-rspec to the Gemfile (Listing 3.33).

Listing 3.33 A Gemfile for the sample app, including Guard.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

group :development do

gem 'sqlite3', '1.3.5'

gem 'rspec-rails', '2.9.0'

gem 'guard-rspec', '0.5.5'

end

Gems used only for assets and not required

in production environments by default.

group :assets do

gem 'sass-rails', '3.2.4'

gem 'coffee-rails', '3.2.2'

gem 'uglifier', '1.2.3'

end

gem 'jquery-rails', '2.0.0'

group :test do

gem 'rspec-rails', '2.9.0'

gem 'capybara', '1.1.2'

System-dependent gems

end

group :production do

gem 'pg', '0.12.2'

end

www.it-ebooks.info

http://www.it-ebooks.info/

3.6 Advanced Setup 121

Then we have to replace the comment at the end of the test group with

some system-dependent gems (OS X users may have to install Growl and growlnotify

as well):

Test gems on Macintosh OS X

group :test do

gem 'rspec-rails', '2.9.0'

gem 'capybara', '1.1.2'

gem 'rb-fsevent', '0.4.3.1', :require => false

gem 'growl', '1.0.3'

end

Test gems on Linux

group :test do

gem 'rspec-rails', '2.9.0'

gem 'capybara', '1.1.2'

gem 'rb-inotify', '0.8.8'

gem 'libnotify', '0.5.9'

end

Test gems on Windows

group :test do

gem 'rspec-rails', '2.9.0'

gem 'capybara', '1.1.2'

gem 'rb-fchange', '0.0.5'

gem 'rb-notifu', '0.0.4'

gem 'win32console', '1.3.0'

end

We next install the gems by running bundle install:

$ bundle install

Then initialize Guard so that it works with RSpec:

$ bundle exec guard init rspec

Writing new Guardfile to /Users/mhartl/rails projects/sample app/Guardfile

rspec guard added to Guardfile, feel free to edit it

www.it-ebooks.info

http://www.it-ebooks.info/

122 Chapter 3: Mostly Static Pages

Now edit the resulting Guardfile so that Guard will run the right tests when the

integration tests and views are updated (Listing 3.34).

Listing 3.34 Additions to the default Guardfile.

require 'active support/core ext'

guard 'rspec', :version => 2, :all after pass => false do

.

.

.

watch(%r{ˆapp/controllers/(.+) (controller)\.rb$}) do |m|

["spec/routing/#{m[1]} routing spec.rb",

"spec/#{m[2]}s/#{m[1]} #{m[2]} spec.rb",

"spec/acceptance/#{m[1]} spec.rb",

(m[1][/ pages/] ? "spec/requests/#{m[1]} spec.rb" :

"spec/requests/#{m[1].singularize} pages spec.rb")]

end

watch(%r{ˆapp/views/(.+)/}) do |m|

"spec/requests/#{m[1].singularize} pages spec.rb"

end

.

.

.

end

Here the line

guard 'rspec', :version => 2, :all after pass => false do

ensures that Guard doesn’t run all the tests after a failing test passes (to speed up the

Red-Green-Refactor cycle).

We can now start guard as follows:

$ bundle exec guard

To eliminate the need to prefix the command with bundle exec, re-follow the steps

in Section 3.6.1.

www.it-ebooks.info

http://www.it-ebooks.info/

3.6 Advanced Setup 123

3.6.3 Speeding up Tests with Spork

When running bundle exec rspec, you may have noticed that it takes several seconds

just to start running the tests, but once they start running they finish quickly. This is

because each time RSpec runs the tests it has to reload the entire Rails environment.

The Spork test server17 aims to solve this problem. Spork loads the environment once,

and then maintains a pool of processes for running future tests. Spork is particularly

useful when combined with Guard (Section 3.6.2).

The first step is to add the spork gem dependency to the Gemfile (Listing 3.35).

Listing 3.35 A Gemfile for the sample app.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

.

.

.

group :test do

.

.

.

gem 'guard-spork', '0.3.2'

gem 'spork', '0.9.0'

end

Then install Spork using bundle install:

$ bundle install

Next, bootstrap the Spork configuration:

$ bundle exec spork --bootstrap

Now we need to edit the RSpec configuration file, located in spec/spec_helper.rb,

so that the environment gets loaded in a prefork block, which arranges for it to be loaded

only once (Listing 3.36).

17. A spork is a combination spoon-fork. The project’s name is a pun on Spork’s use of POSIX forks.

www.it-ebooks.info

http://www.it-ebooks.info/

124 Chapter 3: Mostly Static Pages

Listing 3.36 Adding environment loading to the Spork.prefork block.

spec/spec_helper.rb

require 'rubygems'

require 'spork'

Spork.prefork do

Loading more in this block will cause your tests to run faster. However,

if you change any configuration or code from libraries loaded here, you'll

need to restart spork for it take effect.

This file is copied to spec/ when you run 'rails generate rspec:install'

ENV["RAILS ENV"] ||= 'test'

require File.expand path("../../config/environment", __FILE__)

require 'rspec/rails'

require 'rspec/autorun'

Requires supporting ruby files with custom matchers and macros, etc,

in spec/support/ and its subdirectories.

Dir[Rails.root.join("spec/support/**/*.rb")].each {|f| require f}

RSpec.configure do |config|

== Mock Framework

#

If you prefer to use mocha, flexmock or RR, uncomment the appropriate line:

#

config.mock with :mocha

config.mock with :flexmock

config.mock with :rr

config.mock with :rspec

Remove this line if you're not using ActiveRecord or ActiveRecord fixtures

config.fixture path = "#{::Rails.root}/spec/fixtures"

If you're not using ActiveRecord, or you'd prefer not to run each of your

examples within a transaction, remove the following line or assign false

instead of true.

config.use transactional fixtures = true

If true, the base class of anonymous controllers will be inferred

automatically. This will be the default behavior in future versions of

rspec-rails.

config.infer base class for anonymous controllers = false

end

end

Spork.each run do

This code will be run each time you run your specs.

end

www.it-ebooks.info

http://www.it-ebooks.info/

3.6 Advanced Setup 125

Before running Spork, we can get a baseline for the testing overhead by timing our

test suite as follows:

$ time bundle exec rspec spec/requests/static pages spec.rb

......

6 examples, 0 failures

real 0m8.633s

user 0m7.240s

sys 0m1.068s

Here the test suite takes more than 7 seconds to run even though the actual tests run in

under a tenth of a second. To speed this up, we can open a dedicated terminal window,

navigate to the application root directory, and then start a Spork server:

$ bundle exec spork

Using RSpec

Loading Spork.prefork block...

Spork is ready and listening on 8989!

(To eliminate the need to prefix the command with bundle exec, re-follow the steps

in Section 3.6.1.) In another terminal window, we can now run our test suite with the

--drb (‘‘distributed Ruby’’) option and verify that the environment-loading overhead

is greatly reduced:

$ time bundle exec rspec spec/requests/static pages spec.rb --drb

......

6 examples, 0 failures

real 0m2.649s

user 0m1.259s

sys 0m0.258s

It’s inconvenient to have to include the --drb option every time we run rspec, so

I recommend adding it to the .rspec file in the application’s root directory, as shown

in Listing 3.37.

Listing 3.37 Configuring RSpec to automatically use Spork.

.rspec

--colour

--drb

www.it-ebooks.info

http://www.it-ebooks.info/

126 Chapter 3: Mostly Static Pages

One word of advice when using Spork: After changing a file included in the prefork

loading (such as routes.rb), you will have to restart the Spork server to load the new

Rails environment. If your tests are failing when you think they should be passing, quit

the Spork server with Control-C and restart it:

$ bundle exec spork

Using RSpec

Loading Spork.prefork block...

Spork is ready and listening on 8989!

ˆC

$ bundle exec spork

Guard with Spork

Spork is especially useful when used with Guard, which we can arrange as follows:

$ bundle exec guard init spork

We then need to change the Guardfile as in Listing 3.38.

Listing 3.38 The Guardfile updated for Spork.

Guardfile

guard 'spork', :rspec env => { 'RAILS ENV' => 'test' } do

watch('config/application.rb')

watch('config/environment.rb')

watch(%r{ˆconfig/environments/.+\.rb$})

watch(%r{ˆconfig/initializers/.+\.rb$})

watch('Gemfile')

watch('Gemfile.lock')

watch('spec/spec helper.rb')

watch('test/test helper.rb')

watch('spec/support/')

end

guard 'rspec', :version => 2, :all after pass => false, :cli => '--drb' do

.

.

.

end

Note that we’ve updated the arguments to guard to include :cli => --drb, which

ensures that Guard uses the command-line interface (cli) to the Spork server. We’ve also

added a command to watch the spec/support/ directory, which we’ll start modifying

in Chapter 5.

www.it-ebooks.info

http://www.it-ebooks.info/

3.6 Advanced Setup 127

With that configuration in place, we can start Guard and Spork at the same time

with the guard command:

$ bundle exec guard

Guard automatically starts a Spork server, dramatically reducing the overhead each time

a test gets run.

A well-configured testing environment with Guard, Spork, and (optionally) test

notifications makes test-driven development positively addictive. See the Rails Tutorial

screencasts18 for more information.

3.6.4 Tests inside Sublime Text

If you’re using Sublime Text, there is a powerful set of helper commands to run tests

directly inside the editor. To get them working, follow the instructions for your platform

at Sublime Text 2 Ruby Tests.19 On my platform (Macintosh OS X), I can install the

commands as follows:

$ cd ˜/Library/Application\ Support/Sublime\ Text\ 2/Packages

$ git clone https://github.com/maltize/sublime-text-2-ruby-tests.git RubyTest

You may also want to follow the set-up instructions for Rails Tutorial Sublime Text at

this time.20

After restarting Sublime Text, the RubyTest package supplies the following

commands:

• Command-Shift-R: run a single test (if run on an it block) or group of tests (if

run on a describe block)

• Command-Shift-E: run the last test(s)

• Command-Shift-T: run all the tests in current file

Because test suites can become quite slow even for relatively small projects, being

able to run one test (or a small group of tests) at a time can be a huge win. Even a

single test requires the same Rails environment overhead, of course, which is why these

18. http://railstutorial.org/screencasts

19. https://github.com/maltize/sublime-text-2-ruby-tests

20. https://github.com/mhartl/rails tutorial sublime text

www.it-ebooks.info

http://railstutorial.org/screencasts
https://github.com/maltize/sublime-text-2-ruby-tests
https://github.com/mhartl/rails_tutorial_sublime_text
http://www.it-ebooks.info/

128 Chapter 3: Mostly Static Pages

commands are perfectly complemented by Spork: Running a single test eliminates the

overhead of running the entire test file, while running Spork eliminates the overhead of

starting the test environment. Here is the sequence I recommend:

1. Start Spork in a terminal window.

2. Write a single test or small group of tests.

3. Run Command-Shift-R to verify that the test or test group is red.

4. Write the corresponding application code.

5. Run Command-Shift-E to run the same test/group again, verifying that it’s green.

6. Repeat steps 2–5 as necessary.

7. When reaching a natural stopping point (such as before a commit), run rspec

spec/ at the command line to confirm that the entire test suite is still green.

Even with the ability to run tests inside of Sublime Text, I still sometimes

prefer using Guard, but at this point my bread-and-butter TDD technique is the one

enumerated above.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Rails-Flavored Ruby

Grounded in examples from Chapter 3, this chapter explores some elements of Ruby

important for Rails. Ruby is a big language, but fortunately the subset needed to be

productive as a Rails developer is relatively small. Moreover, this subset is different

from the usual approaches to learning Ruby, which is why, if your goal is making

dynamic web applications, I recommend learning Rails first, picking up bits of Ruby

along the way. To become a Rails expert, you need to understand Ruby more deeply,

and this book gives you a good foundation for developing that expertise. As noted in

Section 1.1.1, after finishing the Rails Tutorial I suggest reading a pure Ruby book such

as Beginning Ruby, The Well-Grounded Rubyist , or The Ruby Way.

This chapter covers a lot of material, and it’s OK not to get it all on the first pass.

I’ll refer back to it frequently in future chapters.

4.1 Motivation

As we saw in the last chapter, it’s possible to develop the skeleton of a Rails application,

and even start testing it, with essentially no knowledge of the underlying Ruby language.

We did this by relying on the test code provided by the tutorial and addressing each

error message until the test suite was passing. This situation can’t last forever, though,

and we’ll open this chapter with an addition to the site that bring us face-to-face with

our Ruby limitations.

When we last saw our new application, we had just updated our mostly static pages

to use Rails layouts to eliminate duplication in our views (Listing 4.1).

Let’s focus on one particular line in Listing 4.1:

<%= stylesheet link tag "application", :media => "all" %>

129

www.it-ebooks.info

http://www.it-ebooks.info/

130 Chapter 4: Rails-Flavored Ruby

Listing 4.1 The sample application site layout.

app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title>Ruby on Rails Tutorial Sample App | <%= yield(:title) %></title>

<%= stylesheet link tag "application", :media => "all" %>

<%= javascript include tag "application" %>

<%= csrf meta tags %>

</head>

<body>

<%= yield %>

</body>

</html>

This uses the built-in Rails function stylesheet_link_tag (which you can read more

about at the Rails API) to include application.css for all media types (including

computer screens and printers). To an experienced Rails developer, this line looks

simple, but there are at least four potentially confusing Ruby ideas: built-in Rails

methods, method invocation with missing parentheses, symbols, and hashes. We’ll

cover all of these ideas in this chapter.

In addition to coming equipped with a large number of built-in functions for

use in the views, Rails also allows the creation of new ones. Such functions are called

helpers; to see how to make a custom helper, let’s start by examining the title line from

Listing 4.1:

Ruby on Rails Tutorial Sample App | <%= yield(:title) %>

This relies on the definition of a page title (using provide) in each view, as in

<% provide(:title, 'Home') %>

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

But what if we don’t provide a title? It’s a good convention to have a base title we use

on every page, with an optional page title if we want to be more specific. We’ve almost

achieved that with our current layout, with one wrinkle: As you can see if you delete

www.it-ebooks.info

http://www.it-ebooks.info/

4.1 Motivation 131

the provide call in one of the views, in the absence of a page-specific title the full title

appears as follows:

Ruby on Rails Tutorial Sample App |

In other words, there’s a suitable base title, but there’s also a trailing vertical bar character

| at the end.

To solve the problem of a missing page title, we’ll define a custom helper called

full_title. The full_title helper returns a base title, ‘‘Ruby on Rails Tutorial

Sample App,’’ if no page title is defined, and adds a vertical bar followed by the page

title if one is defined (Listing 4.2).1

Listing 4.2 Defining a full_title helper.

app/helpers/application_helper.rb

module ApplicationHelper

Returns the full title on a per-page basis.

def full title(page title)

base title = "Ruby on Rails Tutorial Sample App"

if page title.empty?

base title

else

"#{base title} | #{page title}"

end

end

end

Now that we have a helper, we can use it to simplify our layout by replacing

<title>Ruby on Rails Tutorial Sample App | <%= yield(:title) %></title>

with

<title><%= full title(yield(:title)) %></title>

as seen in Listing 4.3.

1. If a helper is specific to a particular controller, you should put it in the corresponding helper file; for example,
helpers for the StaticPages controller generally go in app/helpers/static_pages_helper.rb. In our case,
we expect the full_title helper to be used on all the site’s pages, and Rails has a special helper file for this
case: app/helpers/application_helper.rb.

www.it-ebooks.info

http://www.it-ebooks.info/

132 Chapter 4: Rails-Flavored Ruby

Listing 4.3 The sample application site layout.

app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full title(yield(:title)) %></title>

<%= stylesheet link tag "application", :media => "all" %>

<%= javascript include tag "application" %>

<%= csrf meta tags %>

</head>

<body>

<%= yield %>

</body>

</html>

To put our helper to work, we can eliminate the unnecessary word ‘‘Home’’ from

the Home page, allowing it to revert to the base title. We do this by first updating our

test with the code in Listing 4.4, which updates the previous title test and adds one to

test for the absence of the custom ’Home’ string in the title.

Listing 4.4 Updated tests for the Home page’s title.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

describe "Home page" do

it "should have the h1 'Sample App'" do

visit '/static pages/home'

page.should have selector('h1', :text => 'Sample App')

end

it "should have the base title" do

visit '/static pages/home'

page.should have selector('title',

:text => "Ruby on Rails Tutorial Sample App")

end

www.it-ebooks.info

http://www.it-ebooks.info/

4.1 Motivation 133

it "should not have a custom page title" do

visit '/static pages/home'

page.should not have selector('title', :text => '| Home')

end

end

.

.

.

end

See if you can figure out why we’ve added a new test instead of just altering the current

one. (Hint: The answer is in Section 3.3.1.)

Let’s run the test suite to verify that one test fails:

$ bundle exec rspec spec/requests/static pages spec.rb

To get the test suite to pass, we’ll remove the provide line from the Home page’s view,

as seen in Listing 4.5.

Listing 4.5 The Home page with no custom page title.

app/views/static_pages/home.html.erb

<h1>Sample App</h1>

<p>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</p>

At this point the tests should pass:

$ bundle exec rspec spec/requests/static pages spec.rb

As with the line to include the application stylesheet, the code in Listing 4.2 may

look simple to the eyes of an experienced Rails developer, but it’s full of potentially

confusing Ruby ideas: modules, comments, local variable assignment, booleans, control

flow, string interpolation, and return values. This chapter will cover all of these ideas

as well.

www.it-ebooks.info

http://www.it-ebooks.info/

134 Chapter 4: Rails-Flavored Ruby

4.2 Strings and Methods

Our principal tool for learning Ruby will be the Rails console, a command-line tool

for interacting with Rails applications first seen in Section 2.3.3. The console itself is

built on top of interactive Ruby (irb), and thus has access to the full power of the

Ruby language. (As we’ll see in Section 4.4.4, the console also has access to the Rails

environment.) Start the console at the command line as follows:

$ rails console

Loading development environment

>>

By default, the console starts in a development environment, which is one of three separate

environments defined by Rails (the others are test and production). This distinction won’t

be important in this chapter, but we’ll learn more about environments in Section 7.1.1.

The console is a great learning tool, and you should feel free to explore—don’t

worry, you (probably) won’t break anything. When using the console, type Ctrl-C if

you get stuck, or Ctrl-D to exit the console altogether. Throughout the rest of this

chapter, you might find it helpful to consult the Ruby API. It’s packed (perhaps even

too packed) with information; for example, to learn more about Ruby strings you can

look at the Ruby API entry for the String class.

4.2.1 Comments

Ruby comments start with the pound sign # (also called the ‘‘hash mark’’ or, more

poetically, the ‘‘octothorpe’’) and extend to the end of the line. Ruby ignores comments,

but they are useful for human readers (including, often, the original author!). In

the code

Returns the full title on a per-page basis.

def full title(page title)

.

.

.

end

the first line is a comment indicating the purpose of the subsequent function definition.

www.it-ebooks.info

http://www.it-ebooks.info/

4.2 Strings and Methods 135

You don’t ordinarily include comments in console sessions, but for instructional

purposes I’ll include some comments in what follows, like this:

$ rails console

>> 17 + 42 # Integer addition

=> 59

If you follow along in this section typing or copying-and-pasting commands into your

own console, you can of course omit the comments if you like; the console will ignore

them in any case.

4.2.2 Strings

Strings are probably the most important data structure for web applications, since web

pages ultimately consist of strings of characters sent from the server to the browser.

Let’s start exploring strings with the console, this time started with rails c, which is

a shortcut for rails console:

$ rails c

>> "" # An empty string

=> ""

>> "foo" # A nonempty string

=> "foo"

These are string literals (also, amusingly, called literal strings), created using the double

quote character ". The console prints the result of evaluating each line, which in the

case of a string literal is just the string itself.

We can also concatenate strings with the + operator:

>> "foo" + "bar" # String concatenation

=> "foobar"

Here the result of evaluating "foo" plus "bar" is the string "foobar".2

2. For more on the origins of ‘‘foo’’ and ‘‘bar’’—and, in particular, the possible non-relation of ‘‘foobar’’ to
‘‘FUBAR’’—see the Jargon File entry on ‘‘foo.’’

www.it-ebooks.info

http://www.it-ebooks.info/

136 Chapter 4: Rails-Flavored Ruby

Another way to build up strings is via interpolation using the special syntax #{}:3

>> first name = "Michael" # Variable assignment

=> "Michael"

>> "#{first name} Hartl" # String interpolation

=> "Michael Hartl"

Here we’ve assigned the value "Michael" to the variable first_name and then

interpolated it into the string "#{first_name} Hartl". We could also assign both

strings a variable name:

>> first name = "Michael"

=> "Michael"

>> last name = "Hartl"

=> "Hartl"

>> first name + " " + last name # Concatenation, with a space in between

=> "Michael Hartl"

>> "#{first name} #{last name}" # The equivalent interpolation

=> "Michael Hartl"

Note that the final two expressions are equivalent, but I prefer the interpolated version;

having to add the single space " " seems a bit awkward.

Printing

To print a string, the most commonly used Ruby function is puts (pronounced ‘‘put

ess,’’ for ‘‘put string’’):

>> puts "foo" # put string

foo

=> nil

The puts method operates as a side-effect : the expression puts "foo" prints the string

to the screen and then returns literally nothing: nil is a special Ruby value for ‘‘nothing

at all.’’ (In what follows, I’ll sometimes suppress the => nil part for simplicity.)

3. Programmers familiar with Perl or PHP should compare this to the automatic interpolation of dollar sign
variables in expressions like "foo $bar".

www.it-ebooks.info

http://www.it-ebooks.info/

4.2 Strings and Methods 137

Using puts automatically appends a newline character \n to the output; the related

print method does not:

>> print "foo" # print string (same as puts, but without the newline)

foo=> nil

>> print "foo\n" # Same as puts "foo"

foo

=> nil

Single-quoted Strings

All the examples so far have used double-quoted strings, but Ruby also supports

single-quoted strings. For many uses, the two types of strings are effectively identical:

>> 'foo' # A single-quoted string

=> "foo"

>> 'foo' + 'bar'

=> "foobar"

There’s an important difference, though; Ruby won’t interpolate into single-quoted

strings:

>> '#{foo} bar' # Single-quoted strings don't allow interpolation

=> "\#{foo} bar"

Note how the console returns values using double-quoted strings, which requires a

backslash to escape special characters such as #.

If double-quoted strings can do everything that single-quoted strings can do, and

interpolate to boot, what’s the point of single-quoted strings? They are often useful

because they are truly literal and contain exactly the characters you type. For example,

the ‘‘backslash’’ character is special on most systems, as in the literal newline \n. If you

want a variable to contain a literal backslash, single quotes make it easier:

>> '\n' # A literal 'backslash n' combination

=> "\\n"

www.it-ebooks.info

http://www.it-ebooks.info/

138 Chapter 4: Rails-Flavored Ruby

As with the # character in our previous example, Ruby needs to escape the backslash with

an additional backslash; inside double-quoted strings, a literal backslash is represented

with two backslashes. For a small example like this, there’s not much savings, but if

there are lots of things to escape it can be a real help:

>> 'Newlines (\n) and tabs (\t) both use the backslash character \.'

=> "Newlines (\\n) and tabs (\\t) both use the backslash character \\."

4.2.3 Objects and Message Passing

Everything in Ruby, including strings and even nil, is an object. We’ll see the technical

meaning of this in Section 4.4.2, but I don’t think anyone ever understood objects by

reading the definition in a book; you have to build up your intuition for objects by

seeing lots of examples.

It’s easier to describe what objects do, which is respond to messages. An object like

a string, for example, can respond to the message length, which returns the number of

characters in the string:

>> "foobar".length # Passing the "length" message to a string

=> 6

Typically, the messages that get passed to objects are methods, which are functions

defined on those objects.4 Strings also respond to the empty? method:

>> "foobar".empty?

=> false

>> "".empty?

=> true

Note the question mark at the end of the empty? method. This is a Ruby convention

indicating that the return value is boolean: true or false. Booleans are especially useful

for control flow:

4. Apologies in advance for switching haphazardly between function and method throughout this chapter; in
Ruby, they’re the same thing: All methods are functions, and all functions are methods, because everything is
an object.

www.it-ebooks.info

http://www.it-ebooks.info/

4.2 Strings and Methods 139

>> s = "foobar"

>> if s.empty?

>> "The string is empty"

>> else

>> "The string is nonempty"

>> end

=> "The string is nonempty"

Booleans can also be combined using the && (‘‘and’’), || (‘‘or’’), and ! (‘‘not’’) operators:

>> x = "foo"

=> "foo"

>> y = ""

=> ""

>> puts "Both strings are empty" if x.empty? && y.empty?

=> nil

>> puts "One of the strings is empty" if x.empty? || y.empty?

"One of the strings is empty"

=> nil

>> puts "x is not empty" if !x.empty?

"x is not empty"

=> nil

Since everything in Ruby is an object, it follows that nil is an object, so it too can

respond to methods. One example is the to_s method that can convert virtually any

object to a string:

>> nil.to s

=> ""

This certainly appears to be an empty string, as we can verify by chaining the messages

we pass to nil:

>> nil.empty?

NoMethodError: You have a nil object when you didn't expect it!

You might have expected an instance of Array.

The error occurred while evaluating nil.empty?

>> nil.to s.empty? # Message chaining

=> true

We see here that the nil object doesn’t itself respond to the empty? method, but

nil.to_s does.

www.it-ebooks.info

http://www.it-ebooks.info/

140 Chapter 4: Rails-Flavored Ruby

There’s a special method for testing for nil-ness, which you might be able to guess:

>> "foo".nil?

=> false

>> "".nil?

=> false

>> nil.nil?

=> true

The code

puts "x is not empty" if !x.empty?

also shows an alternate use of the if keyword: Ruby allows you to write a statement

that is evaluated only if the statement following if is true. There’s a complementary

unless keyword that works the same way:

>> string = "foobar"

>> puts "The string '#{string}' is nonempty." unless string.empty?

The string 'foobar' is nonempty.

=> nil

It’s worth noting that the nil object is special, in that it is the only Ruby object

that is false in a boolean context, apart from false itself:

>> if nil

>> true

>> else

>> false # nil is false

>> end

=> false

In particular, all other Ruby objects are true, even 0:

>> if 0

>> true # 0 (and everything other than nil and false itself) is true

>> else

>> false

>> end

=> true

www.it-ebooks.info

http://www.it-ebooks.info/

4.2 Strings and Methods 141

4.2.4 Method Definitions

The console allows us to define methods the same way we did with the home action

from Listing 3.6 or the full_title helper from Listing 4.2. (Defining methods in the

console is a bit cumbersome, and ordinarily you would use a file, but it’s convenient for

demonstration purposes.) For example, let’s define a function string_message that

takes a single argument and returns a message based on whether the argument is empty

or not:

>> def string message(string)

>> if string.empty?

>> "It's an empty string!"

>> else

>> "The string is nonempty."

>> end

>> end

=> nil

>> puts string message("")

It's an empty string!

>> puts string message("foobar")

The string is nonempty.

Note that Ruby functions have an implicit return, meaning they return the last

statement evaluated—in this case, one of the two message strings, depending on

whether the method’s argument string is empty or not. Ruby also has an explicit

return option; the following function is equivalent to the one above:

>> def string message(string)

>> return "It's an empty string!" if string.empty?

>> return "The string is nonempty."

>> end

The alert reader might notice at this point that the second return here is actually

unnecessary—being the last expression in the function, the string "The string is

nonempty." will be returned regardless of the return keyword, but using return in

both places has a pleasing symmetry to it.

www.it-ebooks.info

http://www.it-ebooks.info/

142 Chapter 4: Rails-Flavored Ruby

4.2.5 Back to the Title Helper

We are now in a position to understand the full_title helper from Listing 4.2:5

module ApplicationHelper

Returns the full title on a per-page basis. # Documentation comment

def full title(page title) # Method definition

base title = "Ruby on Rails Tutorial Sample App" # Variable assignment

if page title.empty? # Boolean test

base title # Implicit return

else

"#{base title} | #{page title}" # String interpolation

end

end

end

These elements—function definition, variable assignment, boolean tests, control

flow, and string interpolation—come together to make a compact helper method for

use in our site layout. The final element is module ApplicationHelper: Modules

give us a way to package together related methods, which can then be mixed in to Ruby

classes using include. When writing ordinary Ruby, you often write modules and

include them explicitly yourself, but in the case of a helper module Rails handles the

inclusion for us. The result is that the full_title method is automagically available

in all our views.

4.3 Other Data Structures

Although web apps are ultimately about strings, actually making those strings requires

using other data structures as well. In this section, we’ll learn about some Ruby data

structures important for writing Rails applications.

4.3.1 Arrays and Ranges

An array is just a list of elements in a particular order. We haven’t discussed arrays yet in

the Rails Tutorial, but understanding them gives a good foundation for understanding

5. Well, there will still be one thing left that we don’t understand, which is how Rails ties this all together:
mapping URIs to actions, making the full_title helper available in views, etc. This is an interesting subject,
and I encourage you to investigate it further, but knowing exactly how Rails works is not necessary when using
Rails. (For a deeper understanding, I recommend The Rails 3 Way by Obie Fernandez.)

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Other Data Structures 143

hashes (Section 4.3.3) and for aspects of Rails data modeling (such as the has_many

association seen in Section 2.3.3 and covered more in Section 10.1.3).

So far we’ve spent a lot of time understanding strings, and there’s a natural way to

get from strings to arrays using the split method:

>> "foo bar baz".split # Split a string into a three-element array

=> ["foo", "bar", "baz"]

The result of this operation is an array of three strings. By default, split divides a

string into an array by splitting on whitespace, but you can split on nearly anything else

as well:

>> "fooxbarxbazx".split('x')

=> ["foo", "bar", "baz"]

As is conventional in most computer languages, Ruby arrays are zero-offset, which

means that the first element in the array has index 0, the second has index 1, and so on:

>> a = [42, 8, 17]

=> [42, 8, 17]

>> a[0] # Ruby uses square brackets for array access.

=> 42

>> a[1]

=> 8

>> a[2]

=> 17

>> a[-1] # Indices can even be negative!

=> 17

We see here that Ruby uses square brackets to access array elements. In addition to this

bracket notation, Ruby offers synonyms for some commonly accessed elements:6

>> a # Just a reminder of what 'a' is

=> [42, 8, 17]

>> a.first

=> 42

>> a.second

=> 8

>> a.last

6. The second method used here isn’t currently part of Ruby itself, but rather is added by Rails. It works in
this case because the Rails console automatically includes the Rails extensions to Ruby.

www.it-ebooks.info

http://www.it-ebooks.info/

144 Chapter 4: Rails-Flavored Ruby

=> 17

>> a.last == a[-1] # Comparison using ==

=> true

This last line introduces the equality comparison operator ==, which Ruby shares with

many other languages, along with the associated != (‘‘not equal’’), etc.:

>> x = a.length # Like strings, arrays respond to the 'length' method.

=> 3

>> x == 3

=> true

>> x == 1

=> false

>> x != 1

=> true

>> x >= 1

=> true

>> x < 1

=> false

In addition to length (seen in the first line above), arrays respond to a wealth of

other methods:

>> a

=> [42, 8, 17]

>> a.sort

=> [8, 17, 42]

>> a.reverse

=> [17, 8, 42]

>> a.shuffle

=> [17, 42, 8]

>> a

=> [42, 8, 17]

Note that none of the methods above changes a itself. To mutate the array, use the

corresponding ‘‘bang’’ methods (so-called because the exclamation point is usually

pronounced ‘‘bang’’ in this context):

>> a

=> [42, 8, 17]

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Other Data Structures 145

>> a.sort!

=> [8, 17, 42]

>> a

=> [8, 17, 42]

You can also add to arrays with the push method or its equivalent operator, <<:

>> a.push(6) # Pushing 6 onto an array

=> [42, 8, 17, 6]

>> a << 7 # Pushing 7 onto an array

=> [42, 8, 17, 6, 7]

>> a << "foo" << "bar" # Chaining array pushes

=> [42, 8, 17, 6, 7, "foo", "bar"]

This last example shows that you can chain pushes together and also that, unlike arrays

in many other languages, Ruby arrays can contain a mixture of different types (in this

case, integers and strings).

Before we saw split convert a string to an array. We can also go the other way

with the join method:

>> a

=> [42, 8, 17, 7, "foo", "bar"]

>> a.join # Join on nothing

=> "428177foobar"

>> a.join(', ') # Join on comma-space

=> "42, 8, 17, 7, foo, bar"

Closely related to arrays are ranges, which can probably most easily be understood

by converting them to arrays using the to_a method:

>> 0..9

=> 0..9

>> 0..9.to a # Oops, call to a on 9

NoMethodError: undefined method `to a' for 9:Fixnum

>> (0..9).to a # Use parentheses to call to a on the range

=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Although 0..9 is a valid range, the second expression above shows that we need to add

parentheses to call a method on it.

www.it-ebooks.info

http://www.it-ebooks.info/

146 Chapter 4: Rails-Flavored Ruby

Ranges are useful for pulling out array elements:

>> a = %w[foo bar baz quux] # Use %w to make a string array.

=> ["foo", "bar", "baz", "quux"]

>> a[0..2]

=> ["foo", "bar", "baz"]

Ranges also work with characters:

>> ('a'..'e').to a

=> ["a", "b", "c", "d", "e"]

4.3.2 Blocks

Both arrays and ranges respond to a host of methods that accept blocks, which are

simultaneously one of Ruby’s most powerful and most confusing features:

>> (1..5).each { |i| puts 2 * i }

2

4

6

8

10

=> 1..5

This code calls the each method on the range (1..5) and passes it the block { |i|

puts 2 * i }. The vertical bars around the variable name in |i| are Ruby syntax for

a block variable, and it’s up to the method to know what to do with the block. In this

case, the range’s each method can handle a block with a single local variable, which

we’ve called i, and it just executes the block for each value in the range.

Curly braces are one way to indicate a block, but there is a second way as well:

>> (1..5).each do |i|

?> puts 2 * i

>> end

2

4

6

8

10

=> 1..5

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Other Data Structures 147

Blocks can be more than one line, and often are. In the Rails Tutorial we’ll follow

the common convention of using curly braces only for short one-line blocks and the

do..end syntax for longer one-liners and for multi-line blocks:

>> (1..5).each do |number|

?> puts 2 * number

>> puts '--'

>> end

2

--

4

--

6

--

8

--

10

--

=> 1..5

Here I’ve used number in place of i just to emphasize that any variable name

will do.

Unless you already have a substantial programming background, there is no shortcut

to understanding blocks; you just have to see them a lot, and eventually you’ll get used

to them.7 Luckily, humans are quite good at making generalizations from concrete

examples; here are a few more, including a couple using the map method:

>> 3.times { puts "Betelgeuse!" } # 3.times takes a block with no variables.

"Betelgeuse!"

"Betelgeuse!"

"Betelgeuse!"

=> 3

>> (1..5).map { |i| i**2 } # The ** notation is for 'power'.

=> [1, 4, 9, 16, 25]

>> %w[a b c] # Recall that %w makes string arrays.

=> ["a", "b", "c"]

>> %w[a b c].map { |char| char.upcase }

=> ["A", "B", "C"]

>> %w[A B C].map { |char| char.downcase }

=> ["a", "b", "c"]

7. Programming experts, on the other hand, might benefit from knowing that blocks are closures, which are
one-shot anonymous functions with data attached.

www.it-ebooks.info

http://www.it-ebooks.info/

148 Chapter 4: Rails-Flavored Ruby

As you can see, the map method returns the result of applying the given block to each

element in the array or range.

By the way, we’re now in a position to understand the line of Ruby I threw into

Section 1.4.4 to generate random subdomains:

('a'..'z').to a.shuffle[0..7].join

Let’s build it up step-by-step:

>> ('a'..'z').to a # An alphabet array

=> ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o",

"p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]

>> ('a'..'z').to a.shuffle # Shuffle it.

=> ["c", "g", "l", "k", "h", "z", "s", "i", "n", "d", "y", "u", "t", "j", "q",

"b", "r", "o", "f", "e", "w", "v", "m", "a", "x", "p"]

>> ('a'..'z').to a.shuffle[0..7] # Pull out the first eight elements.

=> ["f", "w", "i", "a", "h", "p", "c", "x"]

>> ('a'..'z').to a.shuffle[0..7].join # Join them together to make one string.

=> "mznpybuj"

4.3.3 Hashes and Symbols

Hashes are essentially a generalization of arrays: You can think of hashes basically like

arrays, but not limited to integer indices. (In fact, some languages, especially Perl,

sometimes call hashes associative arrays for this reason.) Instead, hash indices, or keys,

can be almost any object. For example, we can use strings as keys:

>> user = {} # {} is an empty hash.

=> {}

>> user["first name"] = "Michael" # Key "first name", value "Michael"

=> "Michael"

>> user["last name"] = "Hartl" # Key "last name", value "Hartl"

=> "Hartl"

>> user["first name"] # Element access is like arrays.

=> "Michael"

>> user # A literal representation of the hash

=> {"last name"=>"Hartl", "first name"=>"Michael"}

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Other Data Structures 149

Hashes are indicated with curly braces containing key-value pairs; a pair of braces with

no key-value pairs—i.e., {}—is an empty hash. It’s important to note that the curly

braces for hashes have nothing to do with the curly braces for blocks. (Yes, this can be

confusing.) Although hashes resemble arrays, one important difference is that hashes

don’t generally guarantee keeping their elements in a particular order.8 If order matters,

use an array.

Instead of defining hashes one item at a time using square brackets, it’s easy to use

a literal representation with keys and values separated by =>, called a ‘‘hashrocket’’:

>> user = { "first name" => "Michael", "last name" => "Hartl" }

=> {"last name"=>"Hartl", "first name"=>"Michael"}

Here I’ve used the usual Ruby convention of putting an extra space at the two ends of

the hash—a convention ignored by the console output. (Don’t ask me why the spaces

are conventional; probably some early influential Ruby programmer liked the look of

the extra spaces, and the convention stuck.)

So far we’ve used strings as hash keys, but in Rails it is much more common to use

symbols instead. Symbols look kind of like strings, but prefixed with a colon instead of

surrounded by quotes. For example, :name is a symbol. You can think of symbols as

basically strings without all the extra baggage:9

>> "name".split('')

=> ["n", "a", "m", "e"]

>> :name.split('')

NoMethodError: undefined method `split' for :name:Symbol

>> "foobar".reverse

=> "raboof"

>> :foobar.reverse

NoMethodError: undefined method `reverse' for :foobar:Symbol

8. Ruby 1.9 actually guarantees that hashes keep their elements in the same order entered, but it would be
unwise to ever count on a particular ordering.

9. As a result of having less baggage, symbols are easier to compare to each other; strings need to be compared
character by character, while symbols can be compared all in one go. This makes them ideal for use as hash
keys.

www.it-ebooks.info

http://www.it-ebooks.info/

150 Chapter 4: Rails-Flavored Ruby

Symbols are a special Ruby data type shared with very few other languages, so they may

seem weird at first, but Rails uses them a lot, so you’ll get used to them fast.

In terms of symbols as hash keys, we can define a user hash as follows:

>> user = { :name => "Michael Hartl", :email => "michael@example.com" }

=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> user[:name] # Access the value corresponding to :name.

=> "Michael Hartl"

>> user[:password] # Access the value of an undefined key.

=> nil

We see here from the last example that the hash value for an undefined key is simply

nil.

Since it’s so common for hashes to use symbols as keys, Ruby 1.9 supports a new

syntax just for this special case:

>> h1 = { :name => "Michael Hartl", :email => "michael@example.com" }

=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> h2 = { name: "Michael Hartl", email: "michael@example.com" }

=> {:name=>"Michael Hartl", :email=>"michael@example.com"}

>> h1 == h2

=> true

The second syntax replaces the symbol/hashrocket combination with the name of the

key followed by a colon and a value:

{ name: "Michael Hartl", email: "michael@example.com" }

This construction more closely follows the hash notation in other languages (such as

JavaScript) and enjoys growing popularity in the Rails community. Both syntaxes are

still in common use, so it’s essential to be able to recognize them. Most hashes in the

rest of this book use the new notation, which won’t work with Ruby 1.8.7 or earlier; if

you are using an earlier version of Ruby, you will either have to upgrade to Ruby 1.9

(recommended) or use the old hash notation.

Hash values can be virtually anything, even other hashes, as seen in Listing 4.6.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Other Data Structures 151

Listing 4.6 Nested hashes.

>> params = {} # Define a hash called 'params' (short for 'parameters').

=> {}

>> params[:user] = { name: "Michael Hartl", email: "mhartl@example.com" }

=> {:name=>"Michael Hartl", :email=>"mhartl@example.com"}

>> params

=> {:user=>{:name=>"Michael Hartl", :email=>"mhartl@example.com"}}

>> params[:user][:email]

=> "mhartl@example.com"

These sorts of hashes-of-hashes, or nested hashes, are heavily used by Rails, as we’ll see

starting in Section 7.3.

As with arrays and ranges, hashes respond to the each method. For example,

consider a hash named flash with keys for two conditions, :success and :error:

>> flash = { success: "It worked!", error: "It failed." }

=> {:success=>"It worked!", :error=>"It failed."}

>> flash.each do |key, value|

?> puts "Key #{key.inspect} has value #{value.inspect}"

>> end

Key :success has value "It worked!"

Key :error has value "It failed."

Note that, while the each method for arrays takes a block with only one variable, each

for hashes takes two, a key and a value. Thus, the each method for a hash iterates

through the hash one key-value pair at a time.

The last example uses the useful inspect method, which returns a string with a

literal representation of the object it’s called on:

>> puts (1..5).to a # Put an array as a string.

1

2

3

4

5

>> puts (1..5).to a.inspect # Put a literal array.

[1, 2, 3, 4, 5]

www.it-ebooks.info

http://www.it-ebooks.info/

152 Chapter 4: Rails-Flavored Ruby

>> puts :name, :name.inspect

name

:name

>> puts "It worked!", "It worked!".inspect

It worked!

"It worked!"

By the way, using inspect to print an object is common enough that there’s a shortcut

for it, the p function:

>> p :name # Same as 'puts :name.inspect'

:name

4.3.4 CSS revisited

It’s time now to revisit the line from Listing 4.1 used in the layout to include the

cascading style sheets:

<%= stylesheet link tag "application", :media => "all" %>

We are now nearly in a position to understand this. As mentioned briefly in

Section 4.1, Rails defines a special function to include stylesheets, and

stylesheet link tag "application", :media => "all"

is a call to this function. But there are two mysteries. First, where are the parentheses?

In Ruby, they are optional; these two lines are equivalent:

Parentheses on function calls are optional.

stylesheet link tag("application", :media => "all")

stylesheet link tag "application", :media => "all"

Second, the :media argument sure looks like a hash, but where are the curly braces?

When hashes are the last argument in a function call, the curly braces are optional; these

two lines are equivalent:

Curly braces on final hash arguments are optional.

stylesheet link tag "application", { :media => "all" }

stylesheet link tag "application", :media => "all"

www.it-ebooks.info

http://www.it-ebooks.info/

4.4 Ruby Classes 153

So, we see now that the line

stylesheet link tag "application", :media => "all"

calls the stylesheet_link_tag function with two arguments: a string, indicating the

path to the stylesheet, and a hash, indicating the media type. Because of the <%= %>

brackets, the results are inserted into the template by ERb, and if you view the source

of the page in your browser you should see the HTML needed to include a stylesheet

(Listing 4.7). (You may see some extra things, like ?body=1, after the CSS filenames.

These are inserted by Rails to ensure that browsers reload the CSS when it changes on

the server.)

Listing 4.7 The HTML source produced by the CSS includes.

<link href="/assets/application.css" media="all" rel="stylesheet"

type="text/css" />

If you actually view the CSS file by navigating to http://localhost:3000/assets/

application.css, you’ll see that (apart from some comments) it is empty. We’ll set

about changing this in Chapter 5.

4.4 Ruby Classes

We’ve said before that everything in Ruby is an object, and in this section we’ll finally

get to define some of our own. Ruby, like many object-oriented languages, uses classes

to organize methods; these classes are then instantiated to create objects. If you’re new

to object-oriented programming, this may sound like gibberish, so let’s look at some

concrete examples.

4.4.1 Constructors

We’ve seen lots of examples of using classes to instantiate objects, but we have yet to do

so explicitly. For example, we instantiated a string using the double quote characters,

which is a literal constructor for strings:

>> s = "foobar" # A literal constructor for strings using double quotes

=> "foobar"

>> s.class

=> String

www.it-ebooks.info

http://www.it-ebooks.info/

154 Chapter 4: Rails-Flavored Ruby

We see here that strings respond to the method class and simply return the class they

belong to.

Instead of using a literal constructor, we can use the equivalent named constructor,

which involves calling the new method on the class name:10

>> s = String.new("foobar") # A named constructor for a string

=> "foobar"

>> s.class

=> String

>> s == "foobar"

=> true

This is equivalent to the literal constructor, but it’s more explicit about what we’re

doing.

Arrays work the same way as strings:

>> a = Array.new([1, 3, 2])

=> [1, 3, 2]

Hashes, in contrast, are different. While the array constructor Array.new takes an

initial value for the array, Hash.new takes a default value for the hash, which is the

value of the hash for a nonexistent key:

>> h = Hash.new

=> {}

>> h[:foo] # Try to access the value for the nonexistent key :foo.

=> nil

>> h = Hash.new(0) # Arrange for nonexistent keys to return 0 instead of nil.

=> {}

>> h[:foo]

=> 0

When a method gets called on the class itself, as in the case of new, it’s called a

class method. The result of calling new on a class is an object of that class, also called

an instance of the class. A method called on an instance, such as length, is called an

instance method.

10. These results will vary based on the version of Ruby you are using. This example assumes you are using
Ruby 1.9.3.

www.it-ebooks.info

http://www.it-ebooks.info/

4.4 Ruby Classes 155

4.4.2 Class Inheritance

When learning about classes, it’s useful to find out the class hierarchy using the

superclass method:

>> s = String.new("foobar")

=> "foobar"

>> s.class # Find the class of s.

=> String

>> s.class.superclass # Find the superclass of String.

=> Object

>> s.class.superclass.superclass # Ruby 1.9 uses a new BasicObject base class

=> BasicObject

>> s.class.superclass.superclass.superclass

=> nil

A diagram of this inheritance hierarchy appears in Figure 4.1. We see here that the

superclass of String is Object and the superclass of Object is BasicObject, but

BasicObject has no superclass. This pattern is true of every Ruby object: Trace

back the class hierarchy far enough and every class in Ruby ultimately inherits

from BasicObject, which has no superclass itself. This is the technical meaning of

‘‘everything in Ruby is an object.’’

To understand classes a little more deeply, there’s no substitute for making one of

our own. Let’s make a Word class with a palindrome? method that returns true if the

word is the same spelled forward and backward:

Figure 4.1 The inheritance hierarchy for the String class.

www.it-ebooks.info

http://www.it-ebooks.info/

156 Chapter 4: Rails-Flavored Ruby

>> class Word

>> def palindrome?(string)

>> string == string.reverse

>> end

>> end

=> nil

We can use it as follows:

>> w = Word.new # Make a new Word object.

=> #<Word:0x22d0b20>

>> w.palindrome?("foobar")

=> false

>> w.palindrome?("level")

=> true

If this example strikes you as a bit contrived, good; this is by design. It’s odd to

create a new class just to create a method that takes a string as an argument. Since a

word is a string, it’s more natural to have our Word class inherit from String, as seen in

Listing 4.8. (You should exit the console and re-enter it to clear out the old definition

of Word.)

Listing 4.8 Defining a Word class in the console.

>> class Word < String # Word inherits from String.

>> # Returns true if the string is its own reverse.

>> def palindrome?

>> self == self.reverse # self is the string itself.

>> end

>> end

=> nil

Here Word < String is the Ruby syntax for inheritance (discussed briefly in

Section 3.1.2), which ensures that, in addition to the new palindrome? method,

words also have all the same methods as strings:

>> s = Word.new("level") # Make a new Word, initialized with "level".

=> "level"

>> s.palindrome? # Words have the palindrome? method.

=> true

>> s.length # Words also inherit all the normal string methods.

=> 5

www.it-ebooks.info

http://www.it-ebooks.info/

4.4 Ruby Classes 157

Figure 4.2 The inheritance hierarchy for the (non-built-in) Word class from Listing 4.8.

Since the Word class inherits from String, we can use the console to see the class

hierarchy explicitly:

>> s.class

=> Word

>> s.class.superclass

=> String

>> s.class.superclass.superclass

=> Object

This hierarchy is illustrated in Figure 4.2.

In Listing 4.8, note that checking that the word is its own reverse involves accessing

the word inside the Word class. Ruby allows us to do this using the self keyword:

Inside the Word class, self is the object itself, which means we can use

self == self.reverse

to check if the word is a palindrome.11

11. For more on Ruby classes and the self keyword, see the RailsTips post ‘‘Class and Instance Variables in
Ruby.’’

www.it-ebooks.info

http://www.it-ebooks.info/

158 Chapter 4: Rails-Flavored Ruby

4.4.3 Modifying Built-in Classes

While inheritance is a powerful idea, in the case of palindromes it might be even

more natural to add the palindrome? method to the String class itself, so that

(among other things) we can call palindrome? on a string literal, which we currently

can’t do:

>> "level".palindrome?

NoMethodError: undefined method `palindrome?' for "level":String

Somewhat amazingly, Ruby lets you do just this; Ruby classes can be opened and

modified, allowing ordinary mortals such as ourselves to add methods to them:12

>> class String

>> # Returns true if the string is its own reverse.

>> def palindrome?

>> self == self.reverse

>> end

>> end

=> nil

>> "deified".palindrome?

=> true

(I don’t know which is cooler: that Ruby lets you add methods to built-in classes or

that "deified" is a palindrome.)

Modifying built-in classes is a powerful technique, but with great power comes

great responsibility, and it’s considered bad form to add methods to built-in classes

without having a really good reason for doing so. Rails does have some good reasons; for

example, in web applications we often want to prevent variables from being blank—e.g.,

a user’s name should be something other than spaces and other whitespace—so Rails

adds a blank? method to Ruby. Since the Rails console automatically includes the Rails

extensions, we can see an example here (this won’t work in plain irb):

>> "".blank?

=> true

>> " ".empty?

=> false

>> " ".blank?

12. For those familiar with JavaScript, this functionality is comparable to using a built-in class prototype object
to augment the class. (Thanks to reader Erik Eldridge for pointing this out.)

www.it-ebooks.info

http://www.it-ebooks.info/

4.4 Ruby Classes 159

=> true

>> nil.blank?

=> true

We see that a string of spaces is not empty, but it is blank. Note also that nil is blank;

since nil isn’t a string, this is a hint that Rails actually adds blank? to String’s base

class, which (as we saw at the beginning of this section) is Object itself. We’ll see some

other examples of Rails additions to Ruby classes in Section 8.2.1.

4.4.4 A Controller Class

All this talk about classes and inheritance may have triggered a flash of recognition,

because we have seen both before, in the StaticPages controller (Listing 3.15):

class StaticPagesController < ApplicationController

def home

end

def help

end

def about

end

end

You’re now in a position to appreciate, at least vaguely, what this code means:

StaticPagesController is a class that inherits from ApplicationController and

comes equipped with home, help, and about methods. Since each Rails console session

loads the local Rails environment, we can even create a controller explicitly and examine

its class hierarchy:13

>> controller = StaticPagesController.new

=> #<StaticPagesController:0x22855d0>

>> controller.class

=> StaticPagesController

>> controller.class.superclass

=> ApplicationController

13. You don’t have to know what each class in this hierarchy does. I don’t know what they all do, and I’ve
been programming in Ruby on Rails since 2005. This means either that (a) I’m grossly incompetent or (b) you
can be a skilled Rails developer without knowing all its innards. I hope for both our sakes that it’s the latter.

www.it-ebooks.info

http://www.it-ebooks.info/

160 Chapter 4: Rails-Flavored Ruby

>> controller.class.superclass.superclass

=> ActionController::Base

>> controller.class.superclass.superclass.superclass

=> ActionController::Metal

>> controller.class.superclass.superclass.superclass.superclass

=> AbstractController::Base

>> controller.class.superclass.superclass.superclass.superclass.superclass

=> Object

A diagram of this hierarchy appears in Figure 4.3.

Figure 4.3 The inheritance hierarchy for the StaticPages controller.

www.it-ebooks.info

http://www.it-ebooks.info/

4.4 Ruby Classes 161

We can even call the controller actions inside the console, which are just

methods:

>> controller.home

=> nil

Here the return value is nil because the home action is blank.

But wait—actions don’t have return values, at least not ones that matter. The

point of the home action, as we saw in Chapter 3, is to render a web page, not to

return a value. And I sure don’t remember ever calling StaticPagesController.new

anywhere. What’s going on?

What’s going on is that Rails is written in Ruby, but Rails isn’t Ruby. Some Rails

classes are used like ordinary Ruby objects, but some are just grist for Rails’ magic mill.

Rails is sui generis and should be studied and understood separately from Ruby. This is

why, if your principal programming interest is writing web applications, I recommend

learning Rails first, then learning Ruby, then looping back to Rails.

4.4.5 A User Class

We end our tour of Ruby with a complete class of our own, a User class that anticipates

the User model coming up in Chapter 6.

So far we’ve entered class definitions at the console, but this quickly becomes

tiresome; instead, create the file example_user.rb in your application root directory

and fill it with the contents of Listing 4.9.

Listing 4.9 Code for an example user.

example_user.rb

class User

attr accessor :name, :email

def initialize(attributes = {})

@name = attributes[:name]

@email = attributes[:email]

end

def formatted email

"#{@name} <#{@email}>"

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

162 Chapter 4: Rails-Flavored Ruby

There’s quite a bit going on here, so let’s take it step by step. The first line,

attr accessor :name, :email

creates attribute accessors corresponding to a user’s name and email address. This creates

‘‘getter’’ and ‘‘setter’’ methods that allow us to retrieve (get) and assign (set) @name and

@email instance variables, which were mentioned briefly in Section 2.2.2. In Rails, the

principal importance of instance variables is that they are automatically available in the

views, but in general they are used for variables that need to be available throughout a

Ruby class. (We’ll have more to say about this in a moment.) Instance variables always

begin with an @ sign, and are nil when undefined.

The first method, initialize, is special in Ruby: It’s the method called

when we execute User.new. This particular initialize takes one argument,

attributes:

def initialize(attributes = {})

@name = attributes[:name]

@email = attributes[:email]

end

Here the attributes variable has a default value equal to the empty hash, so that we

can define a user with no name or email address (recall from Section 4.3.3 that hashes

return nil for nonexistent keys, so attributes[:name] will be nil if there is no

:name key, and similarly for attributes[:email]).

Finally, our class defines a method called formatted_email that uses the values

of the assigned @name and @email variables to build up a nicely formatted version of

the user’s email address using string interpolation (Section 4.2.2):

def formatted email

"#{@name} <#{@email}>"

end

Because @name and @email are both instance variables (as indicated with the @ sign),

they are automatically available in the formatted_email method.

www.it-ebooks.info

http://www.it-ebooks.info/

4.4 Ruby Classes 163

Let’s fire up the console, require the example user code, and take our User class

out for a spin:

>> require './example user' # This is how you load the example user code.

=> ["User"]

>> example = User.new

=> #<User:0x224ceec @email=nil, @name=nil>

>> example.name # nil since attributes[:name] is nil

=> nil

>> example.name = "Example User" # Assign a non-nil name

=> "Example User"

>> example.email = "user@example.com" # and a non-nil email address

=> "user@example.com"

>> example.formatted email

=> "Example User <user@example.com>"

Here the ’.’ is Unix for ‘‘current directory,’’ and ’./example_user’ tells Ruby to

look for an example user file relative to that location. The subsequent code creates an

empty example user and then fills in the name and email address by assigning directly

to the corresponding attributes (assignments made possible by the attr_accessor line

in Listing 4.9). When we write

example.name = "Example User"

Ruby is setting the @name variable to "Example User" (and similarly for the email

attribute), which we then use in the formatted_email method.

Recalling from Section 4.3.4 that we can omit the curly braces for final hash

arguments, we can create another user by passing a hash to the initialize method to

create a user with predefined attributes:

>> user = User.new(name: "Michael Hartl", email: "mhartl@example.com")

=> #<User:0x225167c @email="mhartl@example.com", @name="Michael Hartl">

>> user.formatted email

=> "Michael Hartl <mhartl@example.com>"

We will see starting in Chapter 7 that initializing objects using a hash argument is

common in Rails applications.

www.it-ebooks.info

http://www.it-ebooks.info/

164 Chapter 4: Rails-Flavored Ruby

4.5 Conclusion

This concludes our overview of the Ruby language. In Chapter 5, we’ll start putting it

to good use in developing the sample application.

We won’t be using the example_user.rb file from Section 4.4.5, so I suggest

removing it:

$ rm example user.rb

Then commit the other changes to the main source code repository:

$ git add .

$ git commit -m "Add a full_title helper"

4.6 Exercises

1. By replacing the question marks in Listing 4.10 with the appropriate methods,

combine split, shuffle, and join to write a function that shuffles the letters in

a given string.

2. Using Listing 4.11 as a guide, add a shuffle method to the String class.

3. Create three hashes called person1, person2, and person3, with first and last

names under the keys :first and :last. Then create a params hash so that params

[:father] is person1, params[:mother] is person2, and params[:child]

is person3. Verify that, for example, params[:father][:first] has the right

value.

4. Find an online version of the Ruby API and read about the Hash method merge.

5. Find and follow the Ruby Koans to reach Ruby enlightenment.

Listing 4.10 Skeleton for a string shuffle function.

>> def string shuffle(s)

>> s.split('').?.?

>> end

=> nil

>> string shuffle("foobar")

www.it-ebooks.info

http://www.it-ebooks.info/

4.6 Exercises 165

Listing 4.11 Skeleton for a shuffle method attached to the String class.

>> class String

>> def shuffle

>> self.split('').?.?

>> end

>> end

=> nil

>> "foobar".shuffle

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Filling in the Layout

In the process of taking a brief tour of Ruby in Chapter 4, we learned about including

the application stylesheet into the sample application—but, as noted in Section 4.3.4,

this stylesheet is currently empty. In this chapter, we’ll change this by incorporating the

Bootstrap framework into our application, and then we’ll add some custom styles of our

own.1 We’ll also start filling in the layout with links to the pages (such as Home and

About) that we’ve created so far (Section 5.1). Along the way, we’ll learn about partials,

Rails routes, and the asset pipeline, including an introduction to Sass (Section 5.2).

We’ll also refactor the tests from Chapter 3 using the latest RSpec techniques. We’ll

end by taking a first important step toward letting users sign up to our site.

5.1 Adding Some Structure

Rails Tutorial is a book on web development, not web design, but it would be depressing

to work on an application that looks like complete crap, so in this section we’ll add

some structure to the layout and give it some minimal styling with CSS. In addition

to using some custom CSS rules, we’ll make use of Bootstrap, an open-source web

design framework from Twitter. We’ll also give our code some styling, so to speak, using

partials to tidy up the layout once it gets a little cluttered.

When building web applications, it is often useful to get a high-level overview of

the user interface as early as possible. Throughout the rest of this book, I will thus often

include mockups (in a web context often called wireframes), which are rough sketches

1. Thanks to reader Colm Tuite for his excellent work in helping to convert the sample application over to
Bootstrap.

167

www.it-ebooks.info

http://www.it-ebooks.info/

168 Chapter 5: Filling in the Layout

Figure 5.1 A mockup of the sample application’s Home page.

of what the eventual application will look like.2 In this chapter, we will principally be

developing the static pages introduced in Section 3.1, including a site logo, a navigation

header, and a site footer. A mockup for the most important of these pages, the Home

page, appears in Figure 5.1. You can see the final result in Figure 5.7. You’ll note that it

differs in some details—for example, we’ll end up adding a Rails logo on the page—but

that’s fine, since a mockup need not be exact.

As usual, if you’re using Git for version control, now would be a good time to make

a new branch:

$ git checkout -b filling-in-layout

2. The mockups in the Ruby on Rails Tutorial are made with an excellent online mockup application called
Mockingbird.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 Adding Some Structure 169

5.1.1 Site Navigation

As a first step toward adding links and styles to the sample application, we’ll update

the site layout file application.html.erb (last seen in Listing 4.3) with additional

HTML structure. This includes some additional divisions, some CSS classes, and the

start of our site navigation. The full file is in Listing 5.1; explanations for the various

pieces follow immediately thereafter. If you’d rather not delay gratification, you can see

the results in Figure 5.2. (Note: it’s not (yet) very gratifying.)

Listing 5.1 The site layout with added structure.

app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full title(yield(:title)) %></title>

<%= stylesheet link tag "application", media: "all" %>

<%= javascript include tag "application" %>

<%= csrf meta tags %>

<!--[if lt IE 9]>

<script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>

<![endif]-->

</head>

<body>

<header class="navbar navbar-fixed-top">

<div class="navbar-inner">

<div class="container">

<%= link to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav pull-right">

<%= link to "Home", '#' %>

<%= link to "Help", '#' %>

<%= link to "Sign in", '#' %>

</nav>

</div>

</div>

</header>

<div class="container">

<%= yield %>

</div>

</body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

170 Chapter 5: Filling in the Layout

One thing to note immediately is the switch from Ruby 1.8–style hashes to the

new Ruby 1.9 style (Section 4.3.3). That is,

<%= stylesheet link tag "application", :media => "all" %>

has been replaced with

<%= stylesheet link tag "application", media: "all" %>

It’s important to note the old hash syntax is deeply entrenched, so it’s important to be

able to recognize both.

Let’s look at the other new elements in Listing 5.1 from top to bottom. As noted

briefly in Section 3.1, Rails 3 uses HTML5 by default (as indicated by the doctype

<!DOCTYPE html>); since the HTML5 standard is relatively new, some browsers

(especially older versions Internet Explorer) don’t fully support it, so we include some

JavaScript code (known as an ‘‘HTML5 shim’’) to work around the issue:

<!--[if lt IE 9]>

<script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>

<![endif]-->

The somewhat odd syntax

<!--[if lt IE 9]>

includes the enclosed line only if the version of Microsoft Internet Explorer (IE) is less

than 9 (if lt IE 9). The weird [if lt IE 9] syntax is not part of Rails; it’s actually

a conditional comment supported by Internet Explorer browsers for just this sort of

situation. It’s a good thing, too, because it means we can include the HTML5 shim only

for IE browsers less than version 9, leaving other browsers such as Firefox, Chrome, and

Safari unaffected.

The next section includes a header for the site’s (plain-text) logo, a couple of

divisions (using the div tag), and a list of elements with navigation links:

<header class="navbar navbar-fixed-top">

<div class="navbar-inner">

<div class="container">

<%= link to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav pull-right">

<%= link to "Home", '#' %>

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 Adding Some Structure 171

<%= link to "Help", '#' %>

<%= link to "Sign in", '#' %>

</nav>

</div>

</div>

</header>

Here the header tag indicates elements that should go at the top of the page. We’ve given

the header tag two CSS classes,3 called navbar and navbar-fixed-top, separated

with a space:

<header class="navbar navbar-fixed-top">

All HTML elements can be assigned both classes and ids; these are merely labels and

are useful for styling with CSS (Section 5.1.2). The main difference between classes and

ids is that classes can be used multiple times on a page, but ids can be used only once.

In the present case, both of the navbar and navbar-fixed-top classes have special

meaning to the Bootstrap framework, which we’ll install and use in Section 5.1.2.

Inside the header tag, we see a couple of div tags:

<div class="navbar-inner">

<div class="container">

The div tag is a generic division; it doesn’t do anything apart from dividing the

document into distinct parts. In older-style HTML, div tags are used for nearly all

site divisions, but HTML5 adds the header, nav, and section elements for divisions

common to many applications. In this case, each div has a CSS class as well. As with

the header tag’s classes, these classes have special meaning to Bootstrap.

After the divs, we encounter some embedded Ruby:

<%= link to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav pull-right">

<%= link to "Home", '#' %>

<%= link to "Help", '#' %>

<%= link to "Sign in", '#' %>

</nav>

3. These are completely unrelated to Ruby classes.

www.it-ebooks.info

http://www.it-ebooks.info/

172 Chapter 5: Filling in the Layout

This uses the Rails helper link_to to create links (which we created directly with the

anchor tag a in Section 3.3.2); the first argument to link_to is the link text, while the

second is the URI. We’ll fill in the URIs with named routes in Section 5.3.3, but for

now we use the stub URI ’#’ commonly used in web design. The third argument is an

options hash, in this case adding the CSS id logo to the sample app link. (The other

three links have no options hash, which is fine since it’s optional.) Rails helpers often

take options hashes in this way, giving us the flexibility to add arbitrary HTML options

without ever leaving Rails.

The second element inside the divs is a list of navigation links, made using the

unordered list tag ul, together with the list item tag li:

<nav>

<ul class="nav pull-right">

<%= link to "Home", '#' %>

<%= link to "Help", '#' %>

<%= link to "Sign in", '#' %>

</nav>

The nav tag, though formally unnecessary here, communicates the purpose of the

navigation links. The nav and pull-right classes on the ul tag have special meaning

to Bootstrap. Once Rails has processed this layout and evaluated the embedded Ruby,

the list looks like this:

<nav>

<ul class="nav pull-right">

Home

Help

Sign in

</nav>

The final part of the layout is a div for the main content:

<div class="container">

<%= yield %>

</div>

As before, the container class has special meaning to Bootstrap. As we learned in

Section 3.3.4, the yield method inserts the contents of each page into the site layout.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 Adding Some Structure 173

Apart from the site footer, which we’ll add in Section 5.1.3, our layout is now

complete, and we can look at the results by visiting the Home page. To take advantage

of the upcoming style elements, we’ll add some extra elements to the home.html.erb

view (Listing 5.2).

Listing 5.2 The Home page with a link to the signup page.

app/views/static_pages/home.html.erb

<div class="center hero-unit">

<h1>Welcome to the Sample App</h1>

<h2>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</h2>

<%= link to "Sign up now!", '#', class: "btn btn-large btn-primary" %>

</div>

<%= link to image tag("rails.png", alt: "Rails"), 'http://rubyonrails.org/' %>

In preparation for adding users to our site in Chapter 7, the first link_to creates a stub

link of the form

Sign up now!

In the div tag, the hero-unit CSS class has a special meaning to Bootstrap, as do the

btn, btn-large, and btn-primary classes in the signup button.

The second link_to shows off the image_tag helper, which takes as arguments

the path to an image and an optional options hash, in this case setting the alt attribute

of the image tag using symbols. To make this clearer, let’s look at the HTML this tag

produces:4

4. You might notice that the img tag, rather than looking like ..., instead looks like
. Tags that follow this form are known as self-closing tags.

www.it-ebooks.info

http://www.it-ebooks.info/

174 Chapter 5: Filling in the Layout

The alt attribute is what will be displayed if there is no image, and it is also what

will be displayed by screen readers for the visually impaired. Although people are

sometimes sloppy about including the alt attribute for images, it is in fact required

by the HTML standard. Luckily, Rails includes a default alt attribute; if you don’t

specify the attribute in the call to image_tag, Rails just uses the image filename

(minus extension). In this case, though, we’ve set the alt text explicitly in order to

capitalize ‘‘Rails.’’

Now we’re finally ready to see the fruits of our labors (Figure 5.2). Pretty under-

whelming, you say? Perhaps so. Happily, though, we’ve done a good job of giving our

HTML elements sensible classes, which puts us in a great position to add style to the

site with CSS.

Figure 5.2 The Home page (/static pages/home) with no custom CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 Adding Some Structure 175

By the way, you might be surprised to discover that the rails.png image

actually exists. Where did it come from? It’s included for free with every new Rails

application, and you will find it in app/assets/images/rails.png. Because we used

the image_tag helper, Rails finds it automatically using the asset pipeline (Section 5.2).

5.1.2 Bootstrap and Custom CSS

In Section 5.1.1, we associated many of the HTML elements with CSS classes, which

gives us considerable flexibility in constructing a layout based on CSS. As noted in

Section 5.1.1, many of these classes are specific to Bootstrap, a framework from Twitter

that makes it easy to add nice web design and user interface elements to an HTML5

application. In this section, we’ll combine Bootstrap with some custom CSS rules to

start adding some style to the sample application.

Our first step is to add Bootstrap, which in Rails applications can be accomplished

with the bootstrap-sass gem, as shown in Listing 5.3. The Bootstrap framework

natively uses the LESS CSS language for making dynamic stylesheets, but the Rails

asset pipeline supports the (very similar) Sass language by default (Section 5.2), so

bootstrap-sass converts LESS to Sass and makes all the necessary Bootstrap files

available to the current application.5

Listing 5.3 Adding the bootstrap-sass gem to the Gemfile.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

gem 'bootstrap-sass', '2.0.0'

.

.

.

To install Bootstrap, we run bundle install as usual:

$ bundle install

5. It is also possible to use LESS with the asset pipeline; see the less-rails-bootstrap gem for details.

www.it-ebooks.info

http://www.it-ebooks.info/

176 Chapter 5: Filling in the Layout

Then restart the web server to incorporate the changes into the development

application.

The first step in adding custom CSS to our application is to create a file to

contain it:

app/assets/stylesheets/custom.css.scss

(Use you text editor or IDE to create the new file.) Here both the directory name and

filename are important. The directory

app/assets/stylesheets

is part of the asset pipeline (Section 5.2), and any stylesheets in this directory will

automatically be included as part of the application.css file included in the site

layout. Furthermore, the filename custom.css.scss includes the .css extension,

which indicates a CSS file, and the .scss extension, which indicates a ‘‘Sassy CSS’’ file

and arranges for the asset pipeline to process the file using Sass. (We won’t be using

Sass until Section 5.2.2, but it’s needed now for the bootstrap-sass gem to work

its magic.)

After creating the file for custom CSS, we can use the @import function to include

Bootstrap, as shown in Listing 5.4.

Listing 5.4 Adding Bootstrap CSS.

app/assets/stylesheets/custom.css.scss

@import "bootstrap";

This one line includes the entire Bootstrap CSS framework, with the result shown in in

Figure 5.3. The placement of the text isn’t good and the logo doesn’t have any style,

but the colors and signup button look promising.

Next we’ll add some CSS that will be used site-wide for styling the layout and each

individual page, as shown in Listing 5.5. There are quite a few rules in Listing 5.5; to

get a sense of what a CSS rule does, it’s often helpful to comment it out using CSS

comments, i.e., by putting it inside /* ... */, and seeing what changes. The result of

the CSS in Listing 5.5 is shown in Figure 5.4.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 Adding Some Structure 177

Figure 5.3 The sample application with Bootstrap CSS.

Listing 5.5 Adding CSS for some universal styling applying to all pages.

app/assets/stylesheets/custom.css.scss

@import "bootstrap";

/* universal */

html {

overflow-y: scroll;

}

body {

padding-top: 60px;

}

www.it-ebooks.info

http://www.it-ebooks.info/

178 Chapter 5: Filling in the Layout

section {

overflow: auto;

}

textarea {

resize: vertical;

}

.center {

text-align: center;

}

.center h1 {

margin-bottom: 10px;

}

Figure 5.4 Adding some spacing and other universal styling.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 Adding Some Structure 179

Note that the CSS in Listing 5.5 has a consistent form. In general, CSS rules refer

either to a class, an id, an HTML tag, or some combination thereof, followed by a list

of styling commands. For example,

body {

padding-top: 60px;

}

puts 60 pixels of padding at the top of the page. Because of the navbar-fixed-top

class in the header tag, Bootstrap fixes the navigation bar to the top of the page, so the

padding serves to separate the main text from the navigation. Meanwhile, the CSS in

the rule

.center {

text-align: center;

}

associates the center class with the text-align: center property. In other words,

the dot . in .center indicates that the rule styles a class. (As we’ll see in Listing 5.7,

the pound sign # identifies a rule to style a CSS id.) This means that elements inside

any tag (such as a div) with class center will be centered on the page. (We saw an

example of this class in Listing 5.2.)

Although Bootstrap comes with CSS rules for nice typography, we’ll also add some

custom rules for the appearance of the text on our site, as shown in Listing 5.6. (Not all

of these rules apply to the Home page, but each rule here will be used at some point in

the sample application.) The result of Listing 5.6 is shown in Figure 5.5.

Listing 5.6 Adding CSS for nice typography.

app/assets/stylesheets/custom.css.scss

@import "bootstrap";

.

.

.

/* typography */

h1, h2, h3, h4, h5, h6 {

line-height: 1;

}

www.it-ebooks.info

http://www.it-ebooks.info/

180 Chapter 5: Filling in the Layout

h1 {

font-size: 3em;

letter-spacing: -2px;

margin-bottom: 30px;

text-align: center;

}

h2 {

font-size: 1.7em;

letter-spacing: -1px;

margin-bottom: 30px;

text-align: center;

font-weight: normal;

color: #999;

}

p {

font-size: 1.1em;

line-height: 1.7em;

}

Figure 5.5 Adding some typographic styling.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 Adding Some Structure 181

Finally, we’ll add some rules to style the site’s logo, which simply consists of the

text ‘‘sample app.’’ The CSS in Listing 5.7 converts the text to uppercase and modifies

its size, color, and placement. (We’ve used a CSS id because we expect the site logo to

appear on the page only once, but you could use a class instead.)

Listing 5.7 Adding CSS for the site logo.

app/assets/stylesheets/custom.css.scss

@import "bootstrap";

.

.

.

/* header */

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

line-height: 1;

}

#logo:hover {

color: #fff;

text-decoration: none;

}

Here color: #fff changes the color of the logo to white. HTML colors can be coded

with three base-16 (hexadecimal) numbers, one each for the primary colors red, green,

and blue (in that order). The code #ffffff maxes out all three colors, yielding pure

white, and #fff is a shorthand for the full #ffffff. The CSS standard also defines a

large number of synonyms for common HTML colors, including white for #fff. The

result of the CSS in Listing 5.7 is shown in Figure 5.6.

5.1.3 Partials

Although the layout in Listing 5.1 serves its purpose, it’s getting a little cluttered. The

HTML shim takes up three lines and uses weird IE-specific syntax, so it would be nice

www.it-ebooks.info

http://www.it-ebooks.info/

182 Chapter 5: Filling in the Layout

Figure 5.6 The sample app with nicely styled logo.

to tuck it away somewhere on its own. In addition, the header HTML forms a logical

unit, so it should all be packaged up in one place. The way to achieve this in Rails is to

use a facility called partials. Let’s first take a look at what the layout looks like after the

partials are defined (Listing 5.8).

Listing 5.8 The site layout with partials for the stylesheets and header.

app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full title(yield(:title)) %></title>

<%= stylesheet link tag "application", media: "all" %>

<%= javascript include tag "application" %>

<%= csrf meta tags %>

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 Adding Some Structure 183

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

</div>

</body>

</html>

In Listing 5.8, we’ve replaced the HTML shim stylesheet lines with a single call to

a Rails helper called render:

<%= render 'layouts/shim' %>

The effect of this line is to look for a file called app/views/layouts/_shim.html.erb,

evaluate its contents, and insert the results into the view.6 (Recall that <%= ... %> is the

embedded Ruby syntax needed to evaluate a Ruby expression and then insert the results

into the template.) Note the leading underscore on the filename _shim.html.erb; this

underscore is the universal convention for naming partials and, among other things,

makes it possible to identify all the partials in a directory at a glance.

Of course, to get the partial to work, we have to fill it with some content; in the

case of the shim partial, this is just the three lines of shim code from Listing 5.1; the

result appears in Listing 5.9.

Listing 5.9 A partial for the HTML shim.

app/views/layouts/_shim.html.erb

<!--[if lt IE 9]>

<script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>

<![endif]-->

Similarly, we can move the header material into the partial shown in Listing 5.10

and insert it into the layout with another call to render.

6. Many Rails developers use a shared directory for partials shared across different views. I prefer to use the
shared folder for utility partials that are useful on multiple views, while putting partials that are literally on
every page (as part of the site layout) in the layouts directory. (We’ll create the shared directory starting in
Chapter 7.) That seems to me a logical division, but putting them all in the shared folder certainly works fine,
too.

www.it-ebooks.info

http://www.it-ebooks.info/

184 Chapter 5: Filling in the Layout

Listing 5.10 A partial for the site header.

app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top">

<div class="navbar-inner">

<div class="container">

<%= link to "sample app", '#', id: "logo" %>

<nav>

<ul class="nav pull-right">

<%= link to "Home", '#' %>

<%= link to "Help", '#' %>

<%= link to "Sign in", '#' %>

</nav>

</div>

</div>

</header>

Now that we know how to make partials, let’s add a site footer to go along with the

header. By now you can probably guess that we’ll call it _footer.html.erb and put it

in the layouts directory (Listing 5.11).7

Listing 5.11 A partial for the site footer.

app/views/layouts/_footer.html.erb

<footer class="footer">

<small>

Rails Tutorial

by Michael Hartl

</small>

<nav>

<%= link to "About", '#' %>

<%= link to "Contact", '#' %>

News

</nav>

</footer>

As with the header, in the footer we’ve used link_to for the internal links to the About

and Contact pages and stubbed out the URIs with ’#’ for now. (As with header, the

footer tag is new in HTML5.)

7. You may wonder why we use both the footer tag and .footer class. The answer is that the tag has a clear
meaning to human readers, and the class is used by Bootstrap. Using a div tag in place of footer would work
as well.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 Adding Some Structure 185

We can render the footer partial in the layout by following the same pattern as the

stylesheets and header partials (Listing 5.12).

Listing 5.12 The site layout with a footer partial.

app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

<head>

<title><%= full title(yield(:title)) %></title>

<%= stylesheet link tag "application", media: "all" %>

<%= javascript include tag "application" %>

<%= csrf meta tags %>

<%= render 'layouts/shim' %>

</head>

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

<%= render 'layouts/footer' %>

</div>

</body>

</html>

Of course, the footer will be ugly without some styling (Listing 5.13). The results

appear in Figure 5.7.

Listing 5.13 Adding the CSS for the site footer.

app/assets/stylesheets/custom.css.scss

.

.

.

/* footer */

footer {

margin-top: 45px;

padding-top: 5px;

border-top: 1px solid #eaeaea;

color: #999;

}

footer a {

color: #555;

}

www.it-ebooks.info

http://www.it-ebooks.info/

186 Chapter 5: Filling in the Layout

footer a:hover {

color: #222;

}

footer small {

float: left;

}

footer ul {

float: right;

list-style: none;

}

footer ul li {

float: left;

margin-left: 10px;

}

Figure 5.7 The Home page (/static pages/home) with an added footer.

www.it-ebooks.info

http://www.it-ebooks.info/

5.2 Sass and the Asset Pipeline 187

5.2 Sass and the Asset Pipeline

One of the most notable differences between Rails 3.0 and more recent versions is the

asset pipeline, which significantly improves the production and management of static

assets such as CSS, JavaScript, and images. This section gives a high-level overview of

the asset pipeline and then shows how to use a remarkable tool for making CSS called

Sass, now included by default as part of the asset pipeline.

5.2.1 The Asset Pipeline

The asset pipeline involves lots of changes under Rails’ hood, but from the perspective

of a typical Rails developer there are three principal features to understand: asset

directories, manifest files, and preprocessor engines.8 Let’s consider each in turn.

Asset Directories

In versions of Rails before 3.0 (including 3.0 itself), static assets lived in the public/

directory, as follows:

• public/stylesheets

• public/javascripts

• public/images

Files in these directories are (even post-3.0) automatically served up via requests to

http://example.com/stylesheets, etc.

Starting in Rails 3.1, there are three canonical directories for static assets, each with

its own purpose:

• app/assets: assets specific to the present application

• lib/assets: assets for libraries written by your dev team

• vendor/assets: assets from third-party vendors

As you might guess, each of these directories has a subdirectory for each asset class, e.g.,

$ ls app/assets/

images javascripts stylesheets

8. The structure of this section is based on the excellent blog post The Rails 3 Asset Pipeline in (about) 5
Minutes by Michael Erasmus. For more details, see the Rails Guide on the Asset Pipeline.

www.it-ebooks.info

http://www.it-ebooks.info/

188 Chapter 5: Filling in the Layout

At this point, we’re in a position to understand the motivation behind the location

of the custom.css.scss file in Section 5.1.2: custom.css.scss is specific to the

sample application, so it goes in app/assets/stylesheets.

Manifest Files

Once you’ve placed your assets in their logical locations, you can use manifest files to tell

Rails (via the Sprockets gem) how to combine them to form single files. (This applies

to CSS and JavaScript but not to images.) As an example, let’s take a look at the default

manifest file for app stylesheets (Listing 5.14).

Listing 5.14 The manifest file for app-specific CSS.

app/assets/stylesheets/application.css

/*

* This is a manifest file that'll automatically include all the stylesheets

* available in this directory and any sub-directories. You're free to add

* application-wide styles to this file and they'll appear at the top of the

* compiled file, but it's generally better to create a new file per style

* scope.

*= require self

*= require tree .

*/

The key lines here are actually CSS comments, but they are used by Sprockets to include

the proper files:

/*

.

.

.

*= require self

*= require tree .

*/

Here

*= require tree .

www.it-ebooks.info

http://www.it-ebooks.info/

5.2 Sass and the Asset Pipeline 189

ensures that all CSS files in the app/assets/stylesheets directory (including the

tree subdirectories) are included into the application CSS. The line

*= require self

ensures that CSS in application.css is also included.

Rails comes with sensible default manifest files, and in the Rails Tutorial we won’t

need to make any changes, but the Rails Guides entry on the asset pipeline has more

detail if you need it.

Preprocessor Engines

After you’ve assembled your assets, Rails prepares them for the site template by running

them through several preprocessing engines and using the manifest files to combine

them for delivery to the browser. We tell Rails which processor to use using filename

extensions; the three most common cases are .scss for Sass, .coffee for CoffeeScript,

and .erb for embedded Ruby (ERb). We first covered ERb in Section 3.3.3, and cover

Sass in Section 5.2.2. We won’t be needing CoffeeScript in this tutorial, but it’s an

elegant little language that compiles to JavaScript. (The RailsCast on CoffeeScript basics

is a good place to start.)

The preprocessor engines can be chained, so that

foobar.js.coffee

gets run through the CoffeeScript processor, and

foobar.js.erb.coffee

gets run through both CoffeeScript and ERb (with the code running from right to left,

i.e., CoffeeScript first).

Efficiency in Production

One of the best things about the asset pipeline is that it automatically results in assets

that are optimized to be efficient in a production application. Traditional methods for

organizing CSS and JavaScript involve splitting functionality into separate files and

using nice formatting (with lots of indentation). While convenient for the programmer,

this is inefficient in production; including multiple full-sized files can significantly slow

page-load times (one of the most important factors affecting the quality of the user

experience). With the asset pipeline, in production all the application stylesheets get

www.it-ebooks.info

http://www.it-ebooks.info/

190 Chapter 5: Filling in the Layout

rolled into one CSS file (application.css), all the application JavaScript code gets

rolled into one JavaScript file (javascripts.js), and all such files (including those in

lib/assets and vendor/assets) are minified to remove the unnecessary whitespace

that bloats file size. As a result, we get the best of both worlds: multiple nicely formatted

files for programmer convenience, with single optimized files in production.

5.2.2 Syntactically Awesome Stylesheets

Sass is a language for writing stylesheets that improves on CSS in many ways. In this

section, we cover two of the most important improvements, nesting and variables. (A

third technique, mixins, is introduced in Section 7.1.1.)

As noted briefly in Section 5.1.2, Sass supports a format called SCSS (indicated

with a .scss filename extension), which is a strict superset of CSS itself; that is, SCSS

only adds features to CSS, rather than defining an entirely new syntax.9 This means

that every valid CSS file is also a valid SCSS file, which is convenient for projects

with existing style rules. In our case, we used SCSS from the start in order to take

advantage of Bootstrap. Since the Rails asset pipeline automatically uses Sass to process

files with the .scss extension, the custom.css.scss file will be run through the Sass

preprocessor before being packaged up for delivery to the browser.

Nesting

A common pattern in stylesheets is having rules that apply to nested elements. For

example, in Listing 5.5 we have rules both for .center and for .center h1:

.center {

text-align: center;

}

.center h1 {

margin-bottom: 10px;

}

9. The older .sass format, also supported by Sass, defines a new language that is less verbose (and has fewer
curly braces) but is less convenient for existing projects and is harder to learn for those already familiar with
CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

5.2 Sass and the Asset Pipeline 191

We can replace this in Sass with

.center {

text-align: center;

h1 {

margin-bottom: 10px;

}

}

Here the nested h1 rule automatically inherits the .center context.

There’s a second candidate for nesting that requires a slightly different syntax. In

Listing 5.7, we have the code

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

line-height: 1;

}

#logo:hover {

color: #fff;

text-decoration: none;

}

Here the logo id #logo appears twice, once by itself and once with the hover attribute

(which controls its appearance when the mouse pointer hovers over the element in

question). In order to nest the second rule, we need to reference the parent element

#logo; in SCSS, this is accomplished with the ampersand character & as follows:

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: #fff;

www.it-ebooks.info

http://www.it-ebooks.info/

192 Chapter 5: Filling in the Layout

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

line-height: 1;

&:hover {

color: #fff;

text-decoration: none;

}

}

Sass changes &:hover into #logo:hover as part of converting from SCSS to CSS.

Both of these nesting techniques apply to the footer CSS in Listing 5.13, which

can be transformed into the following:

footer {

margin-top: 45px;

padding-top: 5px;

border-top: 1px solid #eaeaea;

color: #999;

a {

color: #555;

&:hover {

color: #222;

}

}

small {

float: left;

}

ul {

float: right;

list-style: none;

li {

float: left;

margin-left: 10px;

}

}

}

Converting Listing 5.13 by hand is a good exercise, and you should verify that the CSS

still works properly after the conversion.

www.it-ebooks.info

http://www.it-ebooks.info/

5.2 Sass and the Asset Pipeline 193

Variables

Sass allows us to define variables to eliminate duplication and write more expressive

code. For example, looking at Listing 5.6 and Listing 5.13, we see that there are repeated

references to the same color:

h2 {

.

.

.

color: #999;

}

.

.

.

footer {

.

.

.

color: #999;

}

In this case, #999 is a light gray, and we can give it a name by defining a variable as

follows:

$lightGray: #999;

This allows us to rewrite our SCSS like this:

$lightGray: #999;

.

.

.

h2 {

.

.

.

color: $lightGray;

}

.

.

.

www.it-ebooks.info

http://www.it-ebooks.info/

194 Chapter 5: Filling in the Layout

footer {

.

.

.

color: $lightGray;

}

Because variable names such as $lightGray are more descriptive than #999,

it’s often useful to define variables even for values that aren’t repeated. Indeed, the

Bootstrap framework defines a large number of variables for colors, available online on

the Bootstrap page of LESS variables. That page defines variables using LESS, not Sass,

but the bootstrap-sass gem provides the Sass equivalents. It is not difficult to guess

the correspondence; where LESS uses an ‘‘at’’ sign @, Sass uses a dollar sign $. Looking

the Bootstrap variable page, we see that there is a variable for light gray:

@grayLight: #999;

This means that, via the bootstrap-sass gem, there should be a corresponding SCSS

variable $grayLight. We can use this to replace our custom variable, $lightGray,

which gives

h2 {

.

.

.

color: $grayLight;

}

.

.

.

footer {

.

.

.

color: $grayLight;

}

Applying the Sass nesting and variable definition features to the full SCSS file gives

the file in Listing 5.15. This uses both Sass variables (as inferred from the Bootstrap

LESS variable page) and built-in named colors (i.e., white for #fff). Note in particular

the dramatic improvement in the rules for the footer tag.

www.it-ebooks.info

http://www.it-ebooks.info/

5.2 Sass and the Asset Pipeline 195

Listing 5.15 The initial SCSS file converted to use nesting and variables.

app/assets/stylesheets/custom.css.scss

@import "bootstrap";

/* mixins, variables, etc. */

$grayMediumLight: #eaeaea;

/* universal */

html {

overflow-y: scroll;

}

body {

padding-top: 60px;

}

section {

overflow: auto;

}

textarea {

resize: vertical;

}

.center {

text-align: center;

h1 {

margin-bottom: 10px;

}

}

/* typography */

h1, h2, h3, h4, h5, h6 {

line-height: 1;

}

h1 {

font-size: 3em;

letter-spacing: -2px;

margin-bottom: 30px;

text-align: center;

}

www.it-ebooks.info

http://www.it-ebooks.info/

196 Chapter 5: Filling in the Layout

h2 {

font-size: 1.7em;

letter-spacing: -1px;

margin-bottom: 30px;

text-align: center;

font-weight: normal;

color: $grayLight;

}

p {

font-size: 1.1em;

line-height: 1.7em;

}

/* header */

#logo {

float: left;

margin-right: 10px;

font-size: 1.7em;

color: white;

text-transform: uppercase;

letter-spacing: -1px;

padding-top: 9px;

font-weight: bold;

line-height: 1;

&:hover {

color: white;

text-decoration: none;

}

}

/* footer */

footer {

margin-top: 45px;

padding-top: 5px;

border-top: 1px solid $grayMediumLight;

color: $grayLight;

a {

color: $gray;

&:hover {

color: $grayDarker;

}

}

small {

float: left;

}

www.it-ebooks.info

http://www.it-ebooks.info/

5.3 Layout Links 197

ul {

float: right;

list-style: none;

li {

float: left;

margin-left: 10px;

}

}

}

Sass gives us even more ways to simplify our stylesheets, but the code in Listing 5.15

uses the most important features and gives us a great start. See the Sass website for more

details.

5.3 Layout Links

Now that we’ve finished a site layout with decent styling, it’s time to start filling in the

links we’ve stubbed out with ’#’. Of course, we could hard-code links like

About

but that isn’t the Rails Way. For one, it would be nice if the URI for the About page

were /about rather than /static pages/about; moreover, Rails conventionally uses named

routes, which involves code like

<%= link to "About", about path %>

This way the code has a more transparent meaning, and it’s also more flexible since

we can change the definition of about_path and have the URI change everywhere

about_path is used.

The full list of our planned links appears in Table 5.1, along with their mapping to

URIs and routes. We’ll implement all but the last one by the end of this chapter. (We’ll

make the last one in Chapter 8.)

Before moving on, let’s add a Contact page (left as an exercise in Chapter 3). The

test appears as in Listing 5.16, which simply follows the model last seen in Listing 3.18.

Note that, as in the application code, in Listing 5.16 we’ve switched to Ruby 1.9–style

hashes.

www.it-ebooks.info

http://www.it-ebooks.info/

198 Chapter 5: Filling in the Layout

Table 5.1 Route and URI mapping for site links.

Page URI Named route

Home / root_path

About /about about_path

Help /help help_path

Contact /contact contact_path

Sign up /signup signup_path

Sign in /signin signin_path

Listing 5.16 Tests for a Contact page.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

.

.

.

describe "Contact page" do

it "should have the h1 'Contact'" do

visit '/static pages/contact'

page.should have selector('h1', text: 'Contact')

end

it "should have the title 'Contact'" do

visit '/static pages/contact'

page.should have selector('title',

text: "Ruby on Rails Tutorial Sample App | Contact")

end

end

end

You should verify that these tests fail:

$ bundle exec rspec spec/requests/static pages spec.rb

www.it-ebooks.info

http://www.it-ebooks.info/

5.3 Layout Links 199

The application code parallels the addition of the About page in Section 3.2.2: first

we update the routes (Listing 5.17), then we add a contact action to the StaticPages

controller (Listing 5.18), and finally we create a Contact view (Listing 5.19).

Listing 5.17 Adding a route for the Contact page.

config/routes.rb

SampleApp::Application.routes.draw do

get "static pages/home"

get "static pages/help"

get "static pages/about"

get "static pages/contact"

.

.

.

end

Listing 5.18 Adding an action for the Contact page.

app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

.

.

.

def contact

end

end

Listing 5.19 The view for the Contact page.

app/views/static_pages/contact.html.erb

<% provide(:title, 'Contact') %>

<h1>Contact</h1>

<p>

Contact Ruby on Rails Tutorial about the sample app at the

contact page.

</p>

Now make sure that the tests pass:

$ bundle exec rspec spec/requests/static pages spec.rb

www.it-ebooks.info

http://www.it-ebooks.info/

200 Chapter 5: Filling in the Layout

5.3.1 Route Tests

With the work we’ve done writing integration test for the static pages, writing tests for

the routes is simple: We just replace each occurrence of a hard-coded address with the

desired named route from Table 5.1. In other words, we change

visit '/static pages/about'

to

visit about path

and so on for the other pages. The result appears in Listing 5.20.

Listing 5.20 Tests for the named routes.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

describe "Home page" do

it "should have the h1 'Sample App'" do

visit root path

page.should have selector('h1', text: 'Sample App')

end

it "should have the base title" do

visit root path

page.should have selector('title',

text: "Ruby on Rails Tutorial Sample App")

end

it "should not have a custom page title" do

visit root path

page.should not have selector('title', text: '| Home')

end

end

describe "Help page" do

www.it-ebooks.info

http://www.it-ebooks.info/

5.3 Layout Links 201

it "should have the h1 'Help'" do

visit help path

page.should have selector('h1', text: 'Help')

end

it "should have the title 'Help'" do

visit help path

page.should have selector('title',

text: "Ruby on Rails Tutorial Sample App | Help")

end

end

describe "About page" do

it "should have the h1 'About'" do

visit about path

page.should have selector('h1', text: 'About Us')

end

it "should have the title 'About Us'" do

visit about path

page.should have selector('title',

text: "Ruby on Rails Tutorial Sample App | About Us")

end

end

describe "Contact page" do

it "should have the h1 'Contact'" do

visit contact path

page.should have selector('h1', text: 'Contact')

end

it "should have the title 'Contact'" do

visit contact path

page.should have selector('title',

text: "Ruby on Rails Tutorial Sample App | Contact")

end

end

end

As usual, you should check that the tests are now red:

$ bundle exec rspec spec/requests/static pages spec.rb

www.it-ebooks.info

http://www.it-ebooks.info/

202 Chapter 5: Filling in the Layout

By the way, if the code in Listing 5.20 strikes you as repetitive and verbose, you’re

not alone. We’ll refactor this mess into a beautiful jewel in Section 5.3.4.

5.3.2 Rails Routes

Now that we have tests for the URIs we want, it’s time to get them to work. As noted

in Section 3.1.2, the file Rails uses for URI mappings is config/routes.rb. If you

take a look at the default routes file, you’ll see that it’s quite a mess, but it’s a useful

mess—full of commented-out example route mappings. I suggest reading through it at

some point, and I also suggest taking a look at the Rails Guides article ‘‘Rails Routing

from the outside in’’ for a much more in-depth treatment of routes.

To define the named routes, we need to replace rules such as

get 'static pages/help'

with

match '/help', to: 'static pages#help'

This arranges both for a valid page at /help and a named route called help_path that

returns the path to that page. (Actually, using get in place of match gives the same

named routes, but using match is more conventional.)

Applying this pattern to the other static pages gives Listing 5.21. The only exception

is the Home page, which we’ll take care of in Listing 5.23.

Listing 5.21 Routes for static pages.

config/routes.rb

SampleApp::Application.routes.draw do

match '/help', to: 'static pages#help'

match '/about', to: 'static pages#about'

match '/contact', to: 'static pages#contact'

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

5.3 Layout Links 203

If you read the code in Listing 5.21 carefully, you can probably figure out what it

does; for example, you can see that

match '/about', to: 'static pages#about'

matches ’/about’ and routes it to the about action in the StaticPages controller.

Before, this was more explicit: We used

get 'static pages/about'

to get to the same place, but /about is more succinct. In addition, as mentioned

above, the code match ’/about’ also automatically creates named routes for use in the

controllers and views:

about path => '/about'

about url => 'http://localhost:3000/about'

Note that about_url is the full URI http://localhost:3000/about (with localhost:

3000 being replaced with the domain name, such as example.com, for a fully deployed

site). As discussed in Section 5.3, to get just /about, you use about_path. (The Rails

Tutorial uses the path form for consistency, but the difference rarely matters in

practice.)

With these routes now defined, the tests for the Help, About, and Contact pages

should pass:

$ bundle exec rspec spec/requests/static pages spec.rb

This leaves the test for the Home page as the last one to fail.

To establish the route mapping for the Home page, we could use code like this:

match '/', to: 'static pages#home'

This is unnecessary, though; Rails has special instructions for the root URI / (‘‘slash’’)

located lower down in the file (Listing 5.22).

www.it-ebooks.info

http://www.it-ebooks.info/

204 Chapter 5: Filling in the Layout

Listing 5.22 The commented-out hint for defining the root route.

config/routes.rb

SampleApp::Application.routes.draw do

.

.

.

You can have the root of your site routed with "root"

just remember to delete public/index.html.

root :to => "welcome#index"

.

.

.

end

Using Listing 5.22 as a model, we arrive at Listing 5.23 to route the root URI / to

the Home page.

Listing 5.23 Adding a mapping for the root route.

config/routes.rb

SampleApp::Application.routes.draw do

root to: 'static pages#home'

match '/help', to: 'static pages#help'

match '/about', to: 'static pages#about'

match '/contact', to: 'static pages#contact'

.

.

.

end

This code maps the root URI / to /static pages/home, and also gives URI helpers as

follows:

root path => '/'

root url => 'http://localhost:3000/'

We should also heed the comment in Listing 5.22 and delete public/index.html

to prevent Rails from rendering the default page (Figure 1.3) when we visit /. You can

www.it-ebooks.info

http://www.it-ebooks.info/

5.3 Layout Links 205

of course simply remove the file by trashing it, but if you’re using Git for version control

there’s a way to tell Git about the removal at the same time using git rm:

$ git rm public/index.html

With that, all of the routes for static pages are working, and the tests should pass:

$ bundle exec rspec spec/requests/static pages spec.rb

Now we just have to fill in the links in the layout.

5.3.3 Named Routes

Let’s put the named routes created in Section 5.3.2 to work in our layout. This will

entail filling in the second arguments of the link_to functions with the proper named

routes. For example, we’ll convert

<%= link to "About", '#' %>

to

<%= link to "About", about path %>

and so on.

We’ll start in the header partial, _header.html.erb (Listing 5.24), which has

links to the Home and Help pages. While we’re at it, we’ll follow a common web

convention and link the logo to the Home page as well.

Listing 5.24 Header partial with links.

app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top">

<div class="navbar-inner">

<div class="container">

www.it-ebooks.info

http://www.it-ebooks.info/

206 Chapter 5: Filling in the Layout

<%= link to "sample app", root path, id: "logo" %>

<nav>

<ul class="nav pull-right">

<%= link to "Home", root path %>

<%= link to "Help", help path %>

<%= link to "Sign in", '#' %>

</nav>

</div>

</div>

</header>

We won’t have a named route for the ‘‘Sign in’’ link until Chapter 8, so we’ve left it as

’#’ for now.

The other place with links is the footer partial, _footer.html.erb, which has

links for the About and Contact pages (Listing 5.25).

Listing 5.25 Footer partial with links.

app/views/layouts/_footer.html.erb

<footer class="footer">

<small>

Rails Tutorial

by Michael Hartl

</small>

<nav>

<%= link to "About", about path %>

<%= link to "Contact", contact path %>

News

</nav>

</footer>

With that, our layout has links to all the static pages created in Chapter 3, so that,

for example, /about goes to the About page (Figure 5.8).

By the way, it’s worth noting that, although we haven’t actually tested for the

presence of the links on the layout, our tests will fail if the routes aren’t defined. You

can check this by commenting out the routes in Listing 5.21 and running your test

suite. For a testing method that actually makes sure the links go to the right places, see

Section 5.6.

www.it-ebooks.info

http://www.it-ebooks.info/

5.3 Layout Links 207

Figure 5.8 The About page at /about.

5.3.4 Pretty RSpec

We noted in Section 5.3.1 that the tests for the static pages are getting a little verbose

and repetitive (Listing 5.20). In this section we’ll make use of the latest features of

RSpec to make our tests more compact and elegant.

Let’s take a look at a couple of the examples to see how they can be improved:

describe "Home page" do

it "should have the h1 'Sample App'" do

visit root path

page.should have selector('h1', text: 'Sample App')

end

www.it-ebooks.info

http://www.it-ebooks.info/

208 Chapter 5: Filling in the Layout

it "should have the base title" do

visit root path

page.should have selector('title',

text: "Ruby on Rails Tutorial Sample App")

end

it "should not have a custom page title" do

visit root path

page.should not have selector('title', text: '| Home')

end

end

One thing we notice is that all three examples include a visit to the root path. We can

eliminate this duplication with a before block:

describe "Home page" do

before { visit root path }

it "should have the h1 'Sample App'" do

page.should have selector('h1', text: 'Sample App')

end

it "should have the base title" do

page.should have selector('title',

text: "Ruby on Rails Tutorial Sample App")

end

it "should not have a custom page title" do

page.should not have selector('title', text: '| Home')

end

end

This uses the line

before { visit root path }

to visit the root path before each example. (The before method can also be invoked

with before(:each), which is a synonym.)

Another source of duplication appears in each example; we have both

it "should have the h1 'Sample App'" do

www.it-ebooks.info

http://www.it-ebooks.info/

5.3 Layout Links 209

and

page.should have selector('h1', text: 'Sample App')

which say essentially the same thing. In addition, both examples reference the page

variable. We can eliminate these sources of duplication by telling RSpec that page is

the subject of the tests using

subject { page }

and then using a variant of the it method to collapse the code and description into one

line:

it { should have selector('h1', text: 'Sample App') }

Because of subject { page }, the call to should automatically uses the page variable

supplied by Capybara (Section 3.2.1).

Applying these changes gives much more compact tests for the Home page:

subject { page }

describe "Home page" do

before { visit root path }

it { should have selector('h1', text: 'Sample App') }

it { should have selector 'title',

text: "Ruby on Rails Tutorial Sample App" }

it { should not have selector 'title', text: '| Home' }

end

This code looks nicer, but the title test is still a bit long. Indeed, most of the title

tests in Listing 5.20 have long title text of the form

"Ruby on Rails Tutorial Sample App | About"

An exercise in Section 3.5 proposes eliminating some of this duplication by defining a

base_title variable and using string interpolation (Listing 3.30). We can do even bet-

ter by defining a full_title, which parallels the full_title helper from Listing 4.2.

www.it-ebooks.info

http://www.it-ebooks.info/

210 Chapter 5: Filling in the Layout

We do this by creating both a spec/support directory and a utilities.rb file for

RSpec utilities (Listing 5.26).

Listing 5.26 A file for RSpec utilities with a full_title function.

spec/support/utilities.rb

def full title(page title)

base title = "Ruby on Rails Tutorial Sample App"

if page title.empty?

base title

else

"#{base title} | #{page title}"

end

end

Of course, this is essentially a duplicate of the helper in Listing 4.2, but having two

independent methods allows us to catch any typos in the base title. This is dubious

design though, and a better (slightly more advanced) approach, which tests the original

full_title helper directly, appears in the exercises (Section 5.6).

Files in the spec/support directory are automatically included by RSpec, which

means that we can write the Home tests as follows:

subject { page }

describe "Home page" do

before { visit root path }

it { should have selector('h1', text: 'Sample App') }

it { should have selector('title', text: full title('')) }

end

We can now simplify the tests for the Help, About, and Contact pages using the same

methods used for the Home page. The results appear in Listing 5.27.

Listing 5.27 Prettier tests for the static pages.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

subject { page }

describe "Home page" do

www.it-ebooks.info

http://www.it-ebooks.info/

5.4 User Signup: A First Step 211

before { visit root path }

it { should have selector('h1', text: 'Sample App') }

it { should have selector('title', text: full title('')) }

it { should not have selector 'title', text: '| Home' }

end

describe "Help page" do

before { visit help path }

it { should have selector('h1', text: 'Help') }

it { should have selector('title', text: full title('Help')) }

end

describe "About page" do

before { visit about path }

it { should have selector('h1', text: 'About') }

it { should have selector('title', text: full title('About Us')) }

end

describe "Contact page" do

before { visit contact path }

it { should have selector('h1', text: 'Contact') }

it { should have selector('title', text: full title('Contact')) }

end

end

You should now verify that the tests still pass:

$ bundle exec rspec spec/requests/static pages spec.rb

This RSpec style in Listing 5.27 is much pithier than the style in Listing 5.20—indeed,

it can be made even pithier (Section 5.6). We will use this more compact style whenever

possible when developing the rest of the sample application.

5.4 User Signup: A First Step

As a capstone to our work on the layout and routing, in this section we’ll make a route

for the signup page, which will mean creating a second controller along the way. This

is a first important step toward allowing users to register for our site; we’ll take the next

step, modeling users, in Chapter 6, and we’ll finish the job in Chapter 7.

www.it-ebooks.info

http://www.it-ebooks.info/

212 Chapter 5: Filling in the Layout

5.4.1 Users Controller

It’s been a while since we created our first controller, the StaticPages controller, way back

in Section 3.1.2. It’s time to create a second one, the Users controller. As before, we’ll

use generate to make the simplest controller that meets our present needs, namely, one

with a stub signup page for new users. Following the conventional REST architecture

favored by Rails, we’ll call the action for new users new and pass it as an argument to

generate controller to create it automatically (Listing 5.28).

Listing 5.28 Generating a Users controller (with a new action).

$ rails generate controller Users new --no-test-framework

create app/controllers/users controller.rb

route get "users/new"

invoke erb

create app/views/users

create app/views/users/new.html.erb

invoke helper

create app/helpers/users helper.rb

invoke assets

invoke coffee

create app/assets/javascripts/users.js.coffee

invoke scss

create app/assets/stylesheets/users.css.scss

This creates a Users controller with a new action (Listing 5.29) and a stub user view

(Listing 5.30).

Listing 5.29 The initial Users controller, with a new action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

def new

end

end

Listing 5.30 The initial new action for Users.

app/views/users/new.html.erb

<h1>Users#new</h1>

<p>Find me in app/views/users/new.html.erb</p>

www.it-ebooks.info

http://www.it-ebooks.info/

5.4 User Signup: A First Step 213

5.4.2 Signup URI

With the code from Section 5.4.1, we already have a working page for new users at

/users/new, but recall from Table 5.1 that we want the URI to be /signup instead. As in

Section 5.3, we’ll first write some integration tests, which we’ll now generate:

$ rails generate integration test user pages

Then, following the model of the static pages spec in Listing 5.27, we’ll fill in the

user pages test with code to test for the contents of the h1 and title tags, as seen in

Listing 5.31.

Listing 5.31 The initial spec for users, with a test for the signup page.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

subject { page }

describe "signup page" do

before { visit signup path }

it { should have selector('h1', text: 'Sign up') }

it { should have selector('title', text: full title('Sign up')) }

end

end

We can run these tests using the rspec command as usual:

$ bundle exec rspec spec/requests/user pages spec.rb

It’s worth noting that we can also run all the request specs by passing the whole directory

instead of just one file:

$ bundle exec rspec spec/requests/

Based on this pattern, you may be able to guess how to run all the specs:

$ bundle exec rspec spec/

www.it-ebooks.info

http://www.it-ebooks.info/

214 Chapter 5: Filling in the Layout

For completeness, we’ll usually use this method to run the tests through the rest of the

tutorial. By the way, it’s worth noting (since you may see other people use it) that you

can also run the test suite using the spec Rake task:

$ bundle exec rake spec

(In fact, you can just type rake by itself; the default behavior of rake is to run the test

suite.)

By construction, the Users controller already has a new action, so to get the test to

pass all we need is the right route and the right view content. We’ll follow the examples

from Listing 5.21 and add a match ’/signup’ rule for the signup URI (Listing 5.32).

Listing 5.32 A route for the signup page.

config/routes.rb

SampleApp::Application.routes.draw do

get "users/new"

root to: 'static pages#home'

match '/signup', to: 'users#new'

match '/help', to: 'static pages#help'

match '/about', to: 'static pages#about'

match '/contact', to: 'static pages#contact'

.

.

.

end

Note that we have kept the rule get "users/new", which was generated automatically

by the Users controller generation in Listing 5.28. Currently, this rule is necessary for

the ’users/new’ routing to work, but it doesn’t follow the proper REST conventions

(Table 2.2), and we will eliminate it in Section 7.1.2.

To get the tests to pass, all we need now is a view with the title and heading ‘‘Sign

up’’ (Listing 5.33).

Listing 5.33 The initial (stub) signup page.

app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<p>Find me in app/views/users/new.html.erb</p>

www.it-ebooks.info

http://www.it-ebooks.info/

5.5 Conclusion 215

At this point, the signup test in Listing 5.31 should pass. All that’s left is to add

the proper link to the button on the Home page. As with the other routes, match

’/signup’ gives us the named route signup_path, which we put to use in Listing 5.34.

Listing 5.34 Linking the button to the Signup page.

app/views/static_pages/home.html.erb

<div class="center hero-unit">

<h1>Welcome to the Sample App</h1>

<h2>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</h2>

<%= link to "Sign up now!", signup path, class: "btn btn-large btn-primary" %>

</div>

<%= link to image tag("rails.png", alt: "Rails"), 'http://rubyonrails.org/' %>

With that, we’re done with the links and named routes, at least until we add a route

for signing in (Chapter 8). The resulting new user page (at the URI /signup) appears in

Figure 5.9.

At this point the tests should pass:

$ bundle exec rspec spec/

5.5 Conclusion

In this chapter, we’ve hammered our application layout into shape and polished up the

routes. The rest of the book is dedicated to fleshing out the sample application: first, by

adding users who can sign up, sign in, and sign out; next, by adding user microposts;

and, finally, by adding the ability to follow other users.

At this point, if you are using Git you should merge the changes back into the

master branch:

$ git add .

$ git commit -m "Finish layout and routes"

$ git checkout master

$ git merge filling-in-layout

www.it-ebooks.info

http://www.it-ebooks.info/

216 Chapter 5: Filling in the Layout

Figure 5.9 The new signup page at /signup.

You can also push up to GitHub:

$ git push

Finally, you can deploy to Heroku:

$ git push heroku

The result should be a working sample application on the production server:

$ heroku open

If you run into trouble, try running

$ heroku logs

to debug the error using the Heroku logfile.

www.it-ebooks.info

http://www.it-ebooks.info/

5.6 Exercises 217

5.6 Exercises

1. The code in Listing 5.27 for testing static pages is compact but is still a bit repetitive.

RSpec supports a facility called shared examples to eliminate the kind of duplication.

By following the example in Listing 5.35, fill in the missing tests for the Help,

About, and Contact pages. Note that the let command, introduced briefly in

Listing 3.30, creates a local variable with the given value on demand (i.e., when

the variable is used), in contrast to an instance variable, which is created upon

assignment.

2. You may have noticed that our tests for the layout links test the routing but

don’t actually check that the links on the layout go to the right pages. One way to

implement these tests is to use visit and click_link inside the RSpec integration

test. Fill in the code in Listing 5.36 to verify that all the layout links are properly

defined.

3. Eliminate the need for the full_title test helper in Listing 5.26 by writing tests

for the original helper method, as shown in Listing 5.37. (You will have to create

both the spec/helpers directory and the application_helper_spec.rb file.)

Then include it into the test using the code in Listing 5.38. Verify by running the

test suite that the new code is still valid. Note: Listing 5.37 uses regular expressions,

which we’ll learn more about in Section 6.2.4. (Thanks to Alex Chaffee for the

suggestion and code used in this exercise.)

Listing 5.35 Using an RSpec shared example to eliminate test duplication.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

subject { page }

shared examples for "all static pages" do

it { should have selector('h1', text: heading) }

it { should have selector('title', text: full title(page title)) }

end

describe "Home page" do

before { visit root path }

let(:heading) { 'Sample App' }

let(:page title) { '' }

it should behave like "all static pages"

www.it-ebooks.info

http://www.it-ebooks.info/

218 Chapter 5: Filling in the Layout

it { should not have selector 'title', text: '| Home' }

end

describe "Help page" do

.

.

.

end

describe "About page" do

.

.

.

end

describe "Contact page" do

.

.

.

end

end

Listing 5.36 A test for the links on the layout.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

.

.

.

it "should have the right links on the layout" do

visit root path

click link "About"

page.should have selector 'title', text: full title('About Us')

click link "Help"

page.should # fill in

click link "Contact"

page.should # fill in

click link "Home"

click link "Sign up now!"

page.should # fill in

click link "sample app"

page.should # fill in

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

5.6 Exercises 219

Listing 5.37 Tests for the full_title helper.

spec/helpers/application_helper_spec.rb

require 'spec helper'

describe ApplicationHelper do

describe "full title" do

it "should include the page title" do

full title("foo").should =˜ /foo/

end

it "should include the base title" do

full title("foo").should =˜ /ˆRuby on Rails Tutorial Sample App/

end

it "should not include a bar for the home page" do

full title("").should not =˜ /\|/

end

end

end

Listing 5.38 Replacing the full_title test helper with a simple include.

spec/support/utilities.rb

include ApplicationHelper

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Modeling Users

In Chapter 5, we ended with a stub page for creating new users (Section 5.4); over

the course of the next four chapters, we’ll fulfill the promise implicit in this incipient

signup page. The first critical step is to create a data model for users of our site, together

with a way to store that data. In Chapter 7, we’ll give users the ability to sign up for

our site and create a user profile page. Once users can sign up, we’ll let them sign in

and sign out as well (Chapter 8), and in Chapter 9 (Section 9.2.1) we’ll learn how to

protect pages from improper access. Taken together, the material in Chapter 6 through

Chapter 9 develops a full Rails login and authentication system. As you may know,

there are various pre-built authentication solutions for Rails; Box 6.1 explains why, at

least at first, it’s probably a better idea to roll your own.

This is a long and action-packed chapter, and you may find it unusually challenging,

especially if you are new to data modeling. By the end of it, though, we will have created

an industrial-strength system for validating, storing, and retrieving user information.

Box 6.1 Roll Your Own Authentication System

Virtually all web applications require a login and authentication system of some sort.

As a result, most web frameworks have a plethora of options for implementing such

systems, and Rails is no exception. Examples of authentication and authorization

systems include Clearance, Authlogic, Devise, and CanCan (as well as non-Rails-

specific solutions built on top of OpenID or OAuth). It’s reasonable to ask why we

should reinvent the wheel. Why not just use an off-the-shelf solution instead of rolling

our own?

For one, practical experience that authentication on most sites requires extensive

customization and modifying a third-party product is often more work than writing

221

www.it-ebooks.info

http://www.it-ebooks.info/

222 Chapter 6: Modeling Users

the system from scratch. In addition, off-the-shelf systems are ‘‘black boxes,’’ with

potentially mysterious innards; when you write your own system, you are far more

likely to understand it. Moreover, recent additions to Rails (Section 6.3) make it easy

to write a custom authentication system. Finally, if you do end up using a third-party

system later on, you’ll be in a much better position to understand and modify it if

you’ve first built one yourself.

As usual, if you’re following along using Git for version control, now would be a

good time to make a topic branch for modeling users:

$ git checkout master

$ git checkout -b modeling-users

(The first line here is just to make sure that you start on the master branch, so that

the modeling-users topic branch is based on master. You can skip that command if

you’re already on the master branch.)

6.1 User Model

Although the ultimate goal of the next three chapters is to make a signup page for our

site (mocked up in Figure 6.1), it would do little good now to accept information for

new users: We don’t currently have any place to put it. Thus, the first step in signing

up users is to make a data structure to capture and store their information.

In Rails, the default data structure for a data model is called, naturally enough,

a model (the M in MVC from Section 1.2.6). The default Rails solution to the problem

of persistence is to use a database for long-term data storage, and the default library

for interacting with the database is called Active Record.1 Active Record comes with a

host of methods for creating, saving, and finding data objects, all without having to

use the structured query language (SQL)2 used by relational databases. Moreover, Rails

has a feature called migrations to allow data definitions to be written in pure Ruby,

without having to learn an SQL data definition language (DDL). The effect is that Rails

1. The name comes from the ‘‘active record pattern,’’ identified and named in Patterns of Enterprise Application
Architecture by Martin Fowler.

2. Pronounced ‘‘ess-cue-ell,’’ although the alternate pronunciation ‘‘sequel’’ is also common.

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 User Model 223

Figure 6.1 A mockup of the user signup page.

insulates you almost entirely from the details of the data store. In this book, by using

SQLite for development and PostgreSQL (via Heroku) for deployment (Section 1.4),

we have developed this theme even further, to the point where we barely ever have to

think about how Rails stores data, even for production applications.

6.1.1 Database Migrations

You may recall from Section 4.4.5 that we have already encountered, via a custom-built

User class, user objects with name and email attributes. That class served as a useful

example, but it lacked the critical property of persistence: When we created a User object

at the Rails console, it disappeared as soon as we exited. Our goal in this section is to

create a model for users that won’t disappear quite so easily.

www.it-ebooks.info

http://www.it-ebooks.info/

224 Chapter 6: Modeling Users

As with the User class in Section 4.4.5, we’ll start by modeling a user with two

attributes, a name and an email address, the latter of which we’ll use as a unique

username.3 (We’ll add an attribute for passwords in Section 6.3.) In Listing 4.9, we did

this with Ruby’s attr_accessor method:

class User

attr accessor :name, :email

.

.

.

end

In contrast, when using Rails to model users, we don’t need to identify the attributes

explicitly. As noted briefly above, to store data Rails uses a relational database by default,

which consists of tables composed of data rows, where each row has columns of data

attributes. For example, to store users with names and email addresses, we’ll create a

users table with name and email columns (with each row corresponding to one user).

By naming the columns in this way, we’ll let Active Record figure out the User object

attributes for us.

Let’s see how this works. (If this discussion gets too abstract for your taste, be patient;

the console examples starting in Section 6.1.3 and the database browser screenshots in

Figure 6.3 and Figure 6.6 should make things clearer.) You may recall from Listing 5.28

that we created a Users controller (along with a new action) using the command

$ rails generate controller Users new --no-test-framework

There is an analogous command for making a model: generate model. Listing 6.1

shows the command to generate a User model with two attributes, name and email.

Listing 6.1 Generating a User model.

$ rails generate model User name:string email:string

invoke active record

create db/migrate/[timestamp] create users.rb

create app/models/user.rb

invoke rspec

create spec/models/user spec.rb

3. By using an email address as the username, we open the theoretical possibility of communicating with our
users at a future date.

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 User Model 225

(Note that, in contrast to the plural convention for controller names, model names

are singular: a Users controller, but a User model.) By passing the optional parameters

name:string and email:string, we tell Rails about the two attributes we want,

along with what types those attributes should be (in this case, string). Compare this

with including the action names in Listing 3.4 and Listing 5.28.

One of the results of the generate command in Listing 6.1 is a new file

called a migration. Migrations provide a way to alter the structure of the database

incrementally, so that our data model can adapt to changing requirements. In the case

of the User model, the migration is created automatically by the model generation

script; it creates a users table with two columns, name and email, as shown in

Listing 6.2. (We’ll see in Section 6.2.5 and again in Section 6.3 how to make a migration

from scratch.)

Listing 6.2 Migration for the User model (to create a users table).

db/migrate/[timestamp]_create_users.rb

class CreateUsers < ActiveRecord::Migration

def change

create table :users do |t|

t.string :name

t.string :email

t.timestamps

end

end

end

Note that the name of the migration file is prefixed by a timestamp based on when the

migration was generated. In the early days of migrations, the filenames were prefixed

with incrementing integers, which caused conflicts for collaborating teams if multiple

programmers had migrations with the same number. Barring the improbable scenario

of migrations generated the same second, using timestamps conveniently avoids such

collisions.

The migration itself consists of a change method that determines the change to

be made to the database. In the case of Listing 6.2, change uses a Rails method called

create_table to create a table in the database for storing users. The create_table

method accepts a block (Section 4.3.2) with one block variable, in this case called t (for

‘‘table’’). Inside the block, the create_table method uses the t object to create name

www.it-ebooks.info

http://www.it-ebooks.info/

226 Chapter 6: Modeling Users

Figure 6.2 The users data model produced by Listing 6.2.

and email columns in the database, both of type string.4 Here the table name is

plural (users) even though the model name is singular (User), which reflects a linguistic

convention followed by Rails: A model represents a single user, whereas a database

table consists of many users. The final line in the block, t.timestamps, is a special

command that creates two magic columns called created_at and updated_at, which

are timestamps that automatically record when a given user is created and updated.

(We’ll see concrete examples of the magic columns starting in Section 6.1.3.) The full

data model represented by this migration is shown in Figure 6.2.

We can run the migration, known as ‘‘migrating up,’’ using the rake command

(Box 2.1) as follows:

$ bundle exec rake db:migrate

(You may recall that we ran this command once before, in Section 2.2.) The first

time db:migrate is run, it creates a file called db/development.sqlite3, which

is an SQLite5 database. We can see the structure of the database using the excellent

SQLite Database Browser to open the db/development.sqlite3 file (Figure 6.3);

compare with the diagram in Figure 6.2. You might note that there’s one column in

Figure 6.3 not accounted for in the migration: the id column. As noted briefly in

Section 2.2, this column is created automatically and is used by Rails to identify each

row uniquely.

4. Don’t worry about exactly how the t object manages to do this; the beauty of abstraction layers is that we
don’t have to know. We can just trust the t object to do its job.

5. Officially pronounced ‘‘ess-cue-ell-ite,’’ although the (mis)pronunciation ‘‘sequel-ite’’ is also common.

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 User Model 227

Figure 6.3 The SQLite Database Browser with our new users table.

Most migrations, including all the ones in the Rails Tutorial, are reversible, which

means we can ‘‘migrate down’’ and undo them with a single Rake task, called

db:rollback:

$ bundle exec rake db:rollback

(See Box 3.1 for another technique useful for reversing migrations.) Under the hood,

this command executes the drop_table command to remove the users table from the

database. The reason this works is that the change method knows that drop_table

is the inverse of create_table, which means that the rollback migration can be

www.it-ebooks.info

http://www.it-ebooks.info/

228 Chapter 6: Modeling Users

easily inferred. In the case of an irreversible migration, such as one to remove a

database column, it is necessary to define separate up and down methods in place

of the single change method. Read about migrations in the Rails Guides for more

information.

If you rolled back the database, migrate up again before proceeding:

$ bundle exec rake db:migrate

6.1.2 The Model File

We’ve seen how the User model generation in Listing 6.1 generated a migration file

(Listing 6.2), and we saw in Figure 6.3 the results of running this migration: It updated

a file called development.sqlite3 by creating a table users with columns id, name,

email, created_at, and updated_at. Listing 6.1 also created the model itself; the

rest of this section is dedicated to understanding it.

We begin by looking at the code for the User model, which lives in the file user.rb

inside the app/models/ directory. It is, to put it mildly, very compact (Listing 6.3).

(Note: The attr_accessible line will not appear if you are using Rails 3.2.2 or earlier.

In this case, you should add it in Section 6.1.2.)

Listing 6.3 The brand new User model.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email

end

Recall from Section 4.4.2 that the syntax class User < ActiveRecord::Base

means that the User class inherits from ActiveRecord::Base, so that the User

model automatically has all the functionality of the ActiveRecord::Base class. Of

course, knowledge of this inheritance doesn’t do any good unless we know what

ActiveRecord::Base contains, and we’ll get a first look momentarily. Before we

move on, though, there are two tasks to complete.

Model Annotation

Although it’s not strictly necessary, you might find it convenient to annotate your Rails

models using the annotate gem (Listing 6.4).

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 User Model 229

Listing 6.4 Adding the annotate gem to the Gemfile.

source 'https://rubygems.org'

.

.

.

group :development do

gem 'sqlite3', '1.3.5'

gem 'rspec-rails', '2.9.0'

gem 'annotate', '˜> 2.4.1.beta'

group :test do

.

.

.

end

(We place the annotate gem in a group :development block (analogous to group

:test) because the annotations aren’t needed in production applications.) We next

install it with bundle install:

$ bundle install

This gives us a command called annotate, which simply adds comments containing

the data model to the model file:

$ bundle exec annotate --position before

Annotated (1): User

The results appear in Listing 6.5.

Listing 6.5 The annotated User model.

app/models/user.rb

== Schema Information

#

Table name: users

#

id :integer not null, primary key

name :string(255)

email :string(255)

created at :datetime

www.it-ebooks.info

http://www.it-ebooks.info/

230 Chapter 6: Modeling Users

updated at :datetime

#

class User < ActiveRecord::Base

attr accessible :name, :email

end

I find that having the data model visible in the model files helps remind me which

attributes the model has, but future code listings will omit the annotations for brevity.

(Note that, if you want your annotations to be up-to-date, you’ll have to run annotate

again any time the data model changes.)

Accessible Attributes

Let’s revisit the User model, focusing now on the attr_accessible line (Listing 6.6).

This line tells Rails which attributes of the model are accessible, that is, which attributes

can be modified automatically by outside users (such as users submitting requests with

web browsers).

Listing 6.6 Making the name and email attributes accessible.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email

end

The code in Listing 6.6 doesn’t do quite what you might think. By default, all

model attributes are accessible. What Listing 6.6 does is to ensure that the name and

email attributes—and only the name and email attributes—are automatically accessible

to outside users. We’ll see why this is important in Chapter 9: using attr_accessible

is important for preventing a mass assignment vulnerability, a distressingly common and

often serious security hole in many Rails applications.

6.1.3 Creating User Objects

We’ve done some good prep work, and now it’s time to cash in and learn about Active

Record by playing with our newly created User model. As in Chapter 4, our tool of

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 User Model 231

choice is the Rails console. Since we don’t (yet) want to make any changes to our

database, we’ll start the console in a sandbox:

$ rails console --sandbox

Loading development environment in sandbox

Any modifications you make will be rolled back on exit

>>

As indicated by the helpful message ‘‘Any modifications you make will be rolled back on

exit,’’ when started in a sandbox the console will ‘‘roll back’’ (i.e., undo) any database

changes introduced during the session.

In the console session in Section 4.4.5, we created a new user object with User.new,

which we had access to only after requiring the example user file in Listing 4.9. With

models, the situation is different; as you may recall from Section 4.4.4, the Rails console

automatically loads the Rails environment, which includes the models. This means that

we can make a new user object without any further work:

>> User.new

=> #<User id: nil, name: nil, email: nil, created at: nil, updated at: nil>

We see here the default console representation of a user object, which prints out the

same attributes shown in Figure 6.2 and Listing 6.5.

When called with no arguments, User.new returns an object with all nil attributes.

In Section 4.4.5, we designed the example User class to take an initialization hash to set

the object attributes; that design choice was motivated by Active Record, which allows

objects to be initialized in the same way:

>> user = User.new(name: "Michael Hartl", email: "mhartl@example.com")

=> #<User id: nil, name: "Michael Hartl", email: "mhartl@example.com",

created at: nil, updated at: nil>

Here we see that the name and email attributes have been set as expected.

If you’ve been tailing the development log, you may have noticed that no new lines

have shown up yet. This is because calling User.new doesn’t touch the database; it

www.it-ebooks.info

http://www.it-ebooks.info/

232 Chapter 6: Modeling Users

simply creates a new Ruby object in memory. To save the user object to the database,

we call the save method on the user variable:

>> user.save

=> true

The save method returns true if it succeeds and false otherwise. (Currently, all saves

should succeed; we’ll see cases in Section 6.2 when some will fail.) As soon as you save,

you should see a line in the development log with the SQL command to INSERT INTO

"users". Because of the many methods supplied by Active Record, we won’t ever need

raw SQL in this book, and I’ll omit discussion of the SQL commands from now on.

But you can learn a lot by watching the log.

You may have noticed that the new user object had nil values for the id and the

magic columns created_at and updated_at attributes. Let’s see if our save changed

anything:

>> user

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created at: "2011-12-05 00:57:46", updated at: "2011-12-05 00:57:46">

We see that the id has been assigned a value of 1, while the magic columns have been

assigned the current time and date.6 Currently, the created and updated timestamps are

identical; we’ll see them differ in Section 6.1.5.

As with the User class in Section 4.4.5, instances of the User model allow access to

their attributes using a dot notation:7

>> user.name

=> "Michael Hartl"

>> user.email

=> "mhartl@example.com"

>> user.updated at

=> Tue, 05 Dec 2011 00:57:46 UTC +00:00

6. In case you’re curious about "2011-12-05 00:57:46", I’m not writing this after midnight; the timestamps
are recorded in Coordinated Universal Time (UTC), which for most practical purposes is the same as
Greenwich Mean Time. From the NIST Time and Frequency FAQ: Q: Why is UTC used as the acronym for
Coordinated Universal Time instead of CUT? A: In 1970 the Coordinated Universal Time system was devised
by an international advisory group of technical experts within the International Telecommunication Union
(ITU). The ITU felt it was best to designate a single abbreviation for use in all languages in order to minimize
confusion. Since unanimous agreement could not be achieved on using either the English word order, CUT,
or the French word order, TUC, the acronym UTC was chosen as a compromise.

7. Note the value of user.updated_at. told you the timestamp was in UTC.

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 User Model 233

As we’ll see in Chapter 7, it’s often convenient to make and save a model in two

steps as we have above, but Active Record also lets you combine them into one step

with User.create:

>> User.create(name: "A Nother", email: "another@example.org")

#<User id: 2, name: "A Nother", email: "another@example.org", created at:

"2011-12-05 01:05:24", updated at: "2011-12-05 01:05:24">

>> foo = User.create(name: "Foo", email: "foo@bar.com")

#<User id: 3, name: "Foo", email: "foo@bar.com", created at: "2011-12-05

01:05:42", updated at: "2011-12-05 01:05:42">

Note that User.create, rather than returning true or false, returns the User object

itself, which we can optionally assign to a variable (such as foo in the second command

above).

The inverse of create is destroy:

>> foo.destroy

=> #<User id: 3, name: "Foo", email: "foo@bar.com", created at: "2011-12-05

01:05:42", updated at: "2011-12-05 01:05:42">

Oddly, destroy, like create, returns the object in question, although I can’t recall ever

having used the return value of destroy. Even odder, perhaps, is that the destroyed

object still exists in memory:

>> foo

=> #<User id: 3, name: "Foo", email: "foo@bar.com", created at: "2011-12-05

01:05:42", updated at: "2011-12-05 01:05:42">

How do we know if we really destroyed an object? And for saved and non-destroyed

objects, how can we retrieve users from the database? It’s time to learn how to use Active

Record to find user objects.

6.1.4 Finding User Objects

Active Record provides several options for finding objects. Let’s use them to find the

first user we created while verifying that the third user (foo) has been destroyed. We’ll

start with the existing user:

>> User.find(1)

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created at: "2011-12-05 00:57:46", updated at: "2011-12-05 00:57:46">

www.it-ebooks.info

http://www.it-ebooks.info/

234 Chapter 6: Modeling Users

Here we’ve passed the id of the user to User.find; Active Record returns the user with

that id.

Let’s see if the user with an id of 3 still exists in the database:

>> User.find(3)

ActiveRecord::RecordNotFound: Couldn't find User with ID=3

Since we destroyed our third user in Section 6.1.3, Active Record can’t find it in the

database. Instead, find raises an exception, which is a way of indicating an exceptional

event in the execution of a program—in this case, a nonexistent Active Record id, which

causes find to raise an ActiveRecord::RecordNotFound exception.8

In addition to the generic find, Active Record also allows us to find users by

specific attributes:

>> User.find by email("mhartl@example.com")

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created at: "2011-12-05 00:57:46", updated at: "2011-12-05 00:57:46">

The find_by_email method is automatically created by Active Record based on the

email attribute in the users table. (As you might guess, Active Record creates a

find_by_name method as well.) Since we will be using email addresses as usernames,

this sort of find will be useful when we learn how to let users sign in to our site

(Chapter 7). If you’re worried that find_by_email will be inefficient if there are a

large number of users, you’re ahead of the game; we’ll cover this issue, and its solution

via database indices, in Section 6.2.5.

We’ll end with a couple of more general ways of finding users. First, there’s first:

>> User.first

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created at: "2011-12-05 00:57:46", updated at: "2011-12-05 00:57:46">

Naturally, first just returns the first user in the database. There’s also all:

>> User.all

=> [#<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created at: "2011-12-05 00:57:46", updated at: "2011-12-05 00:57:46">,

#<User id: 2, name: "A Nother", email: "another@example.org", created at:

"2011-12-05 01:05:24", updated at: "2011-12-05 01:05:24">]

8. Exceptions and exception handling are somewhat advanced Ruby subjects, and we won’t need them much
in this book. They are important, though, and I suggest learning about them using one of the Ruby books
recommended in Section 1.1.1.

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 User Model 235

No prizes for inferring that all returns an array (Section 4.3.1) of all users in the

database.

6.1.5 Updating User Objects

Once we’ve created objects, we often want to update them. There are two basic ways to

do this. First, we can assign attributes individually, as we did in Section 4.4.5:

>> user # Just a reminder about our user's attributes

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created at: "2011-12-05 00:57:46", updated at: "2011-12-05 00:57:46">

>> user.email = "mhartl@example.net"

=> "mhartl@example.net"

>> user.save

=> true

Note that the final step is necessary to write the changes to the database. We can see

what happens without a save by using reload, which reloads the object based on the

database information:

>> user.email

=> "mhartl@example.net"

>> user.email = "foo@bar.com"

=> "foo@bar.com"

>> user.reload.email

=> "mhartl@example.net"

Now that we’ve updated the user, the magic columns differ, as promised in

Section 6.1.3:

>> user.created at

=> "2011-12-05 00:57:46"

>> user.updated at

=> "2011-12-05 01:37:32"

The second way to update attributes is to use update_attributes:

>> user.update attributes(name: "The Dude", email: "dude@abides.org")

=> true

>> user.name

=> "The Dude"

>> user.email

=> "dude@abides.org"

www.it-ebooks.info

http://www.it-ebooks.info/

236 Chapter 6: Modeling Users

The update_attributes method accepts a hash of attributes, and on success performs

both the update and the save in one step (returning true to indicate that the save went

through). It’s worth noting that, once you have defined some attributes as accessible

using attr_accessible (Section 6.1.2), only those attributes can be modified using

update_attributes. If you ever find that your models mysteriously start refusing to

update certain columns, check to make sure that those columns are included in the call

to attr_accessible.

6.2 User Validations

The User model we created in Section 6.1 now has working name and email attributes,

but they are completely generic: Any string (including an empty one) is currently

valid in either case. And yet, names and email addresses are more specific than

this. For example, name should be non-blank, and email should match the specific

format characteristic of email addresses. Moreover, since we’ll be using email addresses

as unique usernames when users sign in, we shouldn’t allow email duplicates in

the database.

In short, we shouldn’t allow name and email to be just any strings; we should

enforce certain constraints on their values. Active Record allows us to impose such

constraints using validations. In this section, we’ll cover several of the most com-

mon cases, validating presence, length, format, and uniqueness. In Section 6.3.4 we’ll

add a final common validation, confirmation. And we’ll see in Section 7.3 how

validations give us convenient error messages when users make submissions that

violate them.

6.2.1 Initial User Tests

As with the other features of our sample app, we’ll add User model validations using

test-driven development. Because we didn’t pass the

--no-test-framework

flag when we generated the User model (unlike, e.g., Listing 5.28), the command in

Listing 6.1 produces an initial spec for testing users, but in this case it’s practically blank

(Listing 6.7).

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 User Validations 237

Listing 6.7 The practically blank default User spec.

spec/models/user_spec.rb

require 'spec helper'

describe User do

pending "add some examples to (or delete) #{ FILE }"

end

This simply uses the pending method to indicate that we should fill the spec with

something useful. We can see its effect by running the User model spec:

$ bundle exec rspec spec/models/user spec.rb

*

Finished in 0.01999 seconds

1 example, 0 failures, 1 pending

Pending:

User add some examples to (or delete)

/Users/mhartl/rails projects/sample app/spec/models/user spec.rb

(Not Yet Implemented)

On many systems, pending specs will be displayed in yellow to indicate that they are in

between passing (green) and failing (red).

We’ll follow the advice of the default spec by filling it in with some RSpec examples,

shown in Listing 6.8.

Listing 6.8 Testing for the :name and :email attributes.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before { @user = User.new(name: "Example User", email: "user@example.com") }

subject { @user }

it { should respond to(:name) }

it { should respond to(:email) }

end

www.it-ebooks.info

http://www.it-ebooks.info/

238 Chapter 6: Modeling Users

The before block, which we saw in Listing 5.27, runs the code inside the block before

each example—in this case, creating a new @user instance variable using User.new

and a valid initialization hash. Then

subject { @user }

makes @user the default subject of the test example, as seen before in the context of the

page variable in Section 5.3.4.

The two examples in Listing 6.8 test for the existence of name and email attributes:

it { should respond to(:name) }

it { should respond to(:email) }

These examples implicitly use the Ruby method respond_to?, which accepts a symbol

and returns true if the object responds to the given method or attribute and false

otherwise:

$ rails console --sandbox

>> user = User.new

>> user.respond to?(:name)

=> true

>> user.respond to?(:foobar)

=> false

(Recall from Section 4.2.3 that Ruby uses a question mark to indicate such true/false

boolean methods.) The tests themselves rely on the boolean convention used by RSpec:

the code

@user.respond to?(:name)

can be tested using the RSpec code

@user.should respond to(:name)

Because of subject { @user }, we can leave off @user in the test, yielding

it { should respond to(:name) }

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 User Validations 239

These kinds of tests allow us to use TDD to add new attributes and methods to our

User model, and as a side effect we get a nice specification for the methods that all User

objects should respond to.

You should verify at this point that the tests fail:

$ bundle exec rspec spec/

Even though we created a development database with rake db:migrate in Section

6.1.1, the tests fail because the test database doesn’t yet know about the data model

(indeed, it doesn’t yet exist at all). We can create a test database with the correct

structure, and thereby get the tests to pass, using the db:test:prepare Rake task:

$ bundle exec rake db:test:prepare

This just ensures that the data model from the development database, db/development

.sqlite3, is reflected in the test database, db/test.sqlite3. Failure to run this Rake

task after a migration is a common source of confusion. In addition, sometimes the

test database gets corrupted and needs to be reset. If your test suite is mysteriously

breaking, be sure to try running rake db:test:prepare to see if that fixes the

problem.

6.2.2 Validating Presence

Perhaps the most elementary validation is presence, which simply verifies that a given

attribute is present. For example, in this section we’ll ensure that both the name and

email fields are present before a user gets saved to the database. In Section 7.3.2, we’ll

see how to propagate this requirement up to the signup form for creating new users.

We’ll start with a test for the presence of a name attribute. Although the first step

in TDD is to write a failing test (Section 3.2.1), in this case we don’t yet know enough

about validations to write the proper test, so we’ll write the validation first, using the

console to understand it. Then we’ll comment out the validation, write a failing test, and

verify that uncommenting the validation gets the test to pass. This procedure may seem

pedantic for such a simple test, but I have seen many ‘‘simple’’ tests that actually test

the wrong thing; being meticulous about TDD is simply the only way to be confident

that we’re testing the right thing. (This comment-out technique is also useful when

www.it-ebooks.info

http://www.it-ebooks.info/

240 Chapter 6: Modeling Users

rescuing an application whose application code is already written but—quelle horreur!—

has no tests.)

The way to validate the presence of the name attribute is to use the validates

method with argument presence: true, as shown in Listing 6.9. The presence:

true argument is a one-element options hash; recall from Section 4.3.4 that curly braces

are optional when passing hashes as the final argument in a method. (As noted in

Section 5.1.1, the use of options hashes is a recurring theme in Rails.)

Listing 6.9 Validating the presence of a name attribute.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email

validates :name, presence: true

end

Listing 6.9 may look like magic, but validates is just a method, as indeed is

attr_accessible. An equivalent formulation of Listing 6.9 using parentheses is as

follows:

class User < ActiveRecord::Base

attr accessible(:name, :email)

validates(:name, presence: true)

end

Let’s drop into the console to see the effects of adding a validation to our User

model:9

$ rails console --sandbox

>> user = User.new(name: "", email: "mhartl@example.com")

>> user.save

=> false

>> user.valid?

=> false

Here user.save returns false, indicating a failed save. In the final command, we use

the valid? method, which returns false when the object fails one or more validations,

9. I’ll omit the output of console commands when they are not particularly instructive—for example, the
results of User.new.

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 User Validations 241

and true when all validations pass. In this case, we only have one validation, so we

know which one failed, but it can still be helpful to check using the errors object

generated on failure:

>> user.errors.full messages

=> ["Name can't be blank"]

(The error message is a hint that Rails validates the presence of an attribute using the

blank? method, which we saw at the end of Section 4.4.3.)

Now for the failing test. To ensure that our incipient test will fail, let’s comment

out the validation at this point (Listing 6.10).

Listing 6.10 Commenting out a validation to ensure a failing test.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email

validates :name, presence: true

end

The initial validation tests then appear as in Listing 6.11.

Listing 6.11 A failing test for validation of the name attribute.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com")

end

subject { @user }

it { should respond to(:name) }

it { should respond to(:email) }

it { should be valid }

describe "when name is not present" do

before { @user.name = " " }

it { should not be valid }

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

242 Chapter 6: Modeling Users

The first new example is just a sanity check, verifying that the @user object is

initially valid:

it { should be valid }

This is another example of the RSpec boolean convention we saw in Section 6.2.1:

Whenever an object responds to a boolean method foo?, there is a corresponding test

method called be_foo. In this case, we can test the result of calling

@user.valid?

with

@user.should be valid

As before, subject { @user } lets us leave off @user, yielding

it { should be valid }

The second test first sets the user’s name to an invalid (blank) value, and then tests

to see that the resulting @user object is invalid:

describe "when name is not present" do

before { @user.name = " " }

it { should not be valid }

end

This uses a before block to set the user’s name to an invalid (blank) value and then

checks that the resulting user object is not valid.

You should verify that the tests fail at this point:

$ bundle exec rspec spec/models/user spec.rb

...F

4 examples, 1 failure

Now uncomment the validation (i.e., revert Listing 6.10 back to Listing 6.9) to get the

tests to pass:

$ bundle exec rspec spec/models/user spec.rb

...

4 examples, 0 failures

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 User Validations 243

Of course, we also want to validate the presence of email addresses. The test

(Listing 6.12) is analogous to the one for the name attribute.

Listing 6.12 A test for presence of the email attribute.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

describe "when email is not present" do

before { @user.email = " " }

it { should not be valid }

end

end

The implementation is also virtually the same, as seen in Listing 6.13.

Listing 6.13 Validating the presence of the name and email attributes.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email

validates :name, presence: true

validates :email, presence: true

end

Now all the tests should pass, and the presence validations are complete.

6.2.3 Length Validation

We’ve constrained our User model to require a name for each user, but we should go

further: The users’ names will be displayed on the sample site, so we should enforce

some limit on their length. With all the work we did in Section 6.2.2, this step is easy.

We start with a test. There’s no science to picking a maximum length; we’ll just

pull 50 out of thin air as a reasonable upper bound, which means verifying that names

of 51 characters are too long (Listing 6.14).

www.it-ebooks.info

http://www.it-ebooks.info/

244 Chapter 6: Modeling Users

Listing 6.14 A test for name length validation.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

describe "when name is too long" do

before { @user.name = "a" * 51 }

it { should not be valid }

end

end

For convenience, we’ve used ‘‘string multiplication’’ in Listing 6.14 to make a string 51

characters long. We can see how this works using the console:

>> "a" * 51

=> "aaa"

>> ("a" * 51).length

=> 51

The test in Listing 6.14 should fail. To get it to pass, we need to know about the

validation argument to constrain length, :length, along with the :maximum parameter

to enforce the upper bound (Listing 6.15).

Listing 6.15 Adding a length validation for the name attribute.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email

validates :name, presence: true, length: { maximum: 50 }

validates :email, presence: true

end

Now the tests should pass. With our test suite passing again, we can move on to a more

challenging validation: email format.

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 User Validations 245

6.2.4 Format Validation

Our validations for the name attribute enforce only minimal constraints—any non-blank

name under 51 characters will do—but of course the email attribute must satisfy more

stringent requirements. So far we’ve only rejected blank email addresses; in this section,

we’ll require email addresses to conform to the familiar pattern user@example.com.

Neither the tests nor the validation will be exhaustive, just good enough to accept

most valid email addresses and reject most invalid ones. We’ll start with a couple tests

involving collections of valid and invalid addresses. To make these collections, it’s worth

knowing about the useful %w[] technique for making arrays of strings, as seen in this

console session:

>> %w[foo bar baz]

=> ["foo", "bar", "baz"]

>> addresses = %w[user@foo.COM THE US-ER@foo.bar.org first.last@foo.jp]

=> ["user@foo.COM", "THE US-ER@foo.bar.org", "first.last@foo.jp"]

>> addresses.each do |address|

?> puts address

>> end

user@foo.COM

THE US-ER@foo.bar.org

first.last@foo.jp

Here we’ve iterated over the elements of the addresses array using the each method

(Section 4.3.2). With this technique in hand, we’re ready to write some basic email

format validation tests (Listing 6.16).

Listing 6.16 Tests for email format validation.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

describe "when email format is invalid" do

it "should be invalid" do

addresses = %w[user@foo,com user at foo.org example.user@foo.

foo@bar baz.com foo@bar+baz.com]

www.it-ebooks.info

http://www.it-ebooks.info/

246 Chapter 6: Modeling Users

addresses.each do |invalid address|

@user.email = invalid address

@user.should not be valid

end

end

end

describe "when email format is valid" do

it "should be valid" do

addresses = %w[user@foo.COM A US-ER@f.b.org frst.lst@foo.jp a+b@baz.cn]

addresses.each do |valid address|

@user.email = valid address

@user.should be valid

end

end

end

end

As noted above, these are far from exhaustive, but we do check the common valid

email forms user@foo.COM, THE_US-ER@foo.bar.org (uppercase, underscores, and

compound domains), and first.last@foo.jp (the standard corporate username

first.last, with a two-letter top-level domain jp), along with several invalid forms.

The application code for email format validation uses a regular expression (or regex)

to define the format, along with the :format argument to the validates method

(Listing 6.17).

Listing 6.17 Validating the email format with a regular expression.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email

validates :name, presence: true, length: { maximum: 50 }

VALID EMAIL REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, format: { with: VALID EMAIL REGEX }

end

Here the regex VALID_EMAIL_REGEX is a constant, indicated in Ruby by a name starting

with a capital letter. The code

VALID EMAIL REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true, format: { with: VALID EMAIL REGEX }

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 User Validations 247

Table 6.1 Breaking down the email regex from Listing 6.17.

Expression Meaning

/\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i full regex

/ start of regex

\A match start of a string

[\w+\-.]+ at least one word character, plus, hyphen,

or dot

@ literal ‘‘at sign’’

[a-z\d\-.]+ at least one letter, digit, hyphen, or dot

\. literal dot

[a-z]+ at least one letter

\z match end of a string

/ end of regex

i case insensitive

ensures that only email addresses that match the pattern will be considered valid.

(Because it starts with a capital letter, VALID_EMAIL_REGEX is a Ruby constant, so its

value can’t change.)

So, where does the pattern come from? Regular expressions consist of a terse (some

would say unreadable) language for matching text patterns; learning to construct regexes

is an art, and to get you started I’ve broken VALID_EMAIL_REGEX into bite-sized pieces

(Table 6.1).10 To really learn about regular expressions, though, I consider the amazing

Rubular regular expression editor (Figure 6.4) to be simply essential.11 The Rubular

website has a beautiful interactive interface for making regular expressions, along with

a handy regex quick reference. I encourage you to study Table 6.1 with a browser

window open to Rubular—no amount of reading about regular expressions can replace

a couple of hours playing with Rubular. (Note: If you use the regex from Listing 6.17

in Rubular, you should leave off the \A and \z characters.)

10. Note that, in Table 6.1, ‘‘letter’’ really means ‘‘lower-case letter,’’ but the i at the end of the regex enforces
case-insensitive matching.

11. If you find it as useful as I do, I encourage you to donate to Rubular to reward developer Michael Lovitt
for his wonderful work.

www.it-ebooks.info

http://www.it-ebooks.info/

248 Chapter 6: Modeling Users

Figure 6.4 The awesome Rubular regular expression editor.

By the way, there actually exists a full regex for matching email addresses according

to the official standard, but it’s really not worth the trouble. The one in Listing 6.17 is

fine, maybe even better than the official one.12

The tests should all be passing now. (In fact, the tests for valid email addresses

should have been passing all along; since regexes are notoriously error-prone, the valid

email tests are there mainly as a sanity check on VALID_EMAIL_REGEX.) This means

that there’s only one constraint left: enforcing the email addresses to be unique.

12. Did you know that "Michael Hartl"@example.com, with quotation marks and a space in the middle, is
a valid email address according to the standard? Incredibly, it is—but it’s absurd. If you don’t have an email
address that contains only letters, numbers, underscores, and dots, then I recommend getting one. N.B. The
regex in Listing 6.17 allows plus signs, too, because Gmail (and possibly other email services) does something
useful with them: To filter email from example.com, you can use username+example@gmail.com, which will
go to the Gmail address username@gmail.com, allowing you to filter on the string example.

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 User Validations 249

6.2.5 Uniqueness Validation

To enforce uniqueness of email addresses (so that we can use them as usernames), we’ll

be using the :unique option to the validates method. But be warned: There’s a

major caveat, so don’t just skim this section—read it carefully.

We’ll start, as usual, with our tests. In our previous model tests, we’ve mainly used

User.new, which just creates a Ruby object in memory, but for uniqueness tests we

actually need to put a record into the database.13 The (first) duplicate email test appears

in Listing 6.18.

Listing 6.18 A test for the rejection of duplicate email addresses.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

describe "when email address is already taken" do

before do

user with same email = @user.dup

user with same email.save

end

it { should not be valid }

end

end

The method here is to make a user with the same email address as @user, which we

accomplish using @user.dup, which creates a duplicate user with the same attributes.

Since we then save that user, the original @user has an email address that already exists

in the database, and hence should not be valid.

13. As noted briefly in the introduction to this section, there is a dedicated test database, db/test.sqlite3,
for this purpose.

www.it-ebooks.info

http://www.it-ebooks.info/

250 Chapter 6: Modeling Users

We can get the new test in Listing 6.18 to pass with the code in Listing 6.19.

Listing 6.19 Validating the uniqueness of email addresses.

app/models/user.rb

class User < ActiveRecord::Base

.

.

.

validates :email, presence: true, format: { with: VALID EMAIL REGEX },

uniqueness: true

end

We’re not quite done, though. Email addresses are case-insensitive—foo@bar.com

goes to the same place as FOO@BAR.COM or FoO@BAr.coM—so our validation should

cover this case as well. We test for this with the code in Listing 6.20.

Listing 6.20 A test for the rejection of duplicate email addresses, insensitive to case.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com")

end

.

.

.

describe "when email address is already taken" do

before do

user with same email = @user.dup

user with same email.email = @user.email.upcase

user with same email.save

end

it { should not be valid }

end

end

Here we are using the upcase method on strings (seen briefly in Section 4.3.2). This

test does the same thing as the first duplicate email test, but with an upper-case

email address instead. If this test feels a little abstract, go ahead and fire up the

console:

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 User Validations 251

$ rails console --sandbox

>> user = User.create(name: "Example User", email: "user@example.com")

>> user.email.upcase

=> "USER@EXAMPLE.COM"

>> user with same email = user.dup

>> user with same email.email = user.email.upcase

>> user with same email.valid?

=> true

Of course, user_with_same_email.valid? is true, because the uniqueness vali-

dation is currently case-sensitive, but we want it to be false. Fortunately, :uniqueness

accepts an option, :case_sensitive, for just this purpose (Listing 6.21).

Listing 6.21 Validating the uniqueness of email addresses, ignoring case.

app/models/user.rb

class User < ActiveRecord::Base

.

.

.

validates :email, presence: true, format: { with: VALID EMAIL REGEX },

uniqueness: { case sensitive: false }

end

Note that we have simply replaced true with case_sensitive: false; Rails infers

in this case that :uniqueness should be true. At this point, our application—with an

important caveat—enforces email uniqueness, and our test suite should pass.

The Uniqueness Caveat

There’s just one small problem, the caveat alluded to above:

Using validates :uniqueness does not guarantee uniqueness.

D’oh! But what can go wrong? Here’s what:

1. Alice signs up for the sample app, with address alice@wonderland.com.

2. Alice accidentally clicks on ‘‘Submit’’ twice, sending two requests in quick

succession.

3. The following sequence occurs: request 1 creates a user in memory that passes

validation, request 2 does the same, request 1’s user gets saved, request 2’s user gets

saved.

4. Result: two user records with the exact same email address, despite the uniqueness

validation.

www.it-ebooks.info

http://www.it-ebooks.info/

252 Chapter 6: Modeling Users

If the above sequence seems implausible, believe me, it isn’t: It can happen on any

Rails website with significant traffic. Luckily, the solution is straightforward to imple-

ment; we just need to enforce uniqueness at the database level as well. Our method

is to create a database index on the email column, and then require that the index

be unique.

The email index represents an update to our data modeling requirements, which (as

discussed in Section 6.1.1) is handled in Rails using migrations. We saw in Section 6.1.1

that generating the User model automatically created a new migration (Listing 6.2); in

the present case, we are adding structure to an existing model, so we need to create a

migration directly using the migration generator:

$ rails generate migration add index to users email

Unlike the migration for users, the email uniqueness migration is not pre-defined,

so we need to fill in its contents with Listing 6.22.14

Listing 6.22 The migration for enforcing email uniqueness.

db/migrate/[timestamp]_add_index_to_users_email.rb

class AddIndexToUsersEmail < ActiveRecord::Migration

def change

add index :users, :email, unique: true

end

end

This uses a Rails method called add_index to add an index on the email column of the

users table. The index by itself doesn’t enforce uniqueness, but the option unique:

true does.

The final step is to migrate the database:

$ bundle exec rake db:migrate

(If this fails, try exiting any running sandbox console sessions, which can lock the

database and prevent migrations.) If you’re interested in seeing the practical effect

14. Of course, we could just edit the migration file for the users table in Listing 6.2, but that would require
rolling back and then migrating back up. The Rails Way is to use migrations every time we discover that our
data model needs to change.

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 User Validations 253

of this, take a look at the file db/schema.rb, which should now include a line

like this:

add index "users", ["email"], :name => "index users on email", :unique => true

Unfortunately, there’s one more change we need to make to be assured of email

uniqueness, which is to make sure that the email address is all lowercase before it gets

saved to the database. The reason is that not all database adapters use case-sensitive

indices.15 The way to do this is with a callback, which is a method that gets invoked

at a particular point in the lifetime of an Active Record object (see the Rails API entry

on callbacks). In the present case, we’ll use a before_save callback to force Rails

to downcase the email attribute before saving the user to the database, as shown in

Listing 6.23.

Listing 6.23 Ensuring email uniqueness by downcasing the email attribute.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email

before save { |user| user.email = email.downcase }

.

.

.

end

The code in Listing 6.23 passes a block to the before_save callback and sets the user’s

email address to a lowercase version of its current value using the downcase string

method. This code is a little advanced, and at this point I suggest you simply trust that

it works; if you’re skeptical, comment out the uniqueness validation from Listing 6.19

and try to create users with identical email addresses to see the error that results. (We’ll

see this technique again in Section 8.2.1.)

Now the Alice scenario above will work fine: The database will save a user record

based on the first request and will reject the second save for violating the uniqueness

constraint. (An error will appear in the Rails log, but that doesn’t do any harm.

You can actually catch the ActiveRecord::StatementInvalid exception that gets

15. Direct experimentation with SQLite on my system and PostgreSQL on Heroku show that this step is, in
fact, necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

254 Chapter 6: Modeling Users

raised—see Insoshi for an example—but in this tutorial we won’t bother with this step.)

Adding this index on the email attribute accomplishes a second goal, alluded to briefly

in Section 6.1.4: It fixes an efficiency problem in find_by_email (Box 6.2).

Box 6.2 Database Indices

When creating a column in a database, it is important to consider whether we will

need to find records by that column. Consider, for example, the email attribute

created by the migration in Listing 6.2. When we allow users to sign in to the sample

app starting in Chapter 7, we will need to find the user record corresponding to the

submitted email address; unfortunately, based on the na ı̈ve data model, the only

way to find a user by email address is to look through each user row in the database

and compare its email attribute to the given email. This is known in the database

business as a full-table scan, and for a real site with thousands of users, it is a

Bad Thing.

Putting an index on the email column fixes the problem. To understand a

database index, it’s helpful to consider the analogy of a book index. In a book, to

find all the occurrences of a given string, say ‘‘foobar,’’ you would have to scan

each page for ‘‘foobar.’’ With a book index, on the other hand, you can just look

up ‘‘foobar’’ in the index to see all the pages containing ‘‘foobar.’’ A database index

works essentially the same way.

6.3 Adding a Secure Password

In this section we’ll add the last of the basic User attributes: a secure password used

to authenticate users of the sample application. The method is to require each user to

have a password (with a password confirmation), and then store an encrypted version

of the password in the database. We’ll also add a way to authenticate a user based

on a given password, a method we’ll use in Chapter 8 to allow users to sign in to

the site.

The method for authenticating users will be to take a submitted password, encrypt

it, and compare the result to the encrypted value stored in the database. If the two match,

then the submitted password is correct and the user is authenticated. By comparing

encrypted values instead of raw passwords, we will be able to authenticate users without

storing the passwords themselves, thereby avoiding a serious security hole.

www.it-ebooks.info

http://www.it-ebooks.info/

6.3 Adding a Secure Password 255

Figure 6.5 The User model with an added password_digest attribute.

6.3.1 An Encrypted Password

We’ll start with the necessary change to the data model for users, which involves

adding a password_digest column to the users table (Figure 6.5). The name digest

comes from the terminology of cryptographic hash functions, and the exact name

password_digest is necessary for the implementation in Section 6.3.4 to work. By

encrypting the password properly, we’ll ensure that an attacker won’t be able to sign in

to the site even if he manages to obtain a copy of the database.

We’ll use the state-of-the-art hash function called bcrypt to irreversibly encrypt the

password to form the password hash. To use bcrypt in the sample application, we need

to add the bcrypt-ruby gem to our Gemfile (Listing 6.24).

Listing 6.24 Adding bcrypt-ruby to the Gemfile.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

gem 'bootstrap-sass', '2.0.0'

gem 'bcrypt-ruby', '3.0.1'

.

.

.

Then run bundle install:

$ bundle install

www.it-ebooks.info

http://www.it-ebooks.info/

256 Chapter 6: Modeling Users

Since we want users to have a password digest column, a user object should respond

to password_digest, which suggests the test shown in Listing 6.25.

Listing 6.25 Ensuring that a User object has a password_digest column.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com")

end

subject { @user }

it { should respond to(:name) }

it { should respond to(:email) }

it { should respond to(:password digest) }

.

.

.

end

To get the test to pass, we first generate an appropriate migration for the password_

digest column:

$ rails generate migration add password digest to users password digest:string

Here the first argument is the migration name, and we’ve also supplied a second

argument with the name and type of attribute we want to create. (Compare this to the

original generation of the users table in Listing 6.1.) We can choose any migration

name we want, but it’s convenient to end the name with _to_users, since in this

case Rails automatically constructs a migration to add columns to the users table.

Moreover, by including the second argument, we’ve given Rails enough information to

construct the entire migration for us, as seen in Listing 6.26.

Listing 6.26 The migration to add a password_digest column to the users table.

db/migrate/[ts]_add_password_digest_to_users.rb

class AddPasswordDigestToUsers < ActiveRecord::Migration

def change

add column :users, :password digest, :string

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

6.3 Adding a Secure Password 257

This code uses the add_column method to add a password_digest column to the

users table.

We can get the failing test from Listing 6.25 to pass by migrating the development

database and preparing the test database:

$ bundle exec rake db:migrate

$ bundle exec rake db:test:prepare

$ bundle exec rspec spec/

6.3.2 Password and Confirmation

As seen in the mockup in Figure 6.1, we expect to have users confirm their passwords,

a common practice on the web meant to minimize typos. We could enforce this at the

controller layer, but it’s conventional to put it in the model and use Active Record to

enforce the constraint. The method is to add password and password_confirmation

attributes to the User model and then require that the two attributes match before

the record is saved to the database. Unlike the other attributes we’ve seen so far, the

password attributes will be virtual—they will only exist temporarily in memory and will

not be persisted to the database.

We’ll start with respond_to tests for a password and its confirmation, as seen in

Listing 6.27.

Listing 6.27 Testing for the password and password_confirmation attributes.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password confirmation: "foobar")

end

subject { @user }

it { should respond to(:name) }

it { should respond to(:email) }

it { should respond to(:password digest) }

it { should respond to(:password) }

it { should respond to(:password confirmation) }

www.it-ebooks.info

http://www.it-ebooks.info/

258 Chapter 6: Modeling Users

it { should be valid }

.

.

.

end

Note that we’ve added :password and :password_confirmation to the initialization

hash for User.new:

before do

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password confirmation: "foobar")

end

We definitely don’t want users to enter a blank password, so we’ll add another test

to validate password presence:

describe "when password is not present" do

before { @user.password = @user.password confirmation = " " }

it { should not be valid }

end

Since we’ll be testing password mismatch in a moment, here we make sure to test the

presence validation by setting both the password and its confirmation to a blank string.

This uses Ruby’s ability to make more than one assignment in a line. For example, in

the console we can set both a and b to 3 as follows:

>> a = b = 3

>> a

=> 3

>> b

=> 3

In the present case, we use it to set both password attributes to " ":

@user.password = @user.password confirmation = " "

We also want to ensure that the password and confirmation match. The case where

they do match is already covered by it { should be_valid }, so we only need to

test the case of a mismatch:

describe "when password doesn't match confirmation" do

before { @user.password confirmation = "mismatch" }

it { should not be valid }

end

www.it-ebooks.info

http://www.it-ebooks.info/

6.3 Adding a Secure Password 259

In principle, we are now done, but there is one case that doesn’t quite work. What

if the password confirmation is blank? If it is empty or consist of whitespace but the

password is valid, then the two don’t match and the confirmation validation will catch

it. If both the password and its confirmation are empty or consist of whitespace, then the

password presence validation will catch it. Unfortunately, there’s one more possibility,

which is that the password confirmation is nil. This can never happen through the web,

but it can at the console:

$ rails console

>> User.create(name: "Michael Hartl", email: "mhartl@example.com",

?> password: "foobar", password confirmation: nil)

When the confirmation is nil, Rails doesn’t run the confirmation validation, which

means that we can create users at the console without password confirmations. (Of

course, right now we haven’t added the validations yet, so the code above will work in

any case.) To prevent this, we’ll add a test to catch this case:

describe "when password confirmation is nil" do

before { @user.password confirmation = nil }

it { should not be valid }

end

(This behavior strikes me as a minor bug in Rails, and perhaps it will be fixed in a future

version, and in any case adding the validation does no harm.)

Putting everything together gives the (failing) tests in Listing 6.28. We’ll get them

to pass in Section 6.3.4.

Listing 6.28 Test for the password and password confirmation.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password confirmation: "foobar")

end

subject { @user }

it { should respond to(:name) }

it { should respond to(:email) }

it { should respond to(:password digest) }

www.it-ebooks.info

http://www.it-ebooks.info/

260 Chapter 6: Modeling Users

it { should respond to(:password) }

it { should respond to(:password confirmation) }

it { should be valid }

.

.

.

describe "when password is not present" do

before { @user.password = @user.password confirmation = " " }

it { should not be valid }

end

describe "when password doesn't match confirmation" do

before { @user.password confirmation = "mismatch" }

it { should not be valid }

end

describe "when password confirmation is nil" do

before { @user.password confirmation = nil }

it { should not be valid }

end

end

6.3.3 User Authentication

The final piece of our password machinery is a method to retrieve users based on their

email and passwords. This divides naturally into two parts: first, find a user by email

address; second, authenticate the user with a given password.

The first step is simple; as we saw in Section 6.1.4, we can find a user with a given

email address using the find_by_email method:

user = User.find by email(email)

The second step is then to use an authenticate method to verify that the user has

the given password. In Chapter 8, we’ll retrieve the current (signed-in) user using code

something like this:

current user = user.authenticate(password)

If the given password matches the user’s password, it should return the user; otherwise,

it should return false.

As usual, we can express the requirement for authenticate using RSpec. The

resulting tests are more advanced than the others we’ve seen, so let’s break them down

www.it-ebooks.info

http://www.it-ebooks.info/

6.3 Adding a Secure Password 261

into pieces; if you’re new to RSpec, you might want to read this section a couple of

times. We start by requiring a User object to respond to authenticate:

it { should respond to(:authenticate) }

We then cover the two cases of password match and mismatch:

describe "return value of authenticate method" do

before { @user.save }

let(:found user) { User.find by email(@user.email) }

describe "with valid password" do

it { should == found user.authenticate(@user.password) }

end

describe "with invalid password" do

let(:user for invalid password) { found user.authenticate("invalid") }

it { should not == user for invalid password }

specify { user for invalid password.should be false }

end

end

The before block saves the user to the database so that it can be retrieved using

find_by_email, which we accomplish using the let method:

let(:found user) { User.find by email(@user.email) }

We’ve used let in a couple of exercises, but this is the first time we’ve seen it in the

body of the tutorial. Box 6.3 covers let in more detail.

The two describe blocks cover the case where @user and found_user should be

the same (password match) and different (password mismatch); they use the ‘‘double

equals’’ == test for object equivalence (Section 4.3.1). Note that the tests in

describe "with invalid password" do

let(:user for invalid password) { found user.authenticate("invalid") }

it { should not == user for invalid password }

specify { user for invalid password.should be false }

end

use let a second time and also use the specify method. This is just a synonym for

it and can be used when writing it would sound unnatural. In this case, it sounds

www.it-ebooks.info

http://www.it-ebooks.info/

262 Chapter 6: Modeling Users

good to say ‘‘it [i.e., the user] should not equal wrong user,’’ but it sounds strange to

say ‘‘user: user with invalid password should be false’’; saying ‘‘specify: user with invalid

password should be false’’ sounds better.

Box 6.3 Using let

RSpec’s let method provides a convenient way to create local variables inside tests.

The syntax might look a little strange, but its effect is similar to variable assignment.

The argument of let is a symbol, and it takes a block whose return value is assigned

to a local variable with the symbol’s name. In other words,

let(:found user) { User.find by email(@user.email) }

creates a found user variable whose value is equal to the result of find by email.

We can then use this variable in any of the before or it blocks throughout the rest

of the test. One advantage of let is that it memoizes its value, which means that

it remembers the value from one invocation to the next. (Note that memoize is a

technical term; in particular, it’s not a misspelling of ‘‘memorize.’’) In the present case,

because let memoizes the found user variable, the find by email method will

only be called once whenever the User model specs are run.

Finally, as a security precaution, we’ll test for a length validation on passwords,

requiring that they be at least six characters long:

describe "with a password that's too short" do

before { @user.password = @user.password confirmation = "a" * 5 }

it { should be invalid }

end

Putting together all the tests above gives Listing 6.29.

Listing 6.29 Test for the authenticate method.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password confirmation: "foobar")

end

www.it-ebooks.info

http://www.it-ebooks.info/

6.3 Adding a Secure Password 263

subject { @user }

.

.

.

it { should respond to(:authenticate) }

.

.

.

describe "with a password that's too short" do

before { @user.password = @user.password confirmation = "a" * 5 }

it { should be invalid }

end

describe "return value of authenticate method" do

before { @user.save }

let(:found user) { User.find by email(@user.email) }

describe "with valid password" do

it { should == found user.authenticate(@user.password) }

end

describe "with invalid password" do

let(:user for invalid password) { found user.authenticate("invalid") }

it { should not == user for invalid password }

specify { user for invalid password.should be false }

end

end

end

As noted in Box 6.3, let memoizes its value, so that the first nested describe block in

Listing 6.29 invokes let to retrieve the user from the database using find_by_email,

but the second describe block doesn’t hit the database a second time.

6.3.4 User Has Secure Password

In previous versions of Rails, adding a secure password was difficult and time-consuming,

as seen in the Rails 3.0 version of the Rails Tutorial ,16 which covers the creation of an

authentication system from scratch. But web developers’ understanding of how best

to authenticate users has matured enough that it now comes bundled with the latest

version of Rails. As a result, we’ll complete the implementation of secure passwords

(and get to a green test suite) using only a few lines of code.

16. http://railstutorial.org/book?version=3.0

www.it-ebooks.info

http://railstutorial.org/book?version=3.0
http://www.it-ebooks.info/

264 Chapter 6: Modeling Users

First, we need to make the password and password_confirmation columns

accessible (Section 6.1.2) so that we can instantiate new users with an initialization

hash:

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password confirmation: "foobar")

Following the model in Listing 6.6, we do this by adding the appropriate symbols to

the list of accessible attributes:

attr accessible :name, :email, :password, :password confirmation

Second, we need presence and length validations for the password, the latter of

which uses the :minimum key in analogy with the :maximum key from Listing 6.15:

validates :password, presence: true, length: { minimum: 6 }

Next, we need to add password and password_confirmation attributes, require

the presence of the password, require that they match, and add an authenticate

method to compare an encrypted password to the password_digest to authenticate

users. This is the only nontrivial step, and in the latest version of Rails all these features

come for free with one method, has_secure_password:

has secure password

As long as there is a password_digest column in the database, adding this one

method to our model gives us a secure way to create and authenticate new users.

(If has_secure_password seems a bit too magical for your taste, I suggest taking a

look at the source code for secure password.rb, which is well-documented and quite

readable. You’ll see that, among other things, it automatically includes a validation for

the password_digest attribute. In Chapter 7, we’ll see that this is a mixed blessing.)

Finally, we need a presence validation for the password confirmation:

validates :password confirmation, presence: true

Putting these three elements together yields the User model shown in Listing 6.30,

which completes the implementation of secure passwords.

www.it-ebooks.info

http://www.it-ebooks.info/

6.3 Adding a Secure Password 265

Listing 6.30 The complete implementation for secure passwords.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email, :password, :password confirmation

has secure password

before save { |user| user.email = email.downcase }

validates :name, presence: true, length: { maximum: 50 }

VALID EMAIL REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i

validates :email, presence: true,

format: { with: VALID EMAIL REGEX },

uniqueness: { case sensitive: false }

validates :password, presence: true, length: { minimum: 6 }

validates :password confirmation, presence: true

end

You should confirm at this point that the test suite passes:

$ bundle exec rspec spec/

6.3.5 Creating a User

Now that the basic User model is complete, we’ll create a user in the database as

preparation for making a page to show the user’s information in Section 7.1. This also

gives us a chance to make the work from the previous sections feel more concrete;

merely getting the test suite to pass may seem anti-climactic, and it will be gratifying to

see an actual user record in the development database.

Since we can’t yet sign up through the web—that’s the goal of Chapter 7—we’ll

use the Rails console to create a new user by hand. In contrast to Section 6.1.3, in this

section we’ll take care not to start in a sandbox, since this time the whole point is to

save a record to the database:

$ rails console

>> User.create(name: "Michael Hartl", email: "mhartl@example.com",

?> password: "foobar", password confirmation: "foobar")

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created at: "2011-12-07 03:38:14", updated at: "2011-12-07 03:38:14",

password digest: "$2a$10$P9OnzpdCON80yuMVk3jGr.LMA16VwOExJgjlw0G4f21y...">

www.it-ebooks.info

http://www.it-ebooks.info/

266 Chapter 6: Modeling Users

Figure 6.6 A user row in the SQLite database db/development.sqlite3.

To check that this worked, let’s look at the row in the development database (db/

development.sqlite3) using the SQLite Database Browser (Figure 6.6). Note that

the columns correspond to the attributes of the data model defined in Figure 6.5.

Returning to the console, we can see the effect of has_secure_password from

Listing 6.30 by looking at the password_digest attribute:

>> user = User.find by email("mhartl@example.com")

>> user.password digest

=> "$2a$10$P9OnzpdCON80yuMVk3jGr.LMA16VwOExJgjlw0G4f21yZIMSH/xoy"

www.it-ebooks.info

http://www.it-ebooks.info/

6.4 Conclusion 267

This is the encrypted version of the password ("foobar") used to initialize the user

object. We can also verify that the authenticate command is working by first using

an invalid password and then a valid one:

>> user.authenticate("invalid")

=> false

>> user.authenticate("foobar")

=> #<User id: 1, name: "Michael Hartl", email: "mhartl@example.com",

created at: "2011-12-07 03:38:14", updated at: "2011-12-07 03:38:14",

password digest: "$2a$10$P9OnzpdCON80yuMVk3jGr.LMA16VwOExJgjlw0G4f21y...">

As required, authenticate returns false if the password is invalid and the user itself

if the password is valid.

6.4 Conclusion

Starting from scratch, in this chapter we created a working User model with name,

email, and various password attributes, together with validations enforcing several

important constraints on their values. In addition, we can securely authenticate users

using a given password. In previous versions of Rails, such a feat would have taken

more than twice as much code, but because of the compact validates method and

has_secure_password, we were able to build a complete User model in only ten

source lines of code.

In the next chapter, Chapter 7, we’ll make a working signup form to create new

users, together with a page to display each user’s information. In Chapter 8, we’ll use

the authentication machinery from Section 6.3 to let users sign into the site.

If you’re using Git, now would be a good time to commit if you haven’t done so in

a while:

$ git add .

$ git commit -m "Make a basic User model (including secure passwords)"

Then merge back into the master branch:

$ git checkout master

$ git merge modeling-users

www.it-ebooks.info

http://www.it-ebooks.info/

268 Chapter 6: Modeling Users

6.5 Exercises

1. Add a test for the email downcasing from Listing 6.23, as shown in Listing 6.31.

By commenting out the before_save line, verify that Listing 6.31 tests the right

thing.

2. By running the test suite, verify that the before_save callback can be written as

shown in Listing 6.32.

3. Read through the Rails API entry for ActiveRecord::Base to get a sense of its

capabilities.

4. Study the entry in the Rails API for the validates method to learn more about

its capabilities and options.

5. Spend a couple of hours playing with Rubular.

Listing 6.31 A test for the email downcasing from Listing 6.23.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

describe "email address with mixed case" do

let(:mixed case email) { "Foo@ExAMPle.CoM" }

it "should be saved as all lower-case" do

@user.email = mixed case email

@user.save

@user.reload.email.should == mixed case email.downcase

end

end

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

6.5 Exercises 269

Listing 6.32 An alternate implementation of the before_save callback.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email, :password, :password confirmation

has secure password

before save { self.email.downcase! }

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Sign Up

Now that we have a working User model, it’s time to add an ability few websites can

live without: letting users sign up for the site. We’ll use an HTML form to submit

user signup information to our application in Section 7.2, which will then be used to

create a new user and save its attributes to the database in Section 7.4. At the end of

the signup process, it’s important to render a profile page with the newly created user’s

information, so we’ll begin by making a page for showing users, which will serve as

the first step toward implementing the REST architecture for users (Section 2.2.2). As

usual, we’ll write tests as we develop, extending the theme of using RSpec and Capybara

to write succinct and expressive integration tests.

In order to make a user profile page, we need to have a user in the database, which

introduces a chicken-and-egg problem: How can the site have a user before there is a

working signup page? Happily, this problem has already been solved: In Section 6.3.5,

we created a User record by hand using the Rails console. If you skipped that section,

you should go there now and complete it before proceeding.

If you’re following along with version control, make a topic branch as usual:

$ git checkout master

$ git checkout -b sign-up

7.1 Showing Users

In this section, we’ll take the first steps toward the final profile by making a page to

display a user’s name and profile photo, as indicated by the mockup in Figure 7.1.1 Our

1. Mockingbird doesn’t support custom images like the profile photo in Figure 7.1; I put that in by hand using
Adobe Fireworks.

271

www.it-ebooks.info

http://www.it-ebooks.info/

272 Chapter 7: Sign Up

Figure 7.1 A mockup of the user profile made in this section.

eventual goal for the user profile pages is to show the user’s profile image, basic user

data, and a list of microposts, as mocked up in Figure 7.2.2 (Figure 7.2 has our first

example of lorem ipsum text, which has a fascinating story that you should definitely

read about some time.) We’ll complete this task, and with it the sample application, in

Chapter 11.

7.1.1 Debug and Rails Environments

The profiles in this section will be the first truly dynamic pages in our application.

Although the view will exist as a single page of code, each profile will be customized

using information retrieved from the site’s database. As preparation for adding dynamic

pages to our sample application, now is a good time to add some debug information

to our site layout (Listing 7.1). This displays some useful information about each page

using the built-in debug method and params variable (which we’ll learn more about in

Section 7.1.2).

2. The hippo here is from http://www.flickr.com/photos/43803060@N00/24308857/.

www.it-ebooks.info

http://www.flickr.com/photos/43803060@N00/24308857/
http://www.it-ebooks.info/

7.1 Showing Users 273

Figure 7.2 A mockup of our best guess at the final profile page.

Listing 7.1 Adding some debug information to the site layout.

app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

.

.

<body>

<%= render 'layouts/header' %>

<div class="container">

<%= yield %>

www.it-ebooks.info

http://www.it-ebooks.info/

274 Chapter 7: Sign Up

<%= render 'layouts/footer' %>

<%= debug(params) if Rails.env.development? %>

</div>

</body>

</html>

To make the debug output look nice, we’ll add some rules to the custom stylesheet

created in Chapter 5, as shown in Listing 7.2.

Listing 7.2 Adding code for a pretty debug box, including a Sass mixin.

app/assets/stylesheets/custom.css.scss

@import "bootstrap";

/* mixins, variables, etc. */

$grayMediumLight: #eaeaea;

@mixin box sizing {

-moz-box-sizing: border-box;

-webkit-box-sizing: border-box;

box-sizing: border-box;

}

.

.

.

/* miscellaneous */

.debug dump {

clear: both;

float: left;

width: 100%;

margin-top: 45px;

@include box sizing;

}

This introduces the Sass mixin facility, in this case called box_sizing. A mixin allows

a group of CSS rules to be packaged up and used for multiple elements, converting

.debug dump {

.

.

.

@include box sizing;

}

www.it-ebooks.info

http://www.it-ebooks.info/

7.1 Showing Users 275

to

.debug dump {

.

.

.

-moz-box-sizing: border-box;

-webkit-box-sizing: border-box;

box-sizing: border-box;

}

We’ll put this mixin to use again in Section 7.2.2. The result in the case of the debug

box is shown in Figure 7.3.

The debug output in Figure 7.3 gives potentially useful information about the page

being rendered:

controller: static pages

action: home

Figure 7.3 The sample application Home page (/) with debug information.

www.it-ebooks.info

http://www.it-ebooks.info/

276 Chapter 7: Sign Up

This is a YAML3 representation of params, which is basically a hash, and in this

case identifies the controller and action for the page. We’ll see another example in

Section 7.1.2

Since we don’t want to display debug information to users of a deployed application,

Listing 7.1 uses

if Rails.env.development?

to restrict the debug information to the development environment, which is one of three

environments defined by default in Rails (Box 7.1).4 In particular, Rails.env.devel-

opment? is true only in a development environment, so the Embedded Ruby

<%= debug(params) if Rails.env.development? %>

won’t be inserted into production applications or tests. (Inserting the debug information

into tests probably wouldn’t do any harm, but it probably wouldn’t do any good, either,

so it’s best to restrict the debug display to development only.)

Box 7.1 Rails Environments

Rails comes equipped with three environments: test, development, and produc-

tion. The default environment for the Rails console is development:

$ rails console

Loading development environment

>> Rails.env

=> "development"

>> Rails.env.development?

=> true

>> Rails.env.test?

=> false

3. The Rails debug information is shown as YAML (a recursive acronym standing for ‘‘YAML Ain’t Markup
Language’’), which is a friendly data format designed to be both machine- and human-readable.

4. You can define your own custom environments as well; see the RailsCast on adding an environment for
details.

www.it-ebooks.info

http://www.it-ebooks.info/

7.1 Showing Users 277

As you can see, Rails provides a Rails object with an env attribute and associated

environment boolean methods, so that, for example, Rails.env.test? returns

true in a test environment and false otherwise.

If you ever need to run a console in a different environment (to debug a test, for

example), you can pass the environment as a parameter to the console script:

$ rails console test

Loading test environment

>> Rails.env

=> "test"

>> Rails.env.test?

=> true

As with the console, development is the default environment for the local Rails

server, but you can also run it in a different environment:

$ rails server --environment production

If you view your app running in production, it won’t work without a production

database, which we can create by running rake db:migrate in production:

$ bundle exec rake db:migrate RAILS ENV=production

(I find it confusing that the console, server, and migrate commands specify non-

default environments in three mutually incompatible ways, which is why I bothered

showing all three.)

By the way, if you have deployed your sample app to Heroku, you can see its

environment using the heroku command, which provides its own (remote) console:

$ heroku run console

Ruby console for yourapp.herokuapp.com

>> Rails.env

=> "production"

>> Rails.env.production?

=> true

Naturally, since Heroku is a platform for production sites, it runs each application in

a production environment.

www.it-ebooks.info

http://www.it-ebooks.info/

278 Chapter 7: Sign Up

7.1.2 A Users Resource

At the end of Chapter 6, we created a new user in the database. As seen in Section 6.3.5,

this user has id 1, and our goal now is to make a page to display this user’s information.

We’ll follow the conventions of the REST architecture favored in Rails applications

(Box 2.2), which means representing data as resources that can be created, shown,

updated, or destroyed—four actions corresponding to the four fundamental operations

POST, GET, PUT, and DELETE defined by the HTTP standard (Box 3.2).

When following REST principles, resources are typically referenced using the

resource name and a unique identifier. What this means in the context of users—which

we’re now thinking of as a Users resource—is that we should view the user with id 1 by

issuing a GET request to the URI /users/1. Here the show action is implicit in the type

of request—when Rails’ REST features are activated, GET requests are automatically

handled by the show action.

We saw in Section 2.2.1 that the page for a user with id 1 has URI /users/1.

Unfortunately, visiting that URI right now just gives an error (Figure 7.4).

Figure 7.4 The error page for /users/1.

www.it-ebooks.info

http://www.it-ebooks.info/

7.1 Showing Users 279

We can get the REST-style URI to work by adding a single line to our routes file

(config/routes.rb):

resources :users

The result appears in Listing 7.3.

Listing 7.3 Adding a Users resource to the routes file.

config/routes.rb

SampleApp::Application.routes.draw do

resources :users

root to: 'static pages#home'

.

.

.

end

You might have noticed that Listing 7.3 removes the line

get "users/new"

last seen in Listing 5.32. This is because resources :users doesn’t just add a working

/users/1 URI; it endows our sample application with all the actions needed for a

RESTful Users resource,5 along with a large number of named routes (Section 5.3.3)

for generating user URIs. The resulting correspondence of URIs, actions, and named

routes is shown in Table 7.1. (Compare to Table 2.2.) Over the course of the next three

chapters, we’ll cover all of the other entries in Table 7.1 as we fill in all the actions

necessary to make Users a fully RESTful resource.

With the code in Listing 7.3, the routing works, but there’s still no page there

(Figure 7.5). To fix this, we’ll begin with a minimalist version of the profile page, which

we’ll flesh out in Section 7.1.4.

We’ll use the standard Rails location for showing a user, which is app/views/

users/show.html.erb. Unlike the new.html.erb view, which we created with the

generator in Listing 5.28, the show.html.erb file doesn’t currently exist, so you’ll have

to create it by hand, filling it with the content shown in Listing 7.4.

5. This means that the routing works, but the corresponding pages don’t necessarily work at this point. For
example, /users/1/edit gets routed properly to the edit action of the Users controller, but since the edit action
doesn’t exist yet actually hitting that URI will return an error.

www.it-ebooks.info

http://www.it-ebooks.info/

280 Chapter 7: Sign Up

Table 7.1 RESTful routes provided by the Users resource in Listing 7.3.

HTTP URI Action Named route Purpose

request

GET /users index users_path page to list all users

GET /users/1 show user_path(user) page to show user

GET /users/new new new_user_path page to make a new user

(signup)

POST /users create users_path create a new user

GET /users/1/edit edit edit_user_path(user) page to edit user with

id 1

PUT /users/1 update user_path_code update user

DELETE /users/1 destroy user_path(user) delete user

Figure 7.5 The URI /users/1 with routing but no page.

Listing 7.4 A stub view for showing user information.

app/views/users/show.html.erb

<%= @user.name %>, <%= @user.email %>

www.it-ebooks.info

http://www.it-ebooks.info/

7.1 Showing Users 281

This view uses Embedded Ruby to display the user’s name and email address, assuming

the existence of an instance variable called @user. Of course, eventually the real user

show page will look very different, and won’t display the email address publicly.

In order to get the user show view to work, we need to define an @user variable in

the corresponding show action in the Users controller. As you might expect, we use the

find method on the User model (Section 6.1.4) to retrieve the user from the database,

as shown in Listing 7.5.

Listing 7.5 The Users controller with a show action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

def show

@user = User.find(params[:id])

end

def new

end

end

Here we’ve used params to retrieve the user id. When we make the appropriate request

to the Users controller, params[:id] will be the user id 1, so the effect is the same as

the find method

User.find(1)

we saw in Section 6.1.4. (Technically, params[:id] is the string "1", but find is

smart enough to convert this to an integer.)

With the user view and action defined, the URI /users/1 works perfectly (Figure 7.6).

Note that the debug information in Figure 7.6 confirms the value of params[:id]:

action: show

controller: users

id: '1'

This is why the code

User.find(params[:id])

in Listing 7.5 finds the user with id 1.

www.it-ebooks.info

http://www.it-ebooks.info/

282 Chapter 7: Sign Up

Figure 7.6 The user show page at /users/1 after adding a Users resource.

7.1.3 Testing the User Show Page (with Factories)

Now that we have a minimal working profile, it’s time to start working on the version

mocked up in Figure 7.1. As with the creation of static pages (Chapter 3) and the User

model (Chapter 6), we’ll proceed using test-driven development.

Recall from Section 5.4.2 that we have elected to use integration tests for the pages

associated with the Users resource. In the case of the signup page, our test first visits the

signup_path and then checks for the right h1 and title tags, as seen in Listing 5.31

and reproduced in Listing 7.6. (Note that we’ve omitted the full_title helper from

Section 5.3.4 since the full title is already adequately tested there.)

Listing 7.6 A recap of the initial User pages spec.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

subject { page }

www.it-ebooks.info

http://www.it-ebooks.info/

7.1 Showing Users 283

describe "signup page" do

before { visit signup path }

it { should have selector('h1', text: 'Sign up') }

it { should have selector('title', text: 'Sign up') }

end

end

To test the user show page, we’ll need a User model object so that the code in the

show action (Listing 7.5) has something to find:

describe "profile page" do

Code to make a user variable

before { visit user path(user) }

it { should have selector('h1', text: user.name) }

it { should have selector('title', text: user.name) }

end

where we need to fill in the comment with the appropriate code. This uses the

user_path named route (Table 7.1) to generate the path to the show page for the given

user. It then tests that the h1 and title tags both contain the user’s name.

In order to make the necessary User model object, we could use Active Record to

create a user with User.create, but experience shows that user factories are a more

convenient way to define user objects and insert them in the database. We’ll be using

the factories generated by Factory Girl,6 a Ruby gem produced by the good people at

thoughtbot. As with RSpec, Factory Girl defines a domain-specific language in Ruby,

in this case specialized for defining Active Record objects. The syntax is simple, relying

on Ruby blocks and custom methods to define the attributes of the desired object.

For cases such as the one in this chapter, the advantage over Active Record may not

be obvious, but we’ll use more advanced features of factories in future chapters. For

example, in Section 9.3.3 it will be important to create a sequence of users with unique

email addresses, and factories make it easy to do this.

As with other Ruby gems, we can install Factory Girl by adding a line to the

Gemfile used by Bundler (Listing 7.7). (Since Factory Girl is only needed in the tests,

we’ve put it in the :test group.)

6. Presumably ‘‘Factory Girl’’ is a reference to the movie of the same name.

www.it-ebooks.info

http://www.it-ebooks.info/

284 Chapter 7: Sign Up

Listing 7.7 Adding Factory Girl to the Gemfile.

source 'https://rubygems.org'

.

.

.

group :test do

.

.

.

gem 'factory girl rails', '1.4.0'

end

.

.

.

end

Then install as usual:

$ bundle install

We’ll put all our Factory Girl factories in the file spec/factories.rb, which

automatically gets loaded by RSpec. The code needed to make a User factory appears in

Listing 7.8.

Listing 7.8 A factory to simulate User model objects.

spec/factories.rb

FactoryGirl.define do

factory :user do

name "Michael Hartl"

email "michael@example.com"

password "foobar"

password confirmation "foobar"

end

end

By passing the symbol :user to the factory command, we tell Factory Girl that the

subsequent definition is for a User model object.

With the definition in Listing 7.8, we can create a User factory in the tests using

the let command (Box 6.3) and the FactoryGirl method supplied by Factory Girl:

let(:user) { FactoryGirl.create(:user) }

The final result appears in Listing 7.9.

www.it-ebooks.info

http://www.it-ebooks.info/

7.1 Showing Users 285

Listing 7.9 A test for the user show page.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

subject { page }

describe "profile page" do

let(:user) { FactoryGirl.create(:user) }

before { visit user path(user) }

it { should have selector('h1', text: user.name) }

it { should have selector('title', text: user.name) }

end

.

.

.

end

You should verify at this point that the test suite is red:

$ bundle exec rspec spec/

We can get the tests to green with the code in Listing 7.10.

Listing 7.10 Adding a title and heading for the user profile page.

app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<h1><%= @user.name %></h1>

Running the tests again should confirm that the test in Listing 7.9 is passing:

$ bundle exec rspec spec/

One thing you will quickly notice when running tests with Factory Girl is that they are

slow. The reason is not Factory Girl’s fault, and in fact it is a feature, not a bug. The

issue is that the BCrypt algorithm used in Section 6.3.1 to create a secure password

hash is slow by design: BCrypt’s slow speed is part of what makes it so hard to attack.

Unfortunately, this means that creating users can bog down the test suite; happily, there

is an easy fix. BCrypt uses a cost factor to control how computationally costly it is to

create the secure hash. The default value is designed for security, not for speed, which is

www.it-ebooks.info

http://www.it-ebooks.info/

286 Chapter 7: Sign Up

perfect for production applications, but in tests our needs are reversed: We want fast tests

and don’t care at all about the security of the test users’ password hashes. The solution

is to add a few lines to the test configuration file, config/environments/test.rb,

redefining the cost factor from its secure default value to its fast minimum value, as

shown in Listing 7.11. Even for a small test suite, the gains in speed from this step can

be considerable, and I strongly recommend including Listing 7.11 in your test.rb.

Listing 7.11 Redefining the BCrypt cost factor in a test environment.

config/environments/test.rb

SampleApp::Application.configure do

.

.

.

Speed up tests by lowering BCrypt's cost function.

require 'bcrypt'

silence warnings do

BCrypt::Engine::DEFAULT COST = BCrypt::Engine::MIN COST

end

end

7.1.4 A Gravatar Image and a Sidebar

Having defined a basic user page in the previous section, we’ll now flesh it out a little

with a profile image for each user and the first cut of the user sidebar. When making

views, we’ll focus on the visual appearance and not worry too much about the exact

structure of the page, which means that (at least for now) we won’t be writing tests.

When we come to more error-prone aspects of view, such as pagination (Section 9.3.3),

we’ll resume test-driven development.

We’ll start by adding a ‘‘globally recognized avatar,’’ or Gravatar, to the user

profile.7 Originally created by Tom Preston-Werner (cofounder of GitHub) and later

acquired by Automattic (the makers of WordPress), Gravatar is a free service that

allows users to upload images and associate them with email addresses they control.

Gravatars are a convenient way to include user profile images without going through the

trouble of managing image upload, cropping, and storage; all we need to do is construct

7. In Hinduism, an avatar is the manifestation of a deity in human or animal form. By extension, the term
avatar is commonly used to mean some kind of personal representation, especially in a virtual environment.
But you’ve seen the movie, so you already knew this.

www.it-ebooks.info

http://www.it-ebooks.info/

7.1 Showing Users 287

the proper Gravatar image URI using the user’s email address and the corresponding

Gravatar image will automatically appear.8

Our plan is to define a gravatar_for helper function to return a Gravatar image

for a given user, as shown in Listing 7.12.

Listing 7.12 The user show view with name and Gravatar.

app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<h1>

<%= gravatar for @user %>

<%= @user.name %>

</h1>

You can verify at this point that the test suite is failing:

$ bundle exec rspec spec/

Because the gravatar_for method is undefined, the user show view is currently

broken. (Catching errors of this nature is perhaps the most useful aspect of view specs.

This is why having some test of the view, even a minimalist one, is so important.)

By default, methods defined in any helper file are automatically available in any

view, but for convenience we’ll put the gravatar_for method in the file for helpers

associated with the Users controller. As noted at the Gravatar home page, Gravatar

URIs are based on an MD5 hash of the user’s email address. In Ruby, the MD5 hashing

algorithm is implemented using the hexdigest method, which is part of the Digest

library:

>> email = "MHARTL@example.COM".

>> Digest::MD5::hexdigest(email.downcase)

=> "1fda4469bcbec3badf5418269ffc5968"

Since email addresses are case-insensitive (Section 6.2.4) but MD5 hashes are not, we’ve

used the downcase method to ensure that the argument to hexdigest is all lower-case.

The resulting gravatar_for helper appears in Listing 7.13.

8. If your application does need to handle custom images or other file uploads, I recommend the Paperclip
gem.

www.it-ebooks.info

http://www.it-ebooks.info/

288 Chapter 7: Sign Up

Listing 7.13 Defining a gravatar_for helper method.

app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar (http://gravatar.com/) for the given user.

def gravatar for(user)

gravatar id = Digest::MD5::hexdigest(user.email.downcase)

gravatar url = "https://secure.gravatar.com/avatars/#{gravatar id}.png"

image tag(gravatar url, alt: user.name, class: "gravatar")

end

end

The code in Listing 7.13 returns an image tag for the Gravatar with a "gravatar" class

and alt text equal to the user’s name (which is especially convenient for sight-impaired

browsers using a screen reader). You can confirm that the test suite is now passing:

$ bundle exec rspec spec/

The profile page appears as in Figure 7.7, which shows the default Gravatar image,

which appears because user@example.com is an invalid email address (the example.com

domain is reserved for examples).

To get our application to display a custom Gravatar, we’ll use update_attributes

(Section 6.1.5) to update the user in the database:

$ rails console

>> user = User.first

>> user.update attributes(name: "Example User",

?> email: "example@railstutorial.org",

?> password: "foobar",

?> password confirmation: "foobar")

=> true

Here we’ve assigned the user the email address example@railstutorial.org, which

I’ve associated with the Rails Tutorial logo, as seen in Figure 7.8.

The last element needed to complete the mockup from Figure 7.1 is the initial

version of the user sidebar. We’ll implement it using the aside tag, which is used for

www.it-ebooks.info

http://www.it-ebooks.info/

7.1 Showing Users 289

Figure 7.7 The user profile page /users/1 with the default Gravatar.

Figure 7.8 The user show page with a custom Gravatar.

www.it-ebooks.info

http://www.it-ebooks.info/

290 Chapter 7: Sign Up

content (such as sidebars) that complements the rest of the page but can also stand

alone. We include row and span4 classes, which are both part of Bootstrap. The code

for the modified user show page appears in Listing 7.14.

Listing 7.14 Adding a sidebar to the user show view.

app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

<aside class="span4">

<section>

<h1>

<%= gravatar for @user %>

<%= @user.name %>

</h1>

</section>

</aside>

</div>

With the HTML elements and CSS classes in place, we can style the profile page

(including the sidebar and the Gravatar) with the SCSS shown in Listing 7.15. (Note

the nesting of the table CSS rules, which works only because of the Sass engine used by

the asset pipeline.) The resulting page is shown in Figure 7.9.

Listing 7.15 SCSS for styling the user show page, including the sidebar.

app/assets/stylesheets/custom.css.scss

.

.

.

/* sidebar */

aside {

section {

padding: 10px 0;

border-top: 1px solid $grayLighter;

&:first-child {

border: 0;

padding-top: 0;

}

span {

display: block;

www.it-ebooks.info

http://www.it-ebooks.info/

7.1 Showing Users 291

margin-bottom: 3px;

line-height: 1;

}

h1 {

font-size: 1.6em;

text-align: left;

letter-spacing: -1px;

margin-bottom: 3px;

}

}

}

.gravatar {

float: left;

margin-right: 10px;

}

Figure 7.9 The user show page /users/1 with a sidebar and CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

292 Chapter 7: Sign Up

7.2 Signup Form

Now that we have a working (although not yet complete) user profile page, we’re ready

to make a signup form for our site. We saw in Figure 5.9 (shown again in Figure 7.10)

that the signup page is currently blank: useless for signing up new users. The goal of

this section is to start changing this sad state of affairs by producing the signup form

mocked up in Figure 7.11.

Since we’re about to add the ability to create new users through the web, let’s

remove the user created at the console in Section 6.3.5. The cleanest way to do this is

to reset the database with the db:reset Rake task:

$ bundle exec rake db:reset

After resetting the database, on some systems the test database needs to be re-prepared

as well:

$ bundle exec rake db:test:prepare

Figure 7.10 The current state of the signup page /signup.

www.it-ebooks.info

http://www.it-ebooks.info/

7.2 Signup Form 293

Figure 7.11 A mockup of the user signup page.

Finally, on some systems you might have to restart the web server for the changes to

take effect.9

7.2.1 Tests for User Signup

In the days before powerful web frameworks with full testing capabilities, testing was

often painful and error-prone. For example, to test a signup page manually, we would

have to visit the page in a browser and then submit alternately invalid and valid data,

verifying in each case that the application’s behavior was correct. Moreover, we would

have to remember to repeat the process any time the application changed. With RSpec

9. Weird, right? I don’t get it either.

www.it-ebooks.info

http://www.it-ebooks.info/

294 Chapter 7: Sign Up

and Capybara, we will be able to write expressive tests to automate tasks that used to

have to be done by hand.

We’ve already seen how Capybara supports an intuitive web-navigation syntax. So

far, we’ve mostly used visit to visit particular pages, but Capybara can do a lot more,

including filling in the kind of fields we see in Figure 7.11 and clicking on the button.

The syntax looks like this:

visit signup path

fill in "Name", with: "Example User"

.

.

.

click button "Create my account"

Our goal now is to write tests for the right behavior given invalid and valid signup

information. Because these tests are fairly advanced, we’ll build them up piece by piece.

If you want to see how they work (including which file to put them in), you can skip

ahead to Listing 7.16.

Our first task is to test for a failing signup form, and we can simulate the submission

of invalid data by visiting the page and clicking the button using click_button:

visit signup path

click button "Create my account"

This is equivalent to visiting the signup page and submitting blank signup information

(which is invalid). Similarly, to simulate the submission of valid data, we fill in valid

information using fill_in:

visit signup path

fill in "Name", with: "Example User"

fill in "Email", with: "user@example.com"

fill in "Password", with: "foobar"

fill in "Confirmation", with: "foobar"

click button "Create my account"

The purpose of our tests is to verify that clicking the ‘‘Create my account’’ button

results in the correct behavior, creating a new user when the information is valid and not

creating a user when it’s invalid. The way to do this is to check the count of users, and

www.it-ebooks.info

http://www.it-ebooks.info/

7.2 Signup Form 295

under the hood our tests will use the count method available on every Active Record

class, including User:

$ rails console

>> User.count

=> 0

Here User.count is 0 because we reset the database at the beginning of this section.

When submitting invalid data, we expect the user count not to change; when

submitting valid data, we expect it to change by 1. We can express this in RSpec by

combining the expect method with either the to method or the not_to method.

We’ll start with the invalid case since it is simpler; we visit the signup path and click the

button, and we expect it not to change the user count:

visit signup path

expect { click button "Create my account" }.not to change(User, :count)

Note that, as indicated by the curly braces, expect wraps click_button in a block

(Section 4.3.2). This is for the benefit of the change method, which takes as arguments

an object and a symbol and then calculates the result of calling that symbol as a method

on the object both before and after the block. In other words, the code

expect { click button "Create my account" }.not to change(User, :count)

calculates

User.count

before and after the execution of

click button "Create my account"

In the present case, we want the given code not to change the count, which we express

using the not_to method. In effect, by enclosing the button click in a block we are able

to replace

initial = User.count

click button "Create my account"

final = User.count

initial.should == final

www.it-ebooks.info

http://www.it-ebooks.info/

296 Chapter 7: Sign Up

with the single line

expect { click button "Create my account" }.not to change(User, :count)

which reads like natural language and is much more compact.

The case of valid data is similar, but instead of verifying that the user count doesn’t

change, we check that clicking the button changes the count by 1:

visit signup path

fill in "Name", with: "Example User"

fill in "Email", with: "user@example.com"

fill in "Password", with: "foobar"

fill in "Confirmation", with: "foobar"

expect do

click button "Create my account"

end.to change(User, :count).by(1)

This uses the to method because we expect a click on the signup button with valid data

to change the user count by one.

Combining the two cases with the appropriate describe blocks and pulling the

common code into before blocks yields good basic tests for signing up users, as shown

in Listing 7.16. Here we’ve factored out the common text for the submit button using

the let method to define a submit variable.

Listing 7.16 Good basic tests for signing up users.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

subject { page }

.

.

.

describe "signup" do

before { visit signup path }

let(:submit) { "Create my account" }

www.it-ebooks.info

http://www.it-ebooks.info/

7.2 Signup Form 297

describe "with invalid information" do

it "should not create a user" do

expect { click button submit }.not to change(User, :count)

end

end

describe "with valid information" do

before do

fill in "Name", with: "Example User"

fill in "Email", with: "user@example.com"

fill in "Password", with: "foobar"

fill in "Confirmation", with: "foobar"

end

it "should create a user" do

expect { click button submit }.to change(User, :count).by(1)

end

end

end

end

We’ll add a few more tests as needed in the sections that follow, but the basic tests

in Listing 7.16 already cover an impressive amount of functionality. To get them to

pass, we have to create a signup page with just the right elements, arrange for the page’s

submission to be routed to the right place, and successfully create a new user in the

database only if the resulting user data is valid.

Of course, at this point the tests should fail:

$ bundle exec rspec spec/

7.2.2 Using form for

Now that we have good failing tests for user signup, we’ll start getting them to pass by

making a form for signing up users. We can accomplish this in Rails with the form_for

helper method, which takes in an Active Record object and constructs a form using the

object’s attributes. The result appears in Listing 7.17. (Readers familiar with Rails 2.x

should note that form_for uses the ‘‘percent-equals’’ ERb syntax for inserting content;

that is, where Rails 2.x used <% form for ... %>, Rails 3 uses <%= form for ...

%> instead.)

www.it-ebooks.info

http://www.it-ebooks.info/

298 Chapter 7: Sign Up

Listing 7.17 A form to sign up new users.

app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<div class="row">

<div class="span6 offset3">

<%= form for(@user) do |f| %>

<%= f.label :name %>

<%= f.text field :name %>

<%= f.label :email %>

<%= f.text field :email %>

<%= f.label :password %>

<%= f.password field :password %>

<%= f.label :password confirmation, "Confirmation" %>

<%= f.password field :password confirmation %>

<%= f.submit "Create my account", class: "btn btn-large btn-primary" %>

<% end %>

</div>

</div>

Let’s break this down into pieces. The presence of the do keyword indicates that

form_for takes a block with one variable, which we’ve called f for ‘‘form’’:

<%= form for(@user) do |f| %>

.

.

.

<% end %>

As is usually the case with Rails helpers, we don’t need to know any details about the

implementation, but what we do need to know is what the f object does: When called

with a method corresponding to an HTML form element—such as a text field, radio

button, or password field—it returns code for that element specifically designed to set

an attribute of the @user object. In other words,

<%= f.label :name %>

<%= f.text field :name %>

www.it-ebooks.info

http://www.it-ebooks.info/

7.2 Signup Form 299

creates the HTML needed to make a labeled text field element appropriate for setting

the name attribute of a User model. (We’ll take a look at the HTML itself in

Section 7.2.3.)

To see this in action, we need to drill down and look at the actual HTML produced

by this form, but here we have a problem: The page currently breaks, because we have

not set the @user variable—like all undefined instance variables (Section 4.4.5), @user

is currently nil. Appropriately, if you run your test suite at this point, you’ll see that the

tests for the structure of the signup page from Listing 7.6 (i.e., the h1 and the title)

now fail:

$ bundle exec rspec spec/requests/user pages spec.rb -e "signup page"

(The -e here arranges to run just the examples whose description strings match "signup

page". Note in particular that this is not the substring "signup", which would run

all the test in Listing 7.16.) To get these tests to pass again and to get our form to

render, we must define an @user variable in the controller action corresponding to

new.html.erb, i.e., the new action in the Users controller. The form_for helper

expects @user to be a User object, and since we’re creating a new user we simply use

User.new, as seen in Listing 7.18.

Listing 7.18 Adding an @user variable to the new action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def new

@user = User.new

end

end

With the @user variable so defined, the test for the signup page should be passing

again:

$ bundle exec rspec spec/requests/user pages spec.rb -e "signup page"

At this point, the form (with the styling from Listing 7.19) appears as in Figure 7.12.

Note the reuse of the box_sizing mixin from Listing 7.2.

www.it-ebooks.info

http://www.it-ebooks.info/

300 Chapter 7: Sign Up

Listing 7.19 CSS for the signup form.

app/assets/stylesheets/custom.css.scss

.

.

.

/* forms */

input, textarea, select, .uneditable-input {

border: 1px solid #bbb;

width: 100%;

padding: 10px;

height: auto;

margin-bottom: 15px;

@include box sizing;

}

Figure 7.12 The signup form /signup for new users.

www.it-ebooks.info

http://www.it-ebooks.info/

7.2 Signup Form 301

7.2.3 The Form HTML

As indicated by Figure 7.12, the signup page now renders properly, indicating that the

form_for code in Listing 7.17 is producing valid HTML. If you look at the HTML

for the generated form (using either Firebug or the ‘‘view page source’’ feature of your

browser), you should see markup as in Listing 7.20. Although many of the details are

irrelevant for our purposes, let’s take a moment to highlight the most important parts

of its structure.

Listing 7.20 The HTML for the form in Figure 7.12.

<form accept-charset="UTF-8" action="/users" class="new user"

id="new user" method="post">

<label for="user name">Name</label>

<input id="user name" name="user[name]" size="30" type="text" />

<label for="user email">Email</label>

<input id="user email" name="user[email]" size="30" type="text" />

<label for="user password">Password</label>

<input id="user password" name="user[password]" size="30"

type="password" />

<label for="user password confirmation">Confirmation</label>

<input id="user password confirmation"

name="user[password confirmation]" size="30" type="password" />

<input class="btn btn-large btn-primary" name="commit" type="submit"

value="Create my account" />

</form>

(Here I’ve omitted some HTML related to the authenticity token, which Rails automati-

cally includes to thwart a particular kind of attack called a cross-site request forgery (CSRF).

See the Stack Overflow entry on the Rails authenticity token if you’re interested in the

details of how this works and why it’s important.)

We’ll start with the internal structure of the document. Comparing Listing 7.17

with Listing 7.20, we see that the Embedded Ruby

<%= f.label :name %>

<%= f.text field :name %>

www.it-ebooks.info

http://www.it-ebooks.info/

302 Chapter 7: Sign Up

produces the HTML

<label for="user name">Name</label>

<input id="user name" name="user[name]" size="30" type="text" />

and

<%= f.label :password %>

<%= f.password field :password %>

produces the HTML

<label for="user password">Password</label>

<input id="user password" name="user[password]" size="30" type="password" />

As seen in Figure 7.13, text fields (type="text") simply display their contents, whereas

password fields (type="password") obscure the input for security purposes, as seen in

Figure 7.13.

Figure 7.13 A filled-in form with text and password fields.

www.it-ebooks.info

http://www.it-ebooks.info/

7.3 Signup Failure 303

As we’ll see in Section 7.4, the key to creating a user is the special name attribute in

each input:

<input id="user name" name="user[name]" - - - />

.

.

.

<input id="user password" name="user[password]" - - - />

These name values allow Rails to construct an initialization hash (via the params variable)

for creating users using the values entered by the user, as we’ll see in Section 7.3.

The second important element is the form tag itself. Rails creates the form tag

using the @user object: because every Ruby object knows its own class (Section 4.4.1),

Rails figures out that @user is of class User; moreover, since @user is a new user, Rails

knows to construct a form with the post method, which is the proper verb for creating

a new object (Box 3.2):

<form action="/users" class="new user" id="new user" method="post">

Here the class and id attributes are largely irrelevant; what’s important is action=

"/users" and method="post". Together, these constitute instructions to issue an

HTTP POST request to the /users URI. We’ll see in the next two sections what effects

this has.

7.3 Signup Failure

Although we’ve briefly examined the HTML for the form in Figure 7.12 (shown in

Listing 7.20), it’s best understood in the context of signup failure. In this section, we’ll

create a signup form that accepts an invalid submission and re-renders the signup page

with a list of errors, as mocked up in Figure 7.14.

7.3.1 A Working Form

Our first step is to eliminate the error that currently results when submitting the signup

form, as you can verify in your browser or by running the test for signup with invalid

information:

$ bundle exec rspec spec/requests/user pages spec.rb \

-e "signup with invalid information"

www.it-ebooks.info

http://www.it-ebooks.info/

304 Chapter 7: Sign Up

Figure 7.14 A mockup of the signup failure page.

Recall from Section 7.1.2 that adding resources :users to the routes.rb file

(Listing 7.3) automatically ensures that our Rails application responds to the RESTful

URIs from Table 7.1. In particular, it ensures that a POST request to /users is handled

by the create action. Our strategy for the create action is to use the form submission

to make a new user object using User.new, try (and fail) to save that user, then render

the signup page for possible resubmission. Let’s get started by reviewing the code for

the signup form:

<form action="/users" class="new user" id="new user" method="post">

As noted in Section 7.2.3, this HTML issues a POST request to the /users URI.

We can get the test for invalid information from Listing 7.16 to pass with the

code in Listing 7.21. This listing includes a second use of the render method, which

www.it-ebooks.info

http://www.it-ebooks.info/

7.3 Signup Failure 305

we first saw in the context of partials (Section 5.1.3); as you can see, render works

in controller actions as well. Note that we’ve taken this opportunity to introduce an

if-else branching structure, which allows us to handle the cases of failure and success

separately based on the value of @user.save, which (as we saw in Section 6.1.3) is

either true or false depending on whether the save succeeds.

Listing 7.21 A create action that can handle signup failure (but not success).

app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(params[:user])

if @user.save

Handle a successful save.

else

render 'new'

end

end

end

The best way to understand how the code in Listing 7.21 works is to submit the

form with some invalid signup data; the result appears in Figure 7.15, and the full

debug information appears in Figure 7.16.

To get a clearer picture of how Rails handles the submission, let’s take a closer look

at the params hash from the debug information (Figure 7.16):

user:

name: Foo Bar

password confirmation: foo

password: bar

email: foo@invalid

commit: Create my account

action: create

controller: users

We saw starting in Section 7.1.2 that the params hash contains information about

each request; in the case of a URI like /users/1, the value of params[:id] is the id of

the corresponding user (1 in this example). In the case of posting to the signup form,

www.it-ebooks.info

http://www.it-ebooks.info/

306 Chapter 7: Sign Up

Figure 7.15 Signup failure.

params instead contains a hash of hashes, a construction we first saw in Section 4.3.3,

which introduced the strategically named params variable in a console session. The

debug information above shows that submitting the form results in a user hash with

attributes corresponding to the submitted values, where the keys come from the name

attributes of the input tags seen in Listing 7.17; for example, the value of

<input id="user email" name="user[email]" size="30" type="text" />

with name "user[email]" is precisely the email attribute of the user hash.

Although the hash keys appear as strings in the debug output, internally Rails

uses symbols, so that params[:user] is the hash of user attributes—in fact, exactly

the attributes needed as an argument to User.new, as first seen in Section 4.4.5 and

appearing in Listing 7.21. This means that the line

@user = User.new(params[:user])

www.it-ebooks.info

http://www.it-ebooks.info/

7.3 Signup Failure 307

Figure 7.16 Signup failure debug information.

is equivalent to

@user = User.new(name: "Foo Bar", email: "foo@invalid",

password: "foo", password confirmation: "bar")

Of course, instantiating such a variable has implications for successful signup—as

we’ll see in Section 7.4, once @user is defined properly, calling @user.save is all that’s

needed to complete the registration—but it has consequences even in the failed signup

considered here. Note in Figure 7.15 that the fields are pre-filled with the data from the

failed submission. This is because form_for automatically fills in the fields with the

attributes of the @user object, so that, for example, if @user.name is "Foo" then

<%= form for(@user) do |f| %>

<%= f.label :name %>

<%= f.text field :name %>

.

.

.

www.it-ebooks.info

http://www.it-ebooks.info/

308 Chapter 7: Sign Up

will produce the HTML

<form action="/users" class="new user" id="new user" method="post">

<label for="user name">Name</label>

<input id="user name" name="user[name]" size="30" type="text" value="Foo"/>

.

.

.

Here the value of the input tag is "Foo", so that’s what appears in the text field.

As you might guess, now that we can submit a form without generating an error,

the test for invalid submission should pass:

$ bundle exec rspec spec/requests/user pages spec.rb \

-e "signup with invalid information"

7.3.2 Signup Error Messages

Although not strictly necessary, it’s helpful to output error messages on failed signup

to indicate the problems that prevented successful user registration. Rails provides just

such messages based on the User model validations. For example, consider trying to

save a user with an invalid email address and with a password that’s too short:

$ rails console

>> user = User.new(name: "Foo Bar", email: "foo@invalid",

?> password: "dude", password confirmation: "dude")

>> user.save

=> false

>> user.errors.full messages

=> ["Email is invalid", "Password is too short (minimum is 6 characters)"]

Here the errors.full_messages object (which we saw briefly in Section 6.2.2)

contains an array of error messages.

As in the console session above, the failed save in Listing 7.21 generates a list of

error messages associated with the @user object. To display the messages in the browser,

we’ll render an error-messages partial on the user new page, as shown in Listing 7.22.

(Writing a test for the error messages first is a good idea and is left as an exercise; see

Section 7.6.) It’s worth noting that this error messages partial is only a first attempt; the

final version appears in Section 10.3.2.

www.it-ebooks.info

http://www.it-ebooks.info/

7.3 Signup Failure 309

Listing 7.22 Code to display error messages on the signup form.

app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<%= form for(@user) do |f| %>

<%= render 'shared/error messages' %>

.

.

.

<% end %>

Notice here that we render a partial called ’shared/error_messages’; this reflects

the common Rails convention of using a dedicated shared/ directory for partials

expected to be used in views across multiple controllers. (We’ll see this expecta-

tion fulfilled in Section 9.1.1.) This means that we have to create both the new

app/views/shared directory and the _error_messages.html.erb partial file. The

partial itself appears in Listing 7.23.

Listing 7.23 A partial for displaying form submission error messages.

app/views/shared/_error_messages.html.erb

<% if @user.errors.any? %>

<div id="error explanation">

<div class="alert alert-error">

The form contains <%= pluralize(@user.errors.count, "error") %>.

</div>

<% @user.errors.full messages.each do |msg| %>

* <%= msg %>

<% end %>

</div>

<% end %>

This partial introduces several new Rails and Ruby constructs, including two methods

for Rails objects. The first method is count, which simply returns the number

of errors:

>> user.errors.count

=> 2

www.it-ebooks.info

http://www.it-ebooks.info/

310 Chapter 7: Sign Up

The other new method is any?, which (together with empty?) is one of a pair of

complementary methods:

>> user.errors.empty?

=> false

>> user.errors.any?

=> true

We see here that the empty? method, which we first saw in Section 4.2.3 in the

context of strings, also works on Rails error objects, returning true for an empty object

and false otherwise. The any? method is just the opposite of empty?, returning

true if there are any elements present and false otherwise. (By the way, all of these

methods—count, empty?, and any?—work on Ruby arrays as well. We’ll put this fact

to good use starting in Section 10.2.)

The other new idea is the pluralize text helper. It isn’t available in the console

by default, but we can include it explicitly through the ActionView::Helpers::

TextHelper module:10

>> include ActionView::Helpers::TextHelper

>> pluralize(1, "error")

=> "1 error"

>> pluralize(5, "error")

=> "5 errors"

We see here that pluralize takes an integer argument and then returns the number

with a properly pluralized version of its second argument. Underlying this method is a

powerful inflector that knows how to pluralize a large number of words, including many

with irregular plurals:

>> pluralize(2, "woman")

=> "2 women"

>> pluralize(3, "erratum")

=> "3 errata"

As a result of its use of pluralize, the code

<%= pluralize(@user.errors.count, "error") %>

returns "0 errors", "1 error", "2 errors", and so on, depending on how many

errors there are, thereby avoiding ungrammatical phrases such as "1 errors" (a

distressingly common mistake on teh interwebs).

10. I figured this out by looking up pluralize in the Rails API.

www.it-ebooks.info

http://www.it-ebooks.info/

7.3 Signup Failure 311

Note that Listing 7.23 includes the CSS id error_explanation for use in styling

the error messages. (Recall from Section 5.1.2 that CSS uses the pound sign # to style

ids.) In addition, on error pages Rails automatically wraps the fields with errors in divs

with the CSS class field_with_errors. These labels then allow us to style the error

messages with the SCSS shown in Listing 7.24, which makes use of Sass’s @extend

function to include the functionality of two Bootstrap classes control-group and

error. As a result, on failed submission the error messages appear surrounded by red,

as seen in Figure 7.17. Because the messages are generated by the model validations,

they will automatically change if you ever change your mind about, say, the format of

email addresses, or the minimum length of passwords.

Listing 7.24 CSS for styling error messages.

app/assets/stylesheets/custom.css.scss

.

.

.

/* forms */

.

.

.

#error explanation {

color: #f00;

ul {

list-style: none;

margin: 0 0 18px 0;

}

}

.field with errors {

@extend .control-group;

@extend .error;

}

To see the results of our work in this section, we’ll recapitulate the steps in the

failed signup test from Listing 7.16 by visiting the signup page and clicking ‘‘Create

my account’’ with blank input fields. The result is shown in Figure 7.18. As you might

guess from the working page, at this point the corresponding test should also pass:

$ bundle exec rspec spec/requests/user pages spec.rb \

> -e "signup with invalid information"

www.it-ebooks.info

http://www.it-ebooks.info/

312 Chapter 7: Sign Up

Figure 7.17 Failed signup with error messages.

Unfortunately, there’s a minor blemish in the error messages shown in Figure 7.18:

The error for a missing password reads as ‘‘Password digest can’t be blank’’ instead of

the more sensible ‘‘Password can’t be blank.’’ This is due to the password digest presence

validation hiding in has_secure_password, as mentioned briefly in Section 6.3.4.

Fixing this problem is left as an exercise (Section 7.6).

7.4 Signup Success

Having handled invalid form submissions, now it’s time to complete the signup form

by actually saving a new user (if valid) to the database. First, we try to save the user;

if the save succeeds, the user’s information gets written to the database automatically,

and we then redirect the browser to show the user’s profile (together with a friendly

greeting), as mocked up in Figure 7.19. If it fails, we simply fall back on the behavior

developed in Section 7.3.

www.it-ebooks.info

http://www.it-ebooks.info/

7.4 Signup Success 313

Figure 7.18 The result of visiting /signup and just clicking ‘‘Create my account.’’

7.4.1 The Finished Signup Form

To complete a working signup form, we need to fill in the commented-out section

in Listing 7.21 with the appropriate behavior. Currently, the test for valid submission

should be failing:

$ bundle exec rspec spec/requests/user pages spec.rb \

> -e "signup with valid information"

This is because the default behavior for a Rails action is to render the corresponding

view, but there is not (nor should there be) a view template corresponding to the create

action. Instead, we need to redirect to a different page, and it makes sense for that page

to be the newly created user’s profile. Testing that the proper page gets rendered is left

as an exercise (Section 7.6); the application code appears in Listing 7.25.

www.it-ebooks.info

http://www.it-ebooks.info/

314 Chapter 7: Sign Up

Figure 7.19 A mockup of successful signup.

Listing 7.25 The user create action with a save and a redirect.

app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(params[:user])

if @user.save

redirect to @user

else

render 'new'

end

end

end

Note that we can omit the user_path in the redirect, writing simply redirect_to

@user to redirect to the user show page.

www.it-ebooks.info

http://www.it-ebooks.info/

7.4 Signup Success 315

With the code in Listing 7.25, our signup form is working, as you can verify by

running the test suite:

$ bundle exec rspec spec/

7.4.2 The Flash

Before submitting a valid registration in a browser, we’re going to add a bit of polish

common in web applications: a message that appears on the subsequent page (in this

case, welcoming our new user to the application) and then disappears upon visiting a

second page or on page reload. The Rails way to accomplish this is to use a special variable

called the flash, which operates like flash memory in that it stores its data temporarily.

The flash variable is effectively a hash; you may even recall the console example in

Section 4.3.3, where we saw how to iterate through a hash using a strategically named

flash hash:

$ rails console

>> flash = { success: "It worked!", error: "It failed." }

=> {:success=>"It worked!", error: "It failed."}

>> flash.each do |key, value|

?> puts "#{key}"

?> puts "#{value}"

>> end

success

It worked!

error

It failed.

We can arrange to display the contents of the flash site-wide by including it in our

application layout, as in Listing 7.26. (This code is a particularly ugly combination of

HTML and ERb; an exercise in Section 7.6 shows how to make it prettier.)

Listing 7.26 Adding the contents of the flash variable to the site layout.

app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

.

.

www.it-ebooks.info

http://www.it-ebooks.info/

316 Chapter 7: Sign Up

<body>

<%= render 'layouts/header' %>

<div class="container">

<% flash.each do |key, value| %>

<div class="alert alert-<%= key %>"><%= value %></div>

<% end %>

<%= yield %>

<%= render 'layouts/footer' %>

<%= debug(params) if Rails.env.development? %>

</div>

.

.

.

</body>

</html>

The code in Listing 7.26 arranges to insert a div tag for each element in the flash,

with a CSS class indicating the type of message. For example, if flash[:success] =

"Welcome to the Sample App!", then the code

<% flash.each do |key, value| %>

<div class="alert alert-<%= key %>"><%= value %></div>

<% end %>

will produce this HTML:

<div class="alert alert-success">Welcome to the Sample App!</div>

(Note that the key :success is a symbol, but Embedded Ruby automatically converts

it to the string "success" before inserting it into the template.) The reason we iterate

through all possible key/value pairs is so that we can include other kinds of flash

messages. For example, in Section 8.1.5 we’ll see flash[:error] used to indicate a

failed signin attempt.11

Writing a test for the right flash message is left as an exercise (Section 7.6), and

we can get the test to pass by assigning flash[:success] a welcome message in the

create action, as shown in Listing 7.27.

11. Actually, we’ll use the closely related flash.now, but we’ll defer that subtlety until we need it.

www.it-ebooks.info

http://www.it-ebooks.info/

7.4 Signup Success 317

Listing 7.27 Adding a flash message to user signup.

app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(params[:user])

if @user.save

flash[:success] = "Welcome to the Sample App!"

redirect to @user

else

render 'new'

end

end

end

7.4.3 The First Signup

We can see the result of all this work by signing up our first user under the name

‘‘Rails Tutorial’’ and email address ‘‘example@railstutorial.org’’. The resulting

page (Figure 7.20) shows a friendly message upon successful signup, including nice

green styling for the success class, which comes included with the Bootstrap CSS

framework from Section 5.1.2. (If instead you get an error message indicating that

the email address has already been taken, be sure to run the db:reset Rake task as

indicated in Section 7.2.) Then, upon reloading the user show page, the flash message

disappears as promised (Figure 7.21).

We can now check our database just to be double sure that the new user was

actually created:

$ rails console

>> User.find by email("example@railstutorial.org")

=> #<User id: 1, name: "Rails Tutorial", email: "example@railstutorial.org",

created at: "2011-12-13 05:51:34", updated at: "2011-12-13 05:51:34",

password digest: "$2a$10$A58/j7wwh3aAffGkMAO9Q.jjh3jshd.6akhDKtchAz/R...">

7.4.4 Deploying to Production with SSL

Having developed the User model and the signup functionality, now is a good time to

deploy the sample application to production. (If you didn’t follow the setup steps in the

www.it-ebooks.info

http://www.it-ebooks.info/

318 Chapter 7: Sign Up

Figure 7.20 The results of a successful user signup, with flash message.

introduction to Chapter 3, you should go back and do them now.) As part of this, we

will add Secure Sockets Layer (SSL)12 to the production application, thereby making

signup secure. Since we’ll implement SSL site-wide, the sample application will also be

secure during user signin (Chapter 8) and will also be immune to the session hijacking

vulnerability (Section 8.2.2).

As preparation for the deployment, you should merge your changes into the master

branch at this point:

$ git add .

$ git commit -m "Finish user signup"

$ git checkout master

$ git merge sign-up

12. Technically, SSL is now TLS, for Transport Layer Security, but everyone I know still says ‘‘SSL.’’

www.it-ebooks.info

http://www.it-ebooks.info/

7.4 Signup Success 319

Figure 7.21 The flash-less profile page after a browser reload.

To get the deployment to work, we first need to add a line forcing the use of

SSL in production. The result, which involves editing the production configuration file

config/environments/production.rb, appears in Listing 7.28.

Listing 7.28 Configuring the application to use SSL in production.

config/environments/production.rb

SampleApp::Application.configure do

.

.

.

Force all access to the app over SSL, use Strict-Transport-Security,

and use secure cookies.

config.force ssl = true

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

320 Chapter 7: Sign Up

To get the production site working, we have to commit the change to the

configuration file and push the result up to Heroku:

$ git commit -a -m "Add SSL in production"

$ git push heroku

Next, we need to run the migration on the production database to tell Heroku

about the User data model:13

$ heroku run rake db:migrate

(You might see some deprecation warnings at this point, which you should ignore.)

Finally, we need to set up SSL on the remote server. Configuring a production site

to use SSL is painful and error-prone, and among other things it involves purchasing

an SSL certificate for your domain. Luckily, for an application running on a Heroku

domain (such as the sample application), we can piggyback on Heroku’s SSL certificate,

a feature that is included automatically as part of the Heroku platform. If you want

to run SSL on a custom domain, such as example.com, you’ll have no choice but to

endure some pain, which you can read about on Heroku’s page on SSL.

The result of all this work is a working signup form on the production server

(Figure 7.22):

$ heroku open

Note in Figure 7.22 the https:// in place of the usual http://. The extra ‘‘s’’ is an

indication that SSL is working.

You should feel free to visit the signup page and create a new user at this time. If

you have trouble, try running

$ heroku logs

to debug the error using the Heroku logfile.

13. Readers interested in using Heroku for real-life production applications might be interested in Kumade,
which handles things like database migrations automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

7.6 Exercises 321

Figure 7.22 A working signup page on the live Web.

7.5 Conclusion

Being able to sign up users is a major milestone for our application. Although the sample

app has yet to accomplish anything useful, we have laid an essential foundation for

all future development. In Chapter 8, we will complete our authentication machinery

by allowing users to sign in and out of the application. In Chapter 9, we will allow

all users to update their account information. We will also allow site administrators

to delete users, thereby completing the full suite of the Users resource REST actions

from Table 7.1. Finally, we’ll add authorization methods to our actions to enforce a site

security model.

7.6 Exercises

1. Verify that the code in Listing 7.29 allows the gravatar_for helper defined in

Section 7.1.4 to take an optional size parameter, allowing code like gravatar_for

user, size: 40 in the view.

www.it-ebooks.info

http://www.it-ebooks.info/

322 Chapter 7: Sign Up

2. Write tests for the error messages implemented in Listing 7.22. A suggested start

appears in Listing 7.31.

3. Using the code in Listing 7.30, replace the error message for a missing password,

currently ‘‘Password digest can’t be blank’’, with the more understandable ‘‘Pass-

word can’t be blank’’. (This uses Rails’ internationalization support to produce

a functional but rather hacky solution.) Note that, to avoid duplication of error

messages, you should also remove the password’s presence: true validation in

the User model.

4. By writing the test first or by intentionally breaking and then fixing the application

code, verify that the tests in Listing 7.32 correctly specify the desired behavior after

saving the user in the create action.

5. As noted before, the flash HTML in Listing 7.26 is ugly. Verify by running the

test suite that the cleaner code in Listing 7.33, which uses the Rails content_tag

helper, also works.

Listing 7.29 Defining an optional :size parameter for the gravatar_for helper.

app/helpers/users_helper.rb

module UsersHelper

Returns the Gravatar (http://gravatar.com/) for the given user.

def gravatar for(user, options = { size: 50 })

gravatar id = Digest::MD5::hexdigest(user.email.downcase)

size = options[:size]

gravatar url = "https://secure.gravatar.com/avatars/#{gravatar id}.png?s=

#{size}"

image tag(gravatar url, alt: user.name, class: "gravatar")

end

end

Listing 7.30 Hacking a better error message for missing passwords.

config/locales/en.yml

en:

activerecord:

attributes:

user:

password digest: "Password"

www.it-ebooks.info

http://www.it-ebooks.info/

7.6 Exercises 323

Listing 7.31 Suggested error messages tests.

spec/requests/user_pages_spec.rb

.

.

.

describe "signup" do

before { visit signup path }

.

.

.

describe "with invalid information" do

.

.

.

describe "after submission" do

before { click button submit }

it { should have selector('title', text: 'Sign up') }

it { should have content('error') }

end

.

.

.

Listing 7.32 Tests for the post-save behavior in the create action.

spec/requests/user_pages_spec.rb

.

.

.

describe "with valid information" do

.

.

.

describe "after saving the user" do

before { click button submit }

let(:user) { User.find by email('user@example.com') }

it { should have selector('title', text: user.name) }

it { should have selector('div.alert.alert-success', text: 'Welcome') }

end

.

.

.

www.it-ebooks.info

http://www.it-ebooks.info/

324 Chapter 7: Sign Up

Listing 7.33 The flash ERb in the site layout using content_tag.

app/views/layouts/application.html.erb

<!DOCTYPE html>

<html>

.

.

.

<% flash.each do |key, value| %>

<%= content tag(:div, value, class: "alert alert-#{key}") %>

<% end %>

.

.

.

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Sign In, Sign Out

Now that new users can sign up for our site (Chapter 7), it’s time to give registered users

the ability to sign in and sign out. This will allow us to add customizations based on

signin status and based on the identity of the current user. For example, in this chapter

we’ll update the site header with signin/signout links and a profile link. In Chapter 10,

we’ll use the identity of a signed-in user to create microposts associated with that user,

and in Chapter 11 we’ll allow the current user to follow other users of the application

(thereby receiving a feed of their microposts).

Having users sign in will also allow us to implement a security model, restricting

access to particular pages based on the identity of the signed-in user. For instance,

as we’ll see in Chapter 9, only signed-in users will be able to access the page used to

edit user information. The signin system will also make possible special privileges for

administrative users, such as the ability (also introduced in Chapter 9) to delete users

from the database.

After implementing the core authentication machinery, we’ll take a short detour to

investigate Cucumber, a popular system for behavior-driven development (Section 8.3).

In particular, we’ll re-implement a couple of the RSpec integration tests in Cucumber

to see how the two methods compare.

As in previous chapters, we’ll do our work on a topic branch and merge in the

changes at the end:

$ git checkout -b sign-in-out

8.1 Sessions and Signin Failure

A session is a semi-permanent connection between two computers, such as a client

computer running a web browser and a server running Rails. We’ll be using sessions

325

www.it-ebooks.info

http://www.it-ebooks.info/

326 Chapter 8: Sign In, Sign Out

to implement the common pattern of signing in, and in this context there are several

different models for session behavior common on the web: ‘‘forgetting’’ the session on

browser close, using an optional ‘‘remember me’’ checkbox for persistent sessions, and

automatically remembering sessions until the user explicitly signs out.1 We’ll opt for

the final of these options: When users sign in, we will remember their signin status

‘‘forever,’’ clearing the session only when the user explicitly signs out. (We’ll see in

Section 8.2.1 just how long ‘‘forever’’ is.)

It’s convenient to model sessions as a RESTful resource: We’ll have a signin page

for new sessions, signing in will create a session, and signing out will destroy it. Unlike

the Users resource, which uses a database back-end (via the User model) to persist

data, the Sessions resource will use a cookie, which is a small piece of text placed on

the user’s browser. Much of the work involved in signin comes from building this

cookie-based authentication machinery. In this section and the next, we’ll prepare

for this work by constructing a Sessions controller, a signin form, and the relevant

controller actions. We’ll then complete user signin in Section 8.2 by adding the necessary

cookie-manipulation code.

8.1.1 Sessions Controller

The elements of signing in and out correspond to particular REST actions of the

Sessions controller: The signin form is handled by the new action (covered in this

section), actually signing in is handled by sending a POST request to the create action

(Section 8.1 and Section 8.2), and signing out is handled by sending a DELETE request

to the destroy action (Section 8.2.6). (Recall the association of HTTP verbs with

REST actions from Table 7.1.) To get started, we’ll generate a Sessions controller and

an integration test for the authentication machinery:

$ rails generate controller Sessions --no-test-framework

$ rails generate integration test authentication pages

Following the model from Section 7.2 for the signup page, we’ll create a signin

form for creating new sessions, as mocked up in Figure 8.1.

The signin page will live at the URI given by signin_path (defined momentarily),

and as usual we’ll start with a minimalist test, as shown in Listing 8.1. (Compare to the

analogous code for the signup page in Listing 7.6.)

1. Another common model is to expire the session after a certain amount of time. This is especially appropriate
on sites containing sensitive information, such as banking and financial trading accounts.

www.it-ebooks.info

http://www.it-ebooks.info/

8.1 Sessions and Signin Failure 327

Figure 8.1 A mockup of the signin form.

Listing 8.1 Tests for the new session action and view.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

subject { page }

describe "signin page" do

before { visit signin path }

it { should have selector('h1', text: 'Sign in') }

it { should have selector('title', text: 'Sign in') }

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

328 Chapter 8: Sign In, Sign Out

The tests initially fail, as required:

$ bundle exec rspec spec/

To get the tests in Listing 8.1 to pass, we first need to define routes for the Sessions

resource, together with a custom named route for the signin page (which we’ll map

to the Session controller’s new action). As with the Users resource, we can use the

resources method to define the standard RESTful routes:

resources :sessions, only: [:new, :create, :destroy]

Since we have no need to show or edit sessions, we’ve restricted the actions to new,

create, and destroy using the :only option accepted by resources. The full result,

including named routes for signin and signout, appears in Listing 8.2.

Listing 8.2 Adding a resource to get the standard RESTful actions for sessions.

config/routes.rb

SampleApp::Application.routes.draw do

resources :users

resources :sessions, only: [:new, :create, :destroy]

match '/signup', to: 'users#new'

match '/signin', to: 'sessions#new'

match '/signout', to: 'sessions#destroy', via: :delete

.

.

.

end

Note the use of via: :delete for the signout route, which indicated that it should be

invoked using an HTTP DELETE request.

The resources defined in Listing 8.2 provide URIs and actions similar to those for

users (Table 7.1), as shown in Table 8.1. Note that the routes for signin and signout

are custom, but the route for creating a session is simply the default (i.e., [resource

name]_path).

The next step to get the tests in Listing 8.1 to pass is to add a new action to

the Sessions controller, as shown in Listing 8.3 (which also defines the create and

destroy actions for future reference).

www.it-ebooks.info

http://www.it-ebooks.info/

8.1 Sessions and Signin Failure 329

Table 8.1 RESTful routes provided by the sessions rules in Listing 8.2.

HTTP request URI Named route Action Purpose

GET /signin signin_path new page for a new session (signin)

POST /sessions sessions_path create create a new session

DELETE /signout signout_path destroy delete a session (sign out)

Listing 8.3 The initial Sessions controller.

app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

end

def destroy

end

end

The final step is to define the initial version of the signin page. Note that, since it

is the page for a new session, the signin page lives in the file app/views/sessions/

new.html.erb, which we have to create. The contents, which for now only define the

page title and top-level heading, appear as in Listing 8.4.

Listing 8.4 The initial signin view.

app/views/sessions/new.html.erb

<% provide(:title, "Sign in") %>

<h1>Sign in</h1>

With that, the tests in Listing 8.1 should be passing, and we’re ready to make the

actual signin form.

$ bundle exec rspec spec/

www.it-ebooks.info

http://www.it-ebooks.info/

330 Chapter 8: Sign In, Sign Out

8.1.2 Signin Tests

Comparing Figure 8.1 with Figure 7.11, we see that the signin form (or, equivalently,

the new session form) is similar in appearance to the signup form, except with two fields

(email and password) in place of four. As with the signup form, we can test the signin

form by using Capybara to fill in the form values and then click the button.

In the process of writing the tests, we’ll be forced to design aspects of the application,

which is one of the nice side effects of test-driven development. We’ll start with invalid

signin, as mocked up in Figure 8.2.

As seen in Figure 8.2, when the signin information is invalid we want to re-render

the signin page and display an error message. We’ll render the error as a flash message,

which we can test for as follows:

it { should have selector('div.alert.alert-error', text: 'Invalid') }

Figure 8.2 A mockup of signin failure.

www.it-ebooks.info

http://www.it-ebooks.info/

8.1 Sessions and Signin Failure 331

(We saw similar code in Listing 7.32 from the exercises in Chapter 7.) Here the selector

element (i.e., the tag) we’re looking for is

div.alert.alert-error

Recalling that the dot means ‘‘class’’ in CSS (Section 5.1.2), you might be able to guess

that this tests for a div tag with the classes "alert" and "alert-error". We also

test that the error message contains the text "Invalid". Putting these together, the test

looks for an element of the following form:

<div class="alert alert-error">Invalid...</div>

Combining the title and flash tests gives the code in Listing 8.5. As we’ll see, these

tests miss an important subtlety, which we’ll address in Section 8.1.5.

Listing 8.5 The tests for signin failure.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "signin" do

before { visit signin path }

describe "with invalid information" do

before { click button "Sign in" }

it { should have selector('title', text: 'Sign in') }

it { should have selector('div.alert.alert-error', text: 'Invalid') }

end

end

end

Having written tests for signin failure, we now turn to signin success. The changes

we’ll test for are the rendering of the user’s profile page (as determined by the page

title, which should be the user’s name), together with three planned changes to the site

navigation:

1. The appearance of a link to the profile page

2. The appearance of a ‘‘Sign out’’ link

3. The disappearance of the ‘‘Sign in’’ link

www.it-ebooks.info

http://www.it-ebooks.info/

332 Chapter 8: Sign In, Sign Out

Figure 8.3 A mockup of the user profile after a successful signin.

(We’ll defer the test for the ‘‘Settings’’ link to Section 9.1 and for the ‘‘Users’’ link to

Section 9.3.) A mockup of these changes appears in Figure 8.3.2 Note that the signout

and profile links appear in a dropdown ‘‘Account’’ menu; in Section 8.2.4, we’ll see

how to make such a menu with Bootstrap.

The test code for signin success appears in Listing 8.6.

Listing 8.6 Test for signin success.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "signin" do

before { visit signin path }

.

.

.

2. Image from www.flickr.com/photos/hermanusbackpackers/3343254977/.

www.it-ebooks.info

www.flickr.com/photos/hermanusbackpackers/3343254977/
http://www.it-ebooks.info/

8.1 Sessions and Signin Failure 333

describe "with valid information" do

let(:user) { FactoryGirl.create(:user) }

before do

fill in "Email", with: user.email

fill in "Password", with: user.password

click button "Sign in"

end

it { should have selector('title', text: user.name) }

it { should have link('Profile', href: user path(user)) }

it { should have link('Sign out', href: signout path) }

it { should not have link('Sign in', href: signin path) }

end

end

end

Here we’ve used the have_link method. It takes as arguments the text of the link and

an optional :href parameter, so that

it { should have link('Profile', href: user path(user)) }

ensures that the anchor tag a has the right href (URI) attribute—in this case, a link to

the user’s profile page.

8.1.3 Signin Form

With our tests in place, we’re ready to start developing the signin form. Recall from

Listing 7.17 that the signup form uses the form_for helper, taking as an argument the

user instance variable @user:

<%= form for(@user) do |f| %>

.

.

.

<% end %>

The main difference between this and the signin form is that we have no Session

model, hence no analogue for the @user variable. This means that, in constructing the

www.it-ebooks.info

http://www.it-ebooks.info/

334 Chapter 8: Sign In, Sign Out

new session form, we have to give form_for slightly more information; in particular,

whereas

form for(@user)

allows Rails to infer that the action of the form should be to POST to the URI /users, in

the case of sessions we need to indicate the name of the resource and the corresponding

URI:

form for(:session, url: sessions path)

(A second option is to use form_tag in place of form_for; this might be more even

idiomatically correct Rails, but it has less in common with the signup form, and at this

stage I want to emphasize the parallel structure. Making a working form with form_tag

is left as an exercise [Section 8.5].)

With the proper form_for in hand, it’s easy to make a signin form to match the

mockup in Figure 8.1 using the signup form (Listing 7.17) as a model, as shown in

Listing 8.7.

Listing 8.7 Code for the signin form.

app/views/sessions/new.html.erb

<% provide(:title, "Sign in") %>

<h1>Sign in</h1>

<div class="row">

<div class="span6 offset3">

<%= form for(:session, url: sessions path) do |f| %>

<%= f.label :email %>

<%= f.text field :email %>

<%= f.label :password %>

<%= f.password field :password %>

<%= f.submit "Sign in", class: "btn btn-large btn-primary" %>

<% end %>

<p>New user? <%= link to "Sign up now!", signup path %></p>

</div>

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

8.1 Sessions and Signin Failure 335

Figure 8.4 The signin form (/signin).

Note that we’ve added a link to the signup page for convenience. With the code in

Listing 8.7, the signin form appears as in Figure 8.4.

Though you’ll soon get out of the habit of looking at the HTML generated by Rails

(instead trusting the helpers to do their job), for now let’s take a look at it (Listing 8.8).

Listing 8.8 HTML for the signin form produced by Listing 8.7.

<form accept-charset="UTF-8" action="/sessions" method="post">

<div>

<label for="session email">Email</label>

<input id="session email" name="session[email]" size="30" type="text" />

</div>

<div>

<label for="session password">Password</label>

<input id="session password" name="session[password]" size="30"

type="password" />

</div>

<input class="btn btn-large btn-primary" name="commit" type="submit"

value="Sign in" />

</form>

www.it-ebooks.info

http://www.it-ebooks.info/

336 Chapter 8: Sign In, Sign Out

Comparing Listing 8.8 with Listing 7.20, you might be able to guess that submitting

this form will result in a params hash where params[:session][:email] and

params[:session][:password] correspond to the email and password fields.

8.1.4 Reviewing Form Submission

As in the case of creating users (signup), the first step in creating sessions (signin) is to

handle invalid input. We already have tests for the signup failure (Listing 8.5), and the

application code is simple apart from a couple of subtleties. We’ll start by reviewing

what happens when a form gets submitted, and then arrange for helpful error messages

to appear in the case of signin failure (as mocked up in Figure 8.2.) Then we’ll lay

the foundation for successful signin (Section 8.2) by evaluating each signin submission

based on the validity of its email/password combination.

Let’s start by defining a minimalist create action for the Sessions controller

(Listing 8.9), which does nothing but render the new view. Submitting the /sessions/new

form with blank fields then yields the result shown in Figure 8.5.

Figure 8.5 The initial failed signin, with create as in Listing 8.9.

www.it-ebooks.info

http://www.it-ebooks.info/

8.1 Sessions and Signin Failure 337

Listing 8.9 A preliminary version of the Sessions create action.

app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

.

.

.

def create

render 'new'

end

.

.

.

end

Carefully inspecting the debug information in Figure 8.5 shows that, as hinted at

the end of Section 8.1.3, the submission results in a params hash containing the email

and password under the key :session:

session:

email: ''

password: ''

commit: Sign in

action: create

controller: sessions

As with the case of user signup (Figure 7.15) these parameters form a nested hash like

the one we saw in Listing 4.6. In particular, params contains a nested hash of the form

{ session: { password: "", email: "" } }

This means that

params[:session]

is itself a hash:

{ password: "", email: "" }

As a result,

params[:session][:email]

www.it-ebooks.info

http://www.it-ebooks.info/

338 Chapter 8: Sign In, Sign Out

is the submitted email address and

params[:session][:password]

is the submitted password.

In other words, inside the create action the params hash has all the infor-

mation needed to authenticate users by email and password. Not coincidentally, we

already have exactly the methods we need: the User.find_by_email method pro-

vided by Active Record (Section 6.1.4) and the authenticate method provided

by has_secure_password (Section 6.3.3). Recalling that authenticate returns

false for an invalid authentication, our strategy for user signin can be summarized

as follows:

def create

user = User.find by email(params[:session][:email])

if user && user.authenticate(params[:session][:password])

Sign the user in and redirect to the user's show page.

else

Create an error message and re-render the signin form.

end

end

The first line here pulls the user out of the database using the submitted email address.

The next line is common in idiomatic Ruby:

user && user.authenticate(params[:session][:password])

This uses && (logical and) to determine if the resulting user is valid. Taking into

account that any object other than nil and false itself is true in a boolean context

(Section 4.2.3), the possibilities appear as in Table 8.2. We see from Table 8.2 that the

if statement is true only if a user with the given email both exists in the database and

has the given password, exactly as required.

Table 8.2 Possible results of user && user.authenticate(...).

User Password a && b

nonexistent anything nil && [anything] == false

valid user wrong password true && false == false

valid user right password true && true == true

www.it-ebooks.info

http://www.it-ebooks.info/

8.1 Sessions and Signin Failure 339

8.1.5 Rendering with a Flash Message

Recall from Section 7.3.2 that we displayed signup errors using the User model error

messages. These errors are associated with a particular Active Record object, but this

strategy won’t work here because the session isn’t an Active Record model. Instead, we’ll

put a message in the flash to be displayed upon failed signin. A first, slightly incorrect,

attempt appears in Listing 8.10.

Listing 8.10 An (unsuccessful) attempt at handling failed signin.

app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find by email(params[:session][:email])

if user && user.authenticate(params[:session][:password])

Sign the user in and redirect to the user's show page.

else

flash[:error] = 'Invalid email/password combination' # Not quite right!

render 'new'

end

end

def destroy

end

end

Because of the flash message display in the site layout (Listing 7.26), the flash[:error]

message automatically gets displayed; because of the Bootstrap CSS, it automatically

gets nice styling (Figure 8.6).

Unfortunately, as noted in the text and in the comment in Listing 8.10, this code

isn’t quite right. The page looks fine, though, so what’s the problem? The issue is

that the contents of the flash persist for one request, but—unlike a redirect, which we

used in Listing 7.27—re-rendering a template with render doesn’t count as a request.

The result is that the flash message persists one request longer than we want. For

example, if we submit invalid information, the flash is set and gets displayed on the

signin page (Figure 8.6); if we then click on another page, such as the Home page,

that’s the first request since the form submission, and the flash gets displayed again

(Figure 8.7).

www.it-ebooks.info

http://www.it-ebooks.info/

340 Chapter 8: Sign In, Sign Out

Figure 8.6 The flash message for a failed signin.

This flash persistence is a bug in our application, and before proceeding with a fix,

it is a good idea to write a test catching the error. In particular, the signin failure tests

are currently passing:

$ bundle exec rspec spec/requests/authentication pages spec.rb \

> -e "signin with invalid information"

But the tests should never pass when there is a known bug, so we should add a failing

test to catch it. Fortunately, dealing with a problem like flash persistence is one of many

areas where integration tests really shine; they let us say exactly what we mean:

describe "after visiting another page" do

before { click link "Home" }

it { should not have selector('div.alert.alert-error') }

end

www.it-ebooks.info

http://www.it-ebooks.info/

8.1 Sessions and Signin Failure 341

Figure 8.7 An example of the flash persisting.

After submitting invalid signin data, this test follows the Home link in the site layout

and then requires that the flash error message not appear. The updated code, with the

modified flash test, is shown in Listing 8.11.

Listing 8.11 Correct tests for signin failure.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "signin" do

before { visit signin path }

describe "with invalid information" do

before { click button "Sign in" }

www.it-ebooks.info

http://www.it-ebooks.info/

342 Chapter 8: Sign In, Sign Out

it { should have selector('title', text: 'Sign in') }

it { should have selector('div.alert.alert-error', text: 'Invalid') }

describe "after visiting another page" do

before { click link "Home" }

it { should not have selector('div.alert.alert-error') }

end

end

.

.

.

end

end

The new test fails, as required:

$ bundle exec rspec spec/requests/authentication pages spec.rb \

> -e "signin with invalid information"

To get the failing test to pass, instead of flash we use flash.now, which

is specifically designed for displaying flash messages on rendered pages; unlike the

contents of flash, its contents disappear as soon as there is an additional request. The

corrected application code appears in Listing 8.12.

Listing 8.12 Correct code for failed signin.

app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

def new

end

def create

user = User.find by email(params[:session][:email])

if user && user.authenticate(params[:session][:password])

Sign the user in and redirect to the user's show page.

else

flash.now[:error] = 'Invalid email/password combination'

render 'new'

end

end

def destroy

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Signin Success 343

Now the test suite for users with invalid information should be green:

$ bundle exec rspec spec/requests/authentication pages spec.rb \

> -e "with invalid information"

8.2 Signin Success

Having handled a failed signin, we now need to actually sign a user in. Getting there will

require some of the most challenging Ruby programming so far in this tutorial, so hang

in there through the end and be prepared for a little heavy lifting. Happily, the first step

is easy—completing the Sessions controller create action is a snap. Unfortunately, it’s

also a cheat.

Filling in the area now occupied by the signin comment (Listing 8.12) is simple:

Upon successful signin, we sign the user in using the sign_in function, and then

redirect to the profile page (Listing 8.13). We see now why this is a cheat: Alas,

sign_in doesn’t currently exist. Writing it will occupy the rest of this section.

Listing 8.13 The completed Sessions controller create action (not yet working).

app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

.

.

.

def create

user = User.find by email(params[:session][:email])

if user && user.authenticate(params[:session][:password])

sign in user

redirect to user

else

flash.now[:error] = 'Invalid email/password combination'

render 'new'

end

end

.

.

.

end

8.2.1 Remember Me

We’re now in a position to start implementing our signin model, namely, remembering

user signin status ‘‘forever’’ and clearing the session only when the user explicitly signs

www.it-ebooks.info

http://www.it-ebooks.info/

344 Chapter 8: Sign In, Sign Out

out. The signin functions themselves will end up crossing the traditional Model-View-

Controller lines; in particular, several signin functions will need to be available in both

controllers and views. You may recall from Section 4.2.5 that Ruby provides a module

facility for packaging functions together and including them in multiple places, and

that’s the plan for the authentication functions. We could make an entirely new module

for authentication, but the Sessions controller already comes equipped with a module,

namely, SessionsHelper. Moreover, such helpers are automatically included in Rails

views, so all we need to do to use the Sessions helper functions in controllers is to

include the module into the Application controller (Listing 8.14).

Listing 8.14 Including the Sessions helper module into the Application controller.

app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

protect from forgery

include SessionsHelper

end

By default, all the helpers are available in the views but not in the controllers. We need

the methods from the Sessions helper in both places, so we have to include it explicitly.

Because HTTP is a stateless protocol , web applications requiring user signin must

implement a way to track each user’s progress from page to page. One technique for

maintaining the user signin status is to use a traditional Rails session (via the special

session function) to store a remember token equal to the user’s id:

session[:remember token] = user.id

This session object makes the user id available from page to page by storing it in a

cookie that expires upon browser close. On each page, the application could simply call

User.find(session[:remember token])

to retrieve the user. Because of the way Rails handles sessions, this process is secure; if a

malicious user tries to spoof the user id, Rails will detect a mismatch based on a special

session id generated for each session.

For our application’s design choice, which involves persistent sessions—that is,

signin status that lasts even after browser close—we need to use a permanent identifier

for the signed-in user. To accomplish this, we’ll generate a unique, secure remember

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Signin Success 345

token for each user and store it as a permanent cookie rather than one that expires on

browser close.

The remember token needs to be associated with a user and stored for future use,

so we’ll add it as an attribute to the User model as shown in Figure 8.8. We start with a

small addition to the User model specs (Listing 8.15).

Listing 8.15 A first test for the remember token.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

it { should respond to(:password confirmation) }

it { should respond to(:remember token) }

it { should respond to(:authenticate) }

.

.

.

end

We can get this test to pass by generating a remember token at the command line:

$ rails generate migration add remember token to users

Next we fill in the resulting migration with the code from Listing 8.16. Note that,

because we expect to retrieve users by remember token, we’ve added an index (Box 6.2)

to the remember_token column.

Figure 8.8 The User model with an added remember_token attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

346 Chapter 8: Sign In, Sign Out

Listing 8.16 A migration to add a remember_token to the users table.

db/migrate/[timestamp]_add_remember_token_to_users.rb

class AddRememberTokenToUsers < ActiveRecord::Migration

def change

add column :users, :remember token, :string

add index :users, :remember token

end

end

Next we update the development and test databases as usual:

$ bundle exec rake db:migrate

$ bundle exec rake db:test:prepare

At this point the User model specs should be passing:

$ bundle exec rspec spec/models/user spec.rb

Now we have to decide what to use as a remember token. There are many

mostly equivalent possibilities—essentially, any large random string will do just fine.

In principle, since the user passwords are securely encrypted, we could use each

user’s password_hash attribute, but it seems like a terrible idea to unnecessarily

expose our users’ passwords to potential attackers. We’ll err on the side of caution

and make a custom remember token using the urlsafe_base64 method from the

SecureRandom module in the Ruby standard library, which creates a Base64 string

safe for use in URIs (and hence safe for use in cookies as well).3 As of this writing,

SecureRandom.urlsafe_base64 returns a random string of length 16 composed of

the characters A–Z, a–z, 0–9, ‘‘-’’, and ‘‘ ’’ (for a total of 64 possibilities). This means

that the probability of two remember tokens being the same is 1/6416 = 2−96 ≈ 10−29,

which is negligible.

We’ll create a remember token using a callback, a technique introduced in

Section 6.2.5 in the context of email uniqueness. As in that section, we’ll use a before_

save callback, this time to create remember_token just before the user is saved.4 To

3. This choice is based on the RailsCast on remember me.

4. For more details on the kind of callbacks supported by Active Record, see the discussion of callbacks at the
Rails Guides.

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Signin Success 347

test for this, we first save the test user and then check that the user’s remember_token

attribute isn’t blank. This gives us sufficient flexibility to change the random string if

we ever need to. The result appears in Listing 8.17.

Listing 8.17 A test for a valid (nonblank) remember token.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password confirmation: "foobar")

end

subject { @user }

.

.

.

describe "remember token" do

before { @user.save }

its(:remember token) { should not be blank }

end

end

Listing 8.17 introduces the its method, which is like it but applies the subsequent

test to the given attribute rather than the subject of the test. In other words,

its(:remember token) { should not be blank }

is equivalent to

it { @user.remember token.should not be blank }

The application code introduces several new elements. First, we add a callback

method to create the remember token:

before save :create remember token

This arranges for Rails to look for a method called create_remember_token and run

it before saving the user. Second, the method itself is only used internally by the User

www.it-ebooks.info

http://www.it-ebooks.info/

348 Chapter 8: Sign In, Sign Out

model, so there’s no need to expose it to outside users. The Ruby way to accomplish

this is to use the private keyword:

private

def create remember token

Create the token.

end

All methods defined in a class after private are automatically hidden, so that

$ rails console

>> User.first.create remember token

will raise a NoMethodError exception.

Finally, the create_remember_token method needs to assign to one of the user

attributes, and in this context it is necessary to use the self keyword in front of

remember_token:

def create remember token

self.remember token = SecureRandom.urlsafe base64

end

(Note: If you are using Ruby 1.8.7, you should use SecureRandom.hex here instead.)

Because of the way Active Record synthesizes attributes based on database columns,

without self the assignment would create a local variable called remember_token,

which isn’t what we want at all. Using self ensures that assignment sets the user’s

remember_token so that it will be written to the database along with the other attributes

when the user is saved.

Putting this all together yields the User model shown in Listing 8.18.

Listing 8.18 A before_save callback to create remember_token.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email, :password, :password confirmation

has secure password

before save { |user| user.email = email.downcase }

before save :create remember token

.

.

.

private

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Signin Success 349

def create remember token

self.remember token = SecureRandom.urlsafe base64

end

end

By the way, the extra level of indentation on create_remember_token is there to

make it visually apparent which methods are defined after private.

Since the SecureRandom.urlsafe_base64 string is definitely not blank, the tests

for the User model should now be passing:

$ bundle exec rspec spec/models/user spec.rb

8.2.2 A Working sign in Method

Now we’re ready to write the first signin element, the sign_in function itself. As noted

above, our desired authentication method is to place a remember token as a cookie on

the user’s browser, and then use the token to find the user record in the database as the

user moves from page to page (implemented in Section 8.2.3). The result, Listing 8.19,

introduces two new ideas: the cookies hash and current_user.

Listing 8.19 The complete (but not-yet-working) sign_in function.

app/helpers/sessions_helper.rb

module SessionsHelper

def sign in(user)

cookies.permanent[:remember token] = user.remember token

self.current user = user

end

end

Listing 8.19 introduces the cookies utility supplied by Rails. We can use cookies

as if it were a hash; each element in the cookie is itself a hash of two elements, a value

and an optional expires date. For example, we could implement user signin by placing

a cookie with value equal to the user’s remember token that expires 20 years from now:

cookies[:remember token] = { value: user.remember token,

expires: 20.years.from now.utc }

(This uses one of the convenient Rails time helpers, as discussed in Box 8.1.)

www.it-ebooks.info

http://www.it-ebooks.info/

350 Chapter 8: Sign In, Sign Out

Box 8.1 Cookies Expire 20.years.from now

You may recall from Section 4.4.2 that Ruby lets you add methods to any class, even

built-in ones. In that section, we added a palindrome? method to the String class

(and discovered as a result that "deified" is a palindrome), and we also saw how

Rails adds a blank? method to class Object (so that "".blank?, " ".blank?,

and nil.blank? are all true). The cookie code in Listing 8.19 (which internally

sets a cookie that expires 20.years.from now) gives yet another example of this

practice through one of Rails’ time helpers, which are methods added to Fixnum (the

base class for numbers):

$ rails console

>> 1.year.from now

=> Sun, 13 Mar 2011 03:38:55 UTC +00:00

>> 10.weeks.ago

=> Sat, 02 Jan 2010 03:39:14 UTC +00:00

Rails adds other helpers, too:

>> 1.kilobyte

=> 1024

>> 5.megabytes

=> 5242880

These are useful for upload validations, making it easy to restrict, say, image uploads

to 5.megabytes.

Although it must be used with caution, the flexibility to add methods to built-in

classes allows for extraordinarily natural additions to plain Ruby. Indeed, much of

the elegance of Rails ultimately derives from the malleability of the underlying Ruby

language.

This pattern of setting a cookie that expires 20 years in the future became so

common that Rails added a special permanent method to implement it, so that we can

simply write

cookies.permanent[:remember token] = user.remember token

Under the hood, using permanent causes Rails to set the expiration to 20.years.

from_now automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Signin Success 351

After the cookie is set, on subsequent page views we can retrieve the user with

code like

User.find by remember token(cookies[:remember token])

Of course, cookies isn’t really a hash, since assigning to cookies actually saves a piece

of text on the browser, but part of the beauty of Rails is that it lets you forget about that

detail and concentrate on writing the application.

You may be aware that storing authentication cookies on a user’s browser and

transmitting them over the network exposes an application to a session hijacking attack,

which involves copying the remember token and using it to sign in as the corresponding

user. This attack was publicized by the Firesheep application, which showed that many

high-profile sites (including Facebook and Twitter) were vulnerable. The solution is to

use site-wide SSL as described in Section 7.4.4.

8.2.3 Current User

Having discussed how to store the user’s remember token in a cookie for later use, we

now need to learn how to retrieve the user on subsequent page views. Let’s look again

at the sign_in function to see where we are:

module SessionsHelper

def sign in(user)

cookies.permanent[:remember token] = user.remember token

self.current user = user

end

end

Our focus now is the second line:

self.current user = user

The purpose of this line is to create current_user, accessible in both controllers and

views, which will allow constructions such as

<%= current user.name %>

www.it-ebooks.info

http://www.it-ebooks.info/

352 Chapter 8: Sign In, Sign Out

and

redirect to current user

The use of self is necessary in this context for the same essential reason noted in the

discussion leading up to Listing 8.18: without self, Ruby would simply create a local

variable called current_user.

To start writing the code for current_user, note that the line

self.current user = user

is an assignment, which we must define. Ruby has a special syntax for defining such an

assignment function, shown in Listing 8.20.

Listing 8.20 Defining assignment to current_user.

app/helpers/sessions_helper.rb

module SessionsHelper

def sign in(user)

.

.

.

end

def current user=(user)

@current user = user

end

end

This might look confusing—most languages don’t let you use the equals sign in a

method definition—but it simply defines a method current_user= expressly designed

to handle assignment to current_user. In other words, the code

self.current user = ...

is automatically converted to

current user=(...)

thereby invoking the current_user= method. Its one argument is the right-hand

side of the assignment, in this case the user to be signed in. The one-line method

body just sets an instance variable @current_user, effectively storing the user for

later use.

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Signin Success 353

In ordinary Ruby, we could define a second method, current_user, designed to

return the value of @current_user, as shown in Listing 8.21.

Listing 8.21 A tempting but useless definition for current_user.

module SessionsHelper

def sign in(user)

.

.

.

end

def current user=(user)

@current user = user

end

def current user

@current user # Useless! Don't use this line.

end

end

If we did this, we would effectively replicate the functionality of attr_accessor,

which we saw in Section 4.4.5.5 The problem is that it utterly fails to solve our problem:

With the code in Listing 8.21, the user’s signin status would be forgotten. As soon as

the user went to another page—poof!—the session would end and the user would be

automatically signed out. To avoid this problem, we can find the user corresponding to

the remember token created by the code in Listing 8.19, as shown in Listing 8.22.

Listing 8.22 Finding the current user using the remember_token.

app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

def current user=(user)

@current user = user

end

def current user

@current user ||= User.find by remember token(cookies[:remember token])

end

end

5. In fact, the two are exactly equivalent; attr_accessor is merely a convenient way to create just such
getter/setter methods automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

354 Chapter 8: Sign In, Sign Out

Listing 8.22 uses the common but initially obscure ||= (‘‘or equals’’) assignment

operator (Box 8.2). Its effect is to set the @current_user instance variable to the user

corresponding to the remember token, but only if @current_user is undefined.6 In

other words, the construction

@current user ||= User.find by remember token(cookies[:remember token])

calls the user_from_remember_token method the first time current_user is called,

but on subsequent invocations returns @current_user without hitting the database.7

This is only useful if current_user is used more than once for a single user request;

in any case, find_by_remember_token will be called at least once every time a user

visits a page on the site.

Box 8.2 What the *$@! Is ||= ?

The ||= construction is very Rubyish—that is, it is highly characteristic of the Ruby

language—and hence important to learn if you plan on doing much Ruby program-

ming. Although at first it may seem mysterious, or equals is easy to understand by

analogy.

We start by noting a common idiom for changing a currently defined variable.

Many computer programs involve incrementing a variable, as in

x = x + 1

Most languages provide a syntactic shortcut for this operation; in Ruby (and in C,

C++, Perl, Python, Java, etc.), it appears as follows:

x += 1

Analogous constructs exist for other operators as well:

$ rails console

>> x = 1

=> 1

>> x += 1

=> 2

6. Typically, this means assigning to variables that are initially nil, but note that false values will also be
overwritten by the ||= operator.

7. This is an example of memoization, which we discussed before in Box 6.3.

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Signin Success 355

`

>> x *= 3

=> 6

>> x -= 7

=> -1

In each case, the pattern is that x = x O y and x O= y are equivalent for any

operator O.

Another common Ruby pattern is assigning to a variable if it’s nil but otherwise

leaving it alone. Recalling the or operator || seen in Section 4.2.3, we can write this

as follows:

>> @user

=> nil

>> @user = @user || "the user"

=> "the user"

>> @user = @user || "another user"

=> "the user"

Since nil is false in a boolean context, the first assignment is nil || "the

user", which evaluates to "the user"; similarly, the second assignment is "the

user" || "another user", which also evaluates to "the user"—since strings

are true in a boolean context, the series of || expressions terminates after the first

expression is evaluated. (This practice of evaluating || expressions from left to right

and stopping on the first true value is known as short-circuit evaluation.)

Comparing the console sessions for the various operators, we see that @user =

@user || value follows the x = x O y pattern with || in the place of O, which

suggests the following equivalent construction:

>> @user ||= "the user"

=> "the user"

Voila !

8.2.4 Changing the Layout Links

We come finally to a practical application of all our signin/out work: We’ll change the

layout links based on signin status. In particular, as seen in the Figure 8.3 mockup, we’ll

arrange for the links to change when users sign in or sign out, and we’ll also add links

for listing all users and user settings (to be completed in Chapter 9) and one for the

current user’s profile page. In doing so, we’ll get the tests in Listing 8.6 to pass, which

means our test suite will be green for the first time since the beginning of the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

356 Chapter 8: Sign In, Sign Out

The way to change the links in the site layout involves using an if-else branching

structure inside of Embedded Ruby:

<% if signed in? %>

Links for signed-in users

<% else %>

Links for non-signed-in-users

<% end %>

This kind of code requires the existence of a signed_in? boolean, which we’ll now

define.

A user is signed in if there is a current user in the session, i.e., if current_user

is non-nil. This requires the use of the ‘‘not’’ operator, written using an exclamation

point ! and usually read as ‘‘bang.’’ In the present context, a user is signed in if

current_user is not nil, as shown in Listing 8.23.

Listing 8.23 The signed_in? helper method.

app/helpers/sessions_helper.rb

module SessionsHelper

def sign in(user)

cookies.permanent[:remember token] = user.remember token

self.current user = user

end

def signed in?

!current user.nil?

end

.

.

.

end

With the signed_in? method in hand, we’re ready to finish the layout links.

There are four new links, two of which are stubbed out (to be completed in Chapter 9):

<%= link to "Users", '#' %>

<%= link to "Settings", '#' %>

The signout link, meanwhile, uses the signout path defined in Listing 8.2:

<%= link to "Sign out", signout path, method: "delete" %>

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Signin Success 357

(Notice that the signout link passes a hash argument indicating that it should submit

with an HTTP DELETE request.8) Finally, we’ll add a profile link as follows:

<%= link to "Profile", current user %>

Here we could write

<%= link to "Profile", user path(current user) %>

but Rails allows us to link directly to the user, in this context automatically converting

current_user into user_path(current_user).

In the process of putting the new links into the layout, we’ll take advantage of

Bootstrap’s ability to make dropdown menus, which you can read more about on the

Bootstrap components page. The full result appears in Listing 8.24. Note in particular

the CSS ids and classes related to the Bootstrap dropdown menu.

Listing 8.24 Changing the layout links for signed-in users.

app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top">

<div class="navbar-inner">

<div class="container">

<%= link to "sample app", root path, id: "logo" %>

<nav>

<ul class="nav pull-right">

<%= link to "Home", root path %>

<%= link to "Help", help path %>

<% if signed in? %>

<%= link to "Users", '#' %>

<li id="fat-menu" class="dropdown">

Account <b class="caret">

<ul class="dropdown-menu">

<%= link to "Profile", current user %>

<%= link to "Settings", '#' %>

<li class="divider">

<%= link to "Sign out", signout path, method: "delete" %>

8. Web browsers can’t actually issue DELETE requests; Rails fakes it with JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

358 Chapter 8: Sign In, Sign Out

<% else %>

<%= link to "Sign in", signin path %>

<% end %>

</nav>

</div>

</div>

</header>

The dropdown menu requires the use of Bootstrap’s JavaScript library, which we

can include using the Rails asset pipeline by editing the application JavaScript file, as

shown in Listing 8.25.

Listing 8.25 Adding the Bootstrap JavaScript library to application.js.

app/assets/javascripts/application.js

//= require jquery

//= require jquery ujs

//= require bootstrap

//= require tree .

This uses the Sprockets library to include the Bootstrap JavaScript, which in turn is

available thanks to the bootstrap-sass gem from Section 5.1.2.

With the code in Listing 8.24, all the tests should be passing:

$ bundle exec rspec spec/

Unfortunately, if you actually examine the application in the browser, you’ll see that it

doesn’t yet work. This is because the ‘‘remember me’’ functionality requires the user to

have a remember token, but the current user doesn’t have one: We created the first user

back in Section 7.4.3, long before implementing the callback that sets the remember

token. To fix this, we need to save each user to invoke the before_save callback

defined in Listing 8.18, which creates a remember token as a side effect:

$ rails console

>> User.first.remember token

=> nil

>> User.all.each { |user| user.save(validate: false) }

>> User.first.remember token

=> "Im9P0kWtZvD0RdyiK9UHtg"

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Signin Success 359

Here we’ve iterated over all the users in case you added more than one while playing with

the signup form. Note that we’ve passed an option to the save method; as currently

written, save by itself wouldn’t work because we haven’t included the password or its

confirmation. Indeed, for a real site we wouldn’t even know any of the passwords, but

we would still want to be able to save the users. The solution is to pass validate:

false to tell Active Record skip the validations (Rails API save).

With that change, a signed-in user now sees the new links and dropdown menu

defined by Listing 8.24, as shown in Figure 8.9.

At this point, you should verify that you can sign in, close the browser, and then

still be signed in when you visit the sample application. If you want, you can even

inspect the browser cookies to see the result directly (Figure 8.10).

8.2.5 Signin upon Signup

In principle, although we are now done with authentication, newly registered users

might be confused, as they are not signed in by default. Implementing this is the last bit

Figure 8.9 A signed-in user with new links and a dropdown menu.

www.it-ebooks.info

http://www.it-ebooks.info/

360 Chapter 8: Sign In, Sign Out

Figure 8.10 The remember token cookie in the local browser.

of polish before letting users sign out. We’ll start by adding a line to the authentication

tests (Listing 8.26). This includes the ‘‘after saving the user’’ describe block from

Listing 7.32 from the Chapter 7 exercises (Section 7.6), which you should add to the

test now if you didn’t already do the corresponding exercise.

Listing 8.26 Testing that newly signed-up users are also signed in.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

.

.

.

describe "with valid information" do

.

.

.

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Signin Success 361

describe "after saving the user" do

.

.

.

it { should have link('Sign out') }

end

end

end

end

Here we’ve tested the appearance of the signout link to verify that the user was

successfully signed in after signing up.

With the sign_in method from Section 8.2, getting this test to pass by actually

signing in the user is easy: Just add sign_in @user right after saving the user to the

database (Listing 8.27).

Listing 8.27 Signing in the user upon signup.

app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def create

@user = User.new(params[:user])

if @user.save

sign in @user

flash[:success] = "Welcome to the Sample App!"

redirect to @user

else

render 'new'

end

end

end

8.2.6 Signing Out

As discussed in Section 8.1, our authentication model is to keep users signed in until

they sign out explicitly. In this section, we’ll add this necessary signout capability.

So far, the Sessions controller actions have followed the RESTful convention of

using new for a signin page and create to complete the signin. We’ll continue this

theme by using a destroy action to delete sessions, i.e., to sign out. To test this, we’ll

www.it-ebooks.info

http://www.it-ebooks.info/

362 Chapter 8: Sign In, Sign Out

click on the ‘‘Sign out’’ link and then look for the reappearance of the signin link

(Listing 8.28).

Listing 8.28 A test for signing out a user.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "signin" do

.

.

.

describe "with valid information" do

.

.

.

describe "followed by signout" do

before { click link "Sign out" }

it { should have link('Sign in') }

end

end

end

end

As with user signin, which relied on the sign_in function, user signout just defers

to a sign_out function (Listing 8.29).

Listing 8.29 Destroying a session (user signout).

app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

.

.

.

def destroy

sign out

redirect to root path

end

end

As with the other authentication elements, we’ll put sign_out in the Sessions

helper module. The implementation is simple: We set the current user to nil and

www.it-ebooks.info

http://www.it-ebooks.info/

8.3 Introduction to Cucumber (Optional) 363

use the delete method on cookies to remove the remember token from the session

(Listing 8.30). (Setting the current user to nil isn’t currently necessary because of the

immediate redirect in the destroy action, but it’s a good idea in case we ever want to

use sign_out without a redirect.)

Listing 8.30 The sign_out method in the Sessions helper module.

app/helpers/sessions_helper.rb

module SessionsHelper

def sign in(user)

cookies.permanent[:remember token] = user.remember token

self.current user = user

end

.

.

.

def sign out

self.current user = nil

cookies.delete(:remember token)

end

end

This completes the signup/signin/signout triumvirate, and the test suite should

pass:

$ bundle exec rspec spec/

It’s worth noting that our test suite covers most of the authentication machinery,

but not all of it. For instance, we don’t test how long the ‘‘remember me’’ cookie lasts

or whether it gets set at all. It is possible to do so, but experience shows that direct tests

of cookie values are brittle and have a tendency to rely on implementation details that

sometimes change from one Rails release to the next. The result is breaking tests for

application code that still works fine. By focusing on high-level functionality—verifying

that users can sign in, stay signed in from page to page, and can sign out—we test the

core application code without focusing on less important details.

8.3 Introduction to Cucumber (Optional)

Having finished the foundation of the sample application’s authentication system, we’re

going to take this opportunity to show how to write signin tests using Cucumber,

www.it-ebooks.info

http://www.it-ebooks.info/

364 Chapter 8: Sign In, Sign Out

a popular tool for behavior-driven development that enjoys significant popularity in

the Ruby community. This section is optional and can be skipped without loss of

continuity.

Cucumber allows the definition of plain-text stories describing application behavior.

Many Rails programmers find Cucumber especially convenient when doing client work;

since they can be read even by non-technical users, Cucumber tests can be shared with

(and can sometimes even be written by) the client. Of course, using a testing framework

that isn’t pure Ruby has a downside, and I find that the plain-text stories can be a bit

verbose. Nevertheless, Cucumber does have a place in the Ruby testing toolkit, and I

especially like its emphasis on high-level behavior over low-level implementation.

Since the emphasis in this book is on RSpec and Capybara, the presentation that

follows is necessarily superficial and incomplete and will be a bit light on explanation. Its

purpose is just to give you a taste of Cucumber (crisp and juicy, no doubt)—if it strikes

your fancy, there are entire books on the subject waiting to satisfy your appetite. (I par-

ticularly recommend The RSpec Book by David Chelimsky and Rails 3 in Action by Ryan

Bigg and Yehuda Katz, and The Cucumber Book by Matt Wynne and Aslak Hellesøy.)

8.3.1 Installation and Setup

To install Cucumber, first add the cucumber-rails gem and a utility gem called

database cleaner to the :test group in the Gemfile (Listing 8.31).

Listing 8.31 Adding the cucumber-rails gem to the Gemfile.

.

.

.

group :test do

.

.

.

gem 'cucumber-rails', '1.2.1', require: false

gem 'database cleaner', '0.7.0'

end

.

.

.

Then install as usual:

$ bundle install

www.it-ebooks.info

http://www.it-ebooks.info/

8.3 Introduction to Cucumber (Optional) 365

To set up the application to use Cucumber, we next generate some necessary

support files and directories:

$ rails generate cucumber:install

This creates a features/ directory where the files associated with Cucumber

will live.

8.3.2 Features and Steps

Cucumber features are descriptions of expected behavior using a plain-text language

called Gherkin. Gherkin tests read much like well-written RSpec examples, but because

they are plain-text they are more accessible to those more comfortable reading English

than Ruby code.

Our Cucumber features will implement a subset of the signin examples in Listing 8.5

and Listing 8.6. To get started, we’ll create a file in the features/ directory called

signing_in.feature.

Cucumber features start with a short description of the feature, as follows:

Feature: Signing in

Then they add individual scenarios. For example, to test unsuccessful signin, we could

write the following scenario:

Scenario: Unsuccessful signin

Given a user visits the signin page

When he submits invalid signin information

Then he should see an error message

Similarly, to test successful signin, we could add this:

Scenario: Successful signin

Given a user visits the signin page

And the user has an account

And the user submits valid signin information

Then he should see his profile page

And he should see a signout link

Collecting these together yields the Cucumber feature file shown in Listing 8.32.

www.it-ebooks.info

http://www.it-ebooks.info/

366 Chapter 8: Sign In, Sign Out

Listing 8.32 Cucumber features to test user signin.

features/signing_in.feature

Feature: Signing in

Scenario: Unsuccessful signin

Given a user visits the signin page

When he submits invalid signin information

Then he should see an error message

Scenario: Successful signin

Given a user visits the signin page

And the user has an account

And the user submits valid signin information

Then he should see his profile page

And he should see a signout link

To run the features, we use the cucumber executable:

$ bundle exec cucumber features/

Compare this to

$ bundle exec rspec spec/

In this context, it’s worth noting that, like RSpec, Cucumber can be invoked using a

Rake task:

$ bundle exec rake cucumber

(For reasons that escape me, this is sometimes written as rake cucumber:ok.)

All we’ve done so far is write some plain text, so it shouldn’t be surprising that

the Cucumber scenarios aren’t yet passing. To get the test suite to green, we need to

add a step file that maps the plain-text lines to Ruby code. The step file goes in the

features/step_definitions directory; we’ll call it authentication_steps.rb.

The Feature and Scenario lines are mainly for documentation, but each of the

other lines needs some corresponding Ruby. For example, the line

Given a user visits the signin page

www.it-ebooks.info

http://www.it-ebooks.info/

8.3 Introduction to Cucumber (Optional) 367

in the feature file gets handled by the step definition

Given /ˆa user visits the signin page$/ do

visit signin path

end

In the feature, Given is just a string, but in the step file Given is a method that takes a

regular expression and a block. The regex matches the text of the line in the scenario,

and the contents of the block are the Ruby code needed to implement the step. In this

case, ‘‘a user visits the signin page’’ is implemented by

visit signin path

If this looks familiar, it should: It’s just Capybara, which is included by default in

Cucumber step files. The next two lines should also look familiar; the scenario steps

When he submits invalid signin information

Then he should see an error message

in the feature file are handled by these steps:

When /ˆhe submits invalid signin information$/ do

click button "Sign in"

end

Then /ˆhe should see an error message$/ do

page.should have selector('div.alert.alert-error')

end

The first step also uses Capybara, while the second uses Capybara’s page object with

RSpec. Evidently, all the testing work we’ve done so far with RSpec and Capybara is

also useful with Cucumber.

The rest of the steps proceed similarly. The final step definition file appears in

Listing 8.33. Try adding one step at a time, running

$ bundle exec cucumber features/

each time until the tests pass.

www.it-ebooks.info

http://www.it-ebooks.info/

368 Chapter 8: Sign In, Sign Out

Listing 8.33 The complete steps needed to get the signin features to pass.

features/step_definitions/authentication_steps.rb

Given /ˆa user visits the signin page$/ do

visit signin path

end

When /ˆhe submits invalid signin information$/ do

click button "Sign in"

end

Then /ˆhe should see an error message$/ do

page.should have selector('div.alert.alert-error')

end

Given /ˆthe user has an account$/ do

@user = User.create(name: "Example User", email: "user@example.com",

password: "foobar", password confirmation: "foobar")

end

When /ˆthe user submits valid signin information$/ do

fill in "Email", with: @user.email

fill in "Password", with: @user.password

click button "Sign in"

end

Then /ˆhe should see his profile page$/ do

page.should have selector('title', text: @user.name)

end

Then /ˆhe should see a signout link$/ do

page.should have link('Sign out', href: signout path)

end

With the code in Listing 8.33, the Cucumber tests should pass:

$ bundle exec cucumber features/

8.3.3 Counterpoint: RSpec Custom Matchers

Having written some simple Cucumber scenarios, it’s worth comparing the result to the

equivalent RSpec examples. First, take a look at the Cucumber feature in Listing 8.32

and the corresponding step definitions in Listing 8.33. Then take a look at the RSpec

request specs (integration tests):

www.it-ebooks.info

http://www.it-ebooks.info/

8.3 Introduction to Cucumber (Optional) 369

describe "Authentication" do

subject { page }

describe "signin" do

before { visit signin path }

describe "with invalid information" do

before { click button "Sign in" }

it { should have selector('title', text: 'Sign in') }

it { should have selector('div.alert.alert-error', text: 'Invalid') }

end

describe "with valid information" do

let(:user) { FactoryGirl.create(:user) }

before do

fill in "Email", with: user.email

fill in "Password", with: user.password

click button "Sign in"

end

it { should have selector('title', text: user.name) }

it { should have selector('a', 'Sign out', href: signout path) }

end

end

end

You can see how a case could be made for either Cucumber or integration tests.

Cucumber features are easily readable, but they are entirely separate from the code that

implements them—a property that cuts both ways. I find that Cucumber is easy to read

and awkward to write, while integration tests are (for a programmer) a little harder to

read and much easier to write.

One nice effect of Cucumber’s separation of concerns is that it operates at a higher

level of abstraction. For example, we write

Then he should see an error message

to express the expectation of seeing an error message, and

Then /ˆhe should see an error message$/ do

page.should have selector('div.alert.alert-error', text: 'Invalid')

end

www.it-ebooks.info

http://www.it-ebooks.info/

370 Chapter 8: Sign In, Sign Out

to implement the test. What’s especially convenient about this is that only the second

element (the step) is dependent on the implementation, so that if we change, for

example, the CSS class used for error messages, the feature file would stay the same.

In this vein, it might make you unhappy to write

should have selector('div.alert.alert-error', text: 'Invalid')

in a bunch of places, when what you really want is to indicate that the page should have

an error message. This practice couples the test tightly to the implementation, and we

would have to change it everywhere if the implementation changed. In the context of

pure RSpec, there is a solution, which is to use a custom matcher, allowing us to write

the following instead:

should have error message('Invalid')

We can define such a matcher in the same utilities file where we put the full_title

test helper in Section 5.3.4. The code itself looks like this:

RSpec::Matchers.define :have error message do |message|

match do |page|

page.should have selector('div.alert.alert-error', text: message)

end

end

We can also define helper functions for common operations:

def valid signin(user)

fill in "Email", with: user.email

fill in "Password", with: user.password

click button "Sign in"

end

The resulting support code is shown in Listing 8.34 (which incorporates the results

of Listing 5.37 and Listing 5.38 from Section 5.6). I find this approach to be more

flexible than Cucumber step definitions, particularly when the matchers or should

helpers naturally take an argument, such as valid_signin(user). Step definitions

can replicate this functionality with regex matchers, but I generally find this approach

to be more (cu)cumbersome.

www.it-ebooks.info

http://www.it-ebooks.info/

8.4 Conclusion 371

Listing 8.34 Adding a helper method and a custom RSpec matcher.

spec/support/utilities.rb

include ApplicationHelper

def valid signin(user)

fill in "Email", with: user.email

fill in "Password", with: user.password

click button "Sign in"

end

RSpec::Matchers.define :have error message do |message|

match do |page|

page.should have selector('div.alert.alert-error', text: message)

end

end

With the code in Listing 8.34, we can write

it { should have error message('Invalid') }

and

describe "with valid information" do

let(:user) { FactoryGirl.create(:user) }

before { valid signin(user) }

.

.

.

There are many other examples of coupling between our tests and the site’s imple-

mentation. Sweeping through the current test suite and decoupling the tests from the

implementation details by making custom matchers and methods is left as an exercise

(Section 8.5).

8.4 Conclusion

We’ve covered a lot of ground in this chapter, transforming our promising but unformed

application into a site capable of the full suite of registration and login behaviors. All

that is needed to complete the authentication functionality is to restrict access to pages

www.it-ebooks.info

http://www.it-ebooks.info/

372 Chapter 8: Sign In, Sign Out

based on signin status and user identity. We’ll accomplish this task en route to giving

users the ability to edit their information and giving administrators the ability to remove

users from the system, which are the main goals of Chapter 9.

Before moving on, merge your changes back into the master branch:

$ git add .

$ git commit -m "Finish sign in"

$ git checkout master

$ git merge sign-in-out

Then push up the remote GitHub repository and the Heroku production server:

$ git push

$ git push heroku

$ heroku run rake db:migrate

If you’ve created any users on the production server, I recommend following the steps

in Section 8.2.4 to give each user a valid remember token. The only difference is using

the Heroku console instead of the local one:

$ heroku run console

>> User.all.each { |user| user.save(validate: false) }

8.5 Exercises

1. Refactor the signin form to use form_tag in place of form_for. Make sure the test

suite still passes. Hint: See the RailsCast on authentication in Rails 3.1, and note

in particular the change in the structure of the params hash.

2. Following the example in Section 8.3.3, go through the user and authentication

request specs (i.e., the files currently in the spec/requests directory) and define

utility functions in spec/support/utilities.rb to decouple the test from the

implementation. Extra credit : Organize the support code into separate files and

modules, and get everything to work by including the modules properly in the spec

helper file

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Updating, Showing,
and Deleting Users

In this chapter, we will complete the REST actions for the Users resource (Table 7.1)

by adding edit, update, index, and destroy actions. We’ll start by giving users

the ability to update their profiles, which will also provide a natural opportunity to

enforce a security model (made possible by the authorization code in Chapter 8). Then

we’ll make a listing of all users (also requiring authorization), which will motivate the

introduction of sample data and pagination. Finally, we’ll add the ability to destroy

users, wiping them clear from the database. Since we can’t allow just any user to have

such dangerous powers, we’ll take care to create a privileged class of administrative users

(admins) authorized to delete other users.

To get started, let’s start work on an updating-users topic branch:

$ git checkout -b updating-users

9.1 Updating Users

The pattern for editing user information closely parallels that for creating new users

(Chapter 7). Instead of a new action rendering a view for new users, we have an edit

action rendering a view to edit users; instead of create responding to a POST request,

we have an update action responding to a PUT request (Box 3.2). The biggest difference

is that, while anyone can sign up, only the current user should be able to update his

information. This means that we need to enforce access control so that only authorized

users can edit and update; the authentication machinery from Chapter 8 will allow us

to use a before filter to ensure that this is the case.

373

www.it-ebooks.info

http://www.it-ebooks.info/

374 Chapter 9: Updating, Showing, and Deleting Users

9.1.1 Edit Form

We start with the edit form, whose mockup appears in Figure 9.1.1 As usual, we’ll

begin with some tests. First, note the link to change the Gravatar image; if you poke

around the Gravatar site, you’ll see that the page to add or edit images is located at

http://gravatar.com/emails, so we test the edit page for a link with that URI.2

The tests for the edit user form are analogous to the test for the new user form in

Listing 7.31 from the Chapter 7 exercises, which added a test for the error message on

invalid submission. The result appears in Listing 9.1.

Figure 9.1 A mockup of the user edit page.

1. Image from www.flickr.com/photos/sashawolff/4598355045/.

2. The Gravatar site actually redirects this to http://en.gravatar.com/emails, which is for English language
users, but I’ve omitted the en part to account for the use of other languages.

www.it-ebooks.info

www.flickr.com/photos/sashawolff/4598355045/
http://en.gravatar.com/emails
http://gravatar.com/emails
http://www.it-ebooks.info/

9.1 Updating Users 375

Listing 9.1 Tests for the user edit page.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

.

.

.

describe "edit" do

let(:user) { FactoryGirl.create(:user) }

before { visit edit user path(user) }

describe "page" do

it { should have selector('h1', text: "Update your profile") }

it { should have selector('title', text: "Edit user") }

it { should have link('change', href: 'http://gravatar.com/emails') }

end

describe "with invalid information" do

before { click button "Save changes" }

it { should have content('error') }

end

end

end

To write the application code, we need to fill in the edit action in the Users

controller. Note from Table 7.1 that the proper URI for a user’s edit page is /users/1/edit

(assuming the user’s id is 1). Recall that the id of the user is available in the params[:id]

variable, which means that we can find the user with the code in Listing 9.2.

Listing 9.2 The user edit action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def edit

@user = User.find(params[:id])

end

end

Getting the tests to pass requires making the actual edit view, shown in Listing 9.3.

Note how closely this resembles the new user view from Listing 7.17; the large

www.it-ebooks.info

http://www.it-ebooks.info/

376 Chapter 9: Updating, Showing, and Deleting Users

overlap suggests factoring the repeated code into a partial, which is left as an exercise

(Section 9.6).

Listing 9.3 The user edit view.

app/views/users/edit.html.erb

<% provide(:title, "Edit user") %>

<h1>Update your profile</h1>

<div class="row">

<div class="span6 offset3">

<%= form for(@user) do |f| %>

<%= render 'shared/error messages' %>

<%= f.label :name %>

<%= f.text field :name %>

<%= f.label :email %>

<%= f.text field :email %>

<%= f.label :password %>

<%= f.password field :password %>

<%= f.label :password confirmation, "Confirm Password" %>

<%= f.password field :password confirmation %>

<%= f.submit "Save changes", class: "btn btn-large btn-primary" %>

<% end %>

<%= gravatar for @user %>

change

</div>

</div>

Here we have reused the shared error_messages partial introduced in Section 7.3.2.

With the @user instance variable from Listing 9.2, the edit page tests from

Listing 9.1 should pass:

$ bundle exec rspec spec/requests/user pages spec.rb -e "edit page"

The corresponding page appears in Figure 9.2, which shows how Rails automatically

pre-fills the Name and Email fields using the attributes of the @user variable.

Looking at the HTML source for Figure 9.2, we see a form tag as expected

(Listing 9.4).

www.it-ebooks.info

http://www.it-ebooks.info/

9.1 Updating Users 377

Figure 9.2 The initial user edit page with pre-filled name and email.

Listing 9.4 HTML for the edit form defined in Listing 9.3 and shown in Figure 9.2.

<form action="/users/1" class="edit user" id="edit user 1" method="post">

<input name=" method" type="hidden" value="put" />

.

.

.

</form>

Note here the hidden input field

<input name=" method" type="hidden" value="put" />

Since web browsers can’t natively send PUT requests (as required by the REST

conventions from Table 7.1), Rails fakes it with a POST request and a hidden input

field.3

3. Don’t worry about how this works; the details are of interest to developers of the Rails framework itself, and
by design are not important for Rails application developers.

www.it-ebooks.info

http://www.it-ebooks.info/

378 Chapter 9: Updating, Showing, and Deleting Users

There’s another subtlety to address here: The code form_for(@user) in Listing 9.3

is exactly the same as the code in Listing 7.17—so how does Rails know to use a POST

request for new users and a PUT for editing users? The answer is that it is possible to tell

whether a user is new or already exists in the database via Active Record’s new_record?

boolean method:

$ rails console

>> User.new.new record?

=> true

>> User.first.new record?

=> false

When constructing a form using form_for(@user), Rails uses POST if @user.new_

record? is true and PUT if it is false.

As a final touch, we’ll add a URI to the user settings link to the site navigation.

Since it depends on the signin status of the user, the test for the ‘‘Settings’’ link belongs

with the other authentication tests, as shown in Listing 9.5. (It would be nice to have

additional tests verifying that such links don’t appear for users who aren’t signed in;

writing these tests is left as an exercise (Section 9.6).)

Listing 9.5 Adding a test for the ‘‘Settings’’ link.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "with valid information" do

let(:user) { FactoryGirl.create(:user) }

before { sign in user }

it { should have selector('title', text: user.name) }

it { should have link('Profile', href: user path(user)) }

it { should have link('Settings', href: edit user path(user)) }

it { should have link('Sign out', href: signout path) }

it { should not have link('Sign in', href: signin path) }

.

.

.

end

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

9.1 Updating Users 379

For convenience, the code in Listing 9.5 uses a helper to sign in a user inside the

tests. The method is to visit the signin page and submit valid information, as shown in

Listing 9.6.

Listing 9.6 A test helper to sign users in.

spec/support/utilities.rb

.

.

.

def sign in(user)

visit signin path

fill in "Email", with: user.email

fill in "Password", with: user.password

click button "Sign in"

Sign in when not using Capybara as well.

cookies[:remember token] = user.remember token

end

As noted in the comment line, filling in the form doesn’t work when not using

Capybara, so to cover this case we also add the user’s remember token to the

cookies:

Sign in when not using Capybara as well.

cookies[:remember token] = user.remember token

This is necessary when using one of the HTTP request methods directly (get, post,

put, or delete), as we’ll see in Listing 9.47. (Note that the test cookies object isn’t

a perfect simulation of the real cookies object; in particular, the cookies.permanent

method seen in Listing 8.19 doesn’t work inside tests.) As you might suspect, the

sign_in method will prove useful in future tests, and in fact it can already be used to

eliminate some duplication (Section 9.6).

The application code to add the URI for the ‘‘Settings’’ link is simple: We

just use the named route edit_user_path from Table 7.1, together with the handy

current_user helper method defined in Listing 8.22:

<%= link to "Settings", edit user path(current user) %>

The full application code appears in Listing 9.7.

www.it-ebooks.info

http://www.it-ebooks.info/

380 Chapter 9: Updating, Showing, and Deleting Users

Listing 9.7 Adding a ‘‘Settings’’ link.

app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top">

<div class="navbar-inner">

<div class="container">

<%= link to "sample app", root path, id: "logo" %>

<nav>

<ul class="nav pull-right">

<%= link to "Home", root path %>

<%= link to "Help", help path %>

<% if signed in? %>

<%= link to "Users", '#' %>

<li id="fat-menu" class="dropdown">

Account <b class="caret">

<ul class="dropdown-menu">

<%= link to "Profile", current user %>

<%= link to "Settings", edit user path(current user) %>

<li class="divider">

<%= link to "Sign out", signout path, method: "delete" %>

<% else %>

<%= link to "Sign in", signin path %>

<% end %>

</nav>

</div>

</div>

</header>

9.1.2 Unsuccessful Edits

In this section we’ll handle unsuccessful edits and get the error messages test in Listing 9.1

to pass. The application code creates an update action that uses update_attributes

(Section 6.1.5) to update the user based on the submitted params hash, as shown in

Listing 9.8. With invalid information, the update attempt returns false, so the else

branch re-renders the edit page. We’ve seen this pattern before; the structure closely

parallels the first version of the create action (Listing 7.21).

www.it-ebooks.info

http://www.it-ebooks.info/

9.1 Updating Users 381

Listing 9.8 The initial user update action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def edit

@user = User.find(params[:id])

end

def update

@user = User.find(params[:id])

if @user.update attributes(params[:user])

Handle a successful update.

else

render 'edit'

end

end

end

Figure 9.3 Error message from submitting the update form.

www.it-ebooks.info

http://www.it-ebooks.info/

382 Chapter 9: Updating, Showing, and Deleting Users

The resulting error message (Figure 9.3) is the one needed to get the error message

test to pass, as you should verify by running the test suite:

$ bundle exec rspec spec/

9.1.3 Successful Edits

Now it’s time to get the edit form to work. Editing the profile images is already

functional since we’ve outsourced image upload to Gravatar; we can edit gravatars by

clicking on the ‘‘change’’ link from Figure 9.2, as shown in Figure 9.4. Let’s get the rest

of the user edit functionality working as well.

The tests for the update action are similar to those for create. Listing 9.9 shows

how to use Capybara to fill in the form fields with valid information and then test that

the resulting behavior is correct. This is a lot of code; see if you can work through it by

referring back to the tests in Chapter 7.

Figure 9.4 The Gravatar image-cropping interface, with a picture of some dude.

www.it-ebooks.info

http://www.it-ebooks.info/

9.1 Updating Users 383

Listing 9.9 Tests for the user update action.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

.

.

.

describe "edit" do

let(:user) { FactoryGirl.create(:user) }

before { visit edit user path(user) }

.

.

.

describe "with valid information" do

let(:new name) { "New Name" }

let(:new email) { "new@example.com" }

before do

fill in "Name", with: new name

fill in "Email", with: new email

fill in "Password", with: user.password

fill in "Confirm Password", with: user.password

click button "Save changes"

end

it { should have selector('title', text: new name) }

it { should have selector('div.alert.alert-success') }

it { should have link('Sign out', href: signout path) }

specify { user.reload.name.should == new name }

specify { user.reload.email.should == new email }

end

end

end

The only real novelty in Listing 9.9 is the reload method, which appears in the test

for changing the user’s attributes:

specify { user.reload.name.should == new name }

specify { user.reload.email.should == new email }

This reloads the user variable from the test database using user.reload, then verifies

that the user’s new name and email match the new values.

www.it-ebooks.info

http://www.it-ebooks.info/

384 Chapter 9: Updating, Showing, and Deleting Users

The update action needed to get the tests in Listing 9.9 to pass is similar to the

final form of the create action (Listing 8.27), as seen in Listing 9.10. All this does

is add

flash[:success] = "Profile updated"

sign in @user

redirect to @user

to the code in Listing 9.8. Note that we sign in the user as part of a successful

profile update; this is because the remember token gets reset when the user is saved

(Listing 8.18), which invalidates the user’s session (Listing 8.22). This is a nice security

feature, because it means that any hijacked sessions will automatically expire when the

user information is changed.

Listing 9.10 The user update action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def update

@user = User.find(params[:id])

if @user.update attributes(params[:user])

flash[:success] = "Profile updated"

sign in @user

redirect to @user

else

render 'edit'

end

end

end

Note that, as currently constructed, every edit requires the user to reconfirm the

password (as implied by the empty confirmation text box in Figure 9.2), which is a

minor annoyance but makes updates much more secure.

With the code in this section, the user edit page should be working, as you can

double-check by re-running the test suite, which should now be green:

$ bundle exec rspec spec/

www.it-ebooks.info

http://www.it-ebooks.info/

9.2 Authorization 385

9.2 Authorization

One nice effect of building the authentication machinery in Chapter 8 is that we are

now in a position to implement authorization as well: Authentication allows us to

identify users of our site, and authorization lets us control what they can do.

Although the edit and update actions from Section 9.1 are functionally complete,

they suffer from a ridiculous security flaw: They allow anyone (even non-signed-in

users) to access either action, and any signed-in user can update the information for

any other user. In this section, we’ll implement a security model that requires users to

be signed in and prevents them from updating any information other than their own.

Users who aren’t signed in and who try to access protected pages will be forwarded to

the signin page with a helpful message, as mocked up in Figure 9.5.

Figure 9.5 A mockup of the result of visiting a protected page.

www.it-ebooks.info

http://www.it-ebooks.info/

386 Chapter 9: Updating, Showing, and Deleting Users

9.2.1 Requiring Signed-in Users

Since the security restrictions for the edit and update actions are identical, we’ll

handle them in a single RSpec describe block. Starting with the sign-in requirement,

our initial tests verify that non-signed-in users attempting to access either action are

simply sent to the signin page, as seen in Listing 9.11.

Listing 9.11 Testing that the edit and update actions are protected.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "authorization" do

describe "for non-signed-in users" do

let(:user) { FactoryGirl.create(:user) }

describe "in the Users controller" do

describe "visiting the edit page" do

before { visit edit user path(user) }

it { should have selector('title', text: 'Sign in') }

end

describe "submitting to the update action" do

before { put user path(user) }

specify { response.should redirect to(signin path) }

end

end

end

end

end

The code in Listing 9.11 introduces a second way, apart from Capybara’s visit

method, to access a controller action: By issuing the appropriate HTTP request directly,

in this case using the put method to issue a PUT request:

describe "submitting to the update action" do

before { put user path(user) }

specify { response.should redirect to(signin path) }

end

www.it-ebooks.info

http://www.it-ebooks.info/

9.2 Authorization 387

This issues a PUT request directly to /users/1, which gets routed to the update

action of the Users controller (Table 7.1). This is necessary because there is no way

for a browser to visit the update action directly—it can only get there indirectly by

submitting the edit form—so Capybara can’t do it either. But visiting the edit page

only tests the authorization for the edit action, not for update. As a result, the only

way to test the proper authorization for the update action itself is to issue a direct

request. (As you might guess, in addition to put Rails tests support get, post, and

delete as well.)

When using one of the methods to issue HTTP requests directly, we get access to

the low-level response object. Unlike the Capybara page object, response lets us test

for the server response itself, in this case verifying that the update action responds by

redirecting to the signin page:

specify { response.should redirect to(signin path) }

The authorization application code uses a before filter, which arranges for a particular

method to be called before the given actions. To require users to be signed in, we define

a signed_in_user method and invoke it using before_filter :signed_in_user,

as shown in Listing 9.12.

Listing 9.12 Adding a signed_in_user before filter.

app/controllers/users_controller.rb

class UsersController < ApplicationController

before filter :signed in user, only: [:edit, :update]

.

.

.

private

def signed in user

redirect to signin path, notice: "Please sign in." unless signed in?

end

end

By default, before filters apply to every action in a controller, so here we restrict the

filter to act only on the :edit and :update actions by passing the appropriate :only

options hash.

www.it-ebooks.info

http://www.it-ebooks.info/

388 Chapter 9: Updating, Showing, and Deleting Users

Note that Listing 9.12 uses a shortcut for setting flash[:notice] by passing an

options hash to the redirect_to function. The code in Listing 9.12 is equivalent to

the more verbose

flash[:notice] = "Please sign in."

redirect to signin path

(The same construction works for the :error key, but not for :success.)

Together with :success and :error, the :notice key completes our triumvirate

of flash styles, all of which are supported natively by Bootstrap CSS. By signing out

and attempting to access the user edit page /users/1/edit, we can see the resulting yellow

‘‘notice’’ box, as seen in Figure 9.6.

Figure 9.6 The signin form after trying to access a protected page.

www.it-ebooks.info

http://www.it-ebooks.info/

9.2 Authorization 389

Unfortunately, in the process of getting the authorization tests from Listing 9.11

to pass, we’ve broken the tests in Listing 9.1. Code like

describe "edit" do

let(:user) { FactoryGirl.create(:user) }

before { visit edit user path(user) }

.

.

.

no longer works because visiting the edit user path requires a signed-in user. The

solution is to sign in the user with the sign_in utility from Listing 9.6, as shown in

Listing 9.13.

Listing 9.13 Adding a signin step to the edit and update tests.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

.

.

.

describe "edit" do

let(:user) { FactoryGirl.create(:user) }

before do

sign in user

visit edit user path(user)

end

.

.

.

end

end

At this point our test suite should be green:

$ bundle exec rspec spec/

www.it-ebooks.info

http://www.it-ebooks.info/

390 Chapter 9: Updating, Showing, and Deleting Users

9.2.2 Requiring the Right User

Of course, requiring users to sign in isn’t quite enough; users should only be allowed to

edit their own information. We can test for this by first signing in as an incorrect user

and then hitting the edit and update actions (Listing 9.14). Note that, since users

should never even try to edit another user’s profile, we redirect not to the signin page

but to the root URL.

Listing 9.14 Testing that the edit and update actions require the right user.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "authorization" do

.

.

.

describe "as wrong user" do

let(:user) { FactoryGirl.create(:user) }

let(:wrong user) { FactoryGirl.create(:user, email: "wrong@example.com") }

before { sign in user }

describe "visiting Users#edit page" do

before { visit edit user path(wrong user) }

it { should not have selector('title', text: full title('Edit user')) }

end

describe "submitting a PUT request to the Users#update action" do

before { put user path(wrong user) }

specify { response.should redirect to(root path) }

end

end

end

end

Note here that a factory can take an option:

FactoryGirl.create(:user, email: "wrong@example.com")

www.it-ebooks.info

http://www.it-ebooks.info/

9.2 Authorization 391

This creates a user with a different email address from the default. The tests specify that

this wrong user should not have access to the original user’s edit or update actions.

The application code adds a second before filter to call the correct_user method,

as shown in Listing 9.15.

Listing 9.15 A correct_user before filter to protect the edit/update pages.

app/controllers/users_controller.rb

class UsersController < ApplicationController

before filter :signed in user, only: [:edit, :update]

before filter :correct user, only: [:edit, :update]

.

.

.

def edit

end

def update

if @user.update attributes(params[:user])

flash[:success] = "Profile updated"

sign in @user

redirect to @user

else

render 'edit'

end

end

.

.

.

private

def signed in user

redirect to signin path, notice: "Please sign in." unless signed in?

end

def correct user

@user = User.find(params[:id])

redirect to(root path) unless current user?(@user)

end

end

The correct_user filter uses the current_user? boolean method, which we

define in the Sessions helper (Listing 9.16).

www.it-ebooks.info

http://www.it-ebooks.info/

392 Chapter 9: Updating, Showing, and Deleting Users

Listing 9.16 The current_user? method.

app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

def current user

@current user ||= User.find by remember token(cookies[:remember token])

end

def current user?(user)

user == current user

end

.

.

.

end

Listing 9.15 also shows the updated edit and update actions. Before, in Listing 9.2,

we had

def edit

@user = User.find(params[:id])

end

and similarly for update. Now that the correct_user before filter defines @user, we

can omit it from both actions.

Before moving on, you should verify that the test suite passes:

$ bundle exec rspec spec/

9.2.3 Friendly Forwarding

Our site authorization is complete as written, but there is one minor blemish: When

users try to access a protected page, they are currently redirected to their profile pages

regardless of where they were trying to go. In other words, if a non-logged-in user tries

to visit the edit page, after signing in the user will be redirected to /users/1 instead of

/users/1/edit. It would be much friendlier to redirect them to their intended destination

instead.

www.it-ebooks.info

http://www.it-ebooks.info/

9.2 Authorization 393

To test for such ‘‘friendly forwarding,’’ we first visit the user edit page, which

redirects to the signin page. We then enter valid signin information and click the ‘‘Sign

in’’ button. The resulting page, which by default is the user’s profile, should in this case

be the ‘‘Edit user’’ page. The test for this sequence appears in Listing 9.17.

Listing 9.17 A test for friendly forwarding.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "authorization" do

describe "for non-signed-in users" do

let(:user) { FactoryGirl.create(:user) }

describe "when attempting to visit a protected page" do

before do

visit edit user path(user)

fill in "Email", with: user.email

fill in "Password", with: user.password

click button "Sign in"

end

describe "after signing in" do

it "should render the desired protected page" do

page.should have selector('title', text: 'Edit user')

end

end

end

end

.

.

.

end

end

Now for the implementation.4 In order to forward users to their intended destina-

tion, we need to store the location of the requested page somewhere, and then redirect

4. The code in this section is adapted from the Clearance gem by thoughtbot.

www.it-ebooks.info

http://www.it-ebooks.info/

394 Chapter 9: Updating, Showing, and Deleting Users

to that location instead. We accomplish this with a pair of methods, store_location

and redirect_back_or, both defined in the Sessions helper (Listing 9.18).

Listing 9.18 Code to implement friendly forwarding.

app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

def redirect back or(default)

redirect to(session[:return to] || default)

session.delete(:return to)

end

def store location

session[:return to] = request.fullpath

end

end

The storage mechanism is the session facility provided by Rails, which you can

think of as being like an instance of the cookies variable from Section 8.2.1 that

automatically expires upon browser close. (Indeed, as noted in Section 8.5, session is

implemented in just this way.) We also use the request object to get the fullpath,

i.e., the full path (URI) of the requested page. The store_location method puts the

requested URI in the session variable under the key :return_to.

To make use of store_location, we need to add it to the signed_in_user

before filter, as shown in Listing 9.19.

Listing 9.19 Adding store_location to the signed-in user before filter.

app/controllers/users_controller.rb

class UsersController < ApplicationController

before filter :signed in user, only: [:edit, :update]

before filter :correct user, only: [:edit, :update]

.

.

.

def edit

end

.

.

.

private

def signed in user

www.it-ebooks.info

http://www.it-ebooks.info/

9.2 Authorization 395

unless signed in?

store location

redirect to signin path, notice: "Please sign in."

end

end

def correct user

@user = User.find(params[:id])

redirect to(root path) unless current user?(@user)

end

end

To implement the forwarding itself, we use the redirect_back_or method to

redirect to the requested URI if it exists, or some default URI otherwise, which we add

to the Sessions controller create action to redirect after successful signin (Listing 9.20).

The redirect_back_or method uses the or operator || through

session[:return to] || default

This evaluates to session[:return_to] unless it’s nil, in which case it evaluates to

the given default URI. Note that Listing 9.18 is careful to remove the forwarding URI;

otherwise, subsequent signin attempts would forward to the protected page until the

user closed his browser. (Testing for this is left as an exercise [Section 9.6.])

Listing 9.20 The Sessions create action with friendly forwarding.

app/controllers/sessions_controller.rb

class SessionsController < ApplicationController

.

.

.

def create

user = User.find by email(params[:session][:email])

if user && user.authenticate(params[:session][:password])

sign in user

redirect back or user

else

flash.now[:error] = 'Invalid email/password combination'

render 'new'

end

end

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

396 Chapter 9: Updating, Showing, and Deleting Users

With that, the friendly forwarding integration test in Listing 9.17 should pass, and

the basic user authentication and page protection implementation is complete. As usual,

it’s a good idea to verify that the test suite is green before proceeding:

$ bundle exec rspec spec/

9.3 Showing All Users

In this section, we’ll add the penultimate user action, the index action, which is

designed to display all the users instead of just one. Along the way, we’ll learn about

populating the database with sample users and paginating the user output so that the

index page can scale up to display a potentially large number of users. A mockup of the

result—users, pagination links, and a ‘‘Users’’ navigation link—appears in Figure 9.7.5

In Section 9.4, we’ll add an administrative interface to the user index so that (presumably

troublesome) users can be destroyed.

9.3.1 User Index

Although we’ll keep individual user show pages visible to all site visitors, the user index

will be restricted to signed-in users so that there’s a limit to how much unregistered

users can see by default. We’ll start by testing that the index action is protected by

visiting the users_path (Table 7.1) and verifying that we are redirected to the signin

page. As with other authorization tests, we’ll put this example in the authentication

integration test, as shown in Listing 9.21.

Listing 9.21 Testing that the index action is protected.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "authorization" do

describe "for non-signed-in users" do

.

5. Baby photo from www.flickr.com/photos/glasgows/338937124/.

www.it-ebooks.info

www.flickr.com/photos/glasgows/338937124/
http://www.it-ebooks.info/

9.3 Showing All Users 397

.

.

describe "in the Users controller" do

.

.

.

describe "visiting the user index" do

before { visit users path }

it { should have selector('title', text: 'Sign in') }

end

end

.

.

.

end

end

end

Figure 9.7 A mockup of the user index, with pagination and a ‘‘Users’’ nav link.

www.it-ebooks.info

http://www.it-ebooks.info/

398 Chapter 9: Updating, Showing, and Deleting Users

The corresponding application code simply involves adding index to the list of actions

protected by the signed_in_user before filter, as shown in Listing 9.22.

Listing 9.22 Requiring a signed-in user for the index action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

before filter :signed in user, only: [:index, :edit, :update]

.

.

.

def index

end

.

.

.

end

The next set of tests makes sure that, for signed-in users, the index page has the right

title/heading and lists all of the site’s users. The method is to make three factory users

(signing in as the first one) and then verify that the index page has a list element (li) tag

for the name of each one. Note that we’ve taken care to give the users different names

so that each element in the list of users has a unique entry, as shown in Listing 9.23.

Listing 9.23 Tests for the user index page.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

subject { page }

describe "index" do

before do

sign in FactoryGirl.create(:user)

FactoryGirl.create(:user, name: "Bob", email: "bob@example.com")

FactoryGirl.create(:user, name: "Ben", email: "ben@example.com")

visit users path

end

it { should have selector('title', text: 'All users') }

it { should have selector('h1', text: 'All users') }

www.it-ebooks.info

http://www.it-ebooks.info/

9.3 Showing All Users 399

it "should list each user" do

User.all.each do |user|

page.should have selector('li', text: user.name)

end

end

end

.

.

.

end

As you may recall from the corresponding action in the demo app (Listing 2.4), the

application code uses User.all to pull all the users out of the database, assigning them

to an @users instance variable for use in the view, as seen in Listing 9.24. (If displaying

all the users at once seems like a bad idea, you’re right, and we’ll remove this blemish in

Section 9.3.3.)

Listing 9.24 The user index action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

before filter :signed in user, only: [:index, :edit, :update]

.

.

.

def index

@users = User.all

end

.

.

.

end

To make the actual index page, we need to make a view that iterates through the

users and wraps each one in an li tag. We do this with the each method, displaying

each user’s Gravatar and name, while wrapping the whole thing in an unordered list

(ul) tag (Listing 9.25). The code in Listing 9.25 uses the result of Listing 7.29 from

Section 7.6, which allows us to pass an option to the Gravatar helper specifying a size

other than the default. If you didn’t do that exercise, update your Users helper file with

the contents of Listing 7.29 before proceeding.

www.it-ebooks.info

http://www.it-ebooks.info/

400 Chapter 9: Updating, Showing, and Deleting Users

Listing 9.25 The user index view.

app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<ul class="users">

<% @users.each do |user| %>

<%= gravatar for user, size: 52 %>

<%= link to user.name, user %>

<% end %>

Let’s also add a little CSS (or, rather, SCSS) for style (Listing 9.26).

Listing 9.26 CSS for the user index.

app/assets/stylesheets/custom.css.scss

.

.

.

/* users index */

.users {

list-style: none;

margin: 0;

li {

overflow: auto;

padding: 10px 0;

border-top: 1px solid $grayLighter;

&:last-child {

border-bottom: 1px solid $grayLighter;

}

}

}

Finally, we’ll add the URI to the users link in the site’s navigation header using

users_path, thereby using the last of the unused named routes in Table 7.1. The test

(Listing 9.27) and application code (Listing 9.28) are both straightforward.

www.it-ebooks.info

http://www.it-ebooks.info/

9.3 Showing All Users 401

Listing 9.27 A test for the ‘‘Users’’ link URI.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "with valid information" do

let(:user) { FactoryGirl.create(:user) }

before { sign in user }

it { should have selector('title', text: user.name) }

it { should have link('Users', href: users path) }

it { should have link('Profile', href: user path(user)) }

it { should have link('Settings', href: edit user path(user)) }

it { should have link('Sign out', href: signout path) }

it { should not have link('Sign in', href: signin path) }

.

.

.

end

end

end

Listing 9.28 Adding the URI to the users link.

app/views/layouts/_header.html.erb

<header class="navbar navbar-fixed-top">

<div class="navbar-inner">

<div class="container">

<%= link to "sample app", root path, id: "logo" %>

<nav>

<ul class="nav pull-right">

<%= link to "Home", root path %>

<%= link to "Help", help path %>

<% if signed in? %>

<%= link to "Users", users path %>

<li id="fat-menu" class="dropdown">

Account <b class="caret">

www.it-ebooks.info

http://www.it-ebooks.info/

402 Chapter 9: Updating, Showing, and Deleting Users

<ul class="dropdown-menu">

<%= link to "Profile", current user %>

<%= link to "Settings", edit user path(current user) %>

<li class="divider">

<%= link to "Sign out", signout path, method: "delete" %>

<% else %>

<%= link to "Sign in", signin path %>

<% end %>

</nav>

</div>

</div>

</header>

With that, the user index is fully functional, with all tests passing:

$ bundle exec rspec spec/

Figure 9.8 The user index page /users with only one user.

www.it-ebooks.info

http://www.it-ebooks.info/

9.3 Showing All Users 403

On the other hand, as seen in Figure 9.8, it is a bit . . . lonely. Let’s remedy this sad

situation.

9.3.2 Sample Users

In this section, we’ll give our lonely sample user some company. Of course, to create

enough users to make a decent user index, we could use our web browser to visit the

signup page and make the new users one by one, but far a better solution is to use Ruby

(and Rake) to make the users for us.

First, we’ll add the Faker gem to the Gemfile, which will allow us to make sample

users with semi-realistic names and email addresses (Listing 9.29).

Listing 9.29 Adding the Faker gem to the Gemfile.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

gem 'bootstrap-sass', '2.0.0'

gem 'bcrypt-ruby', '3.0.1'

gem 'faker', '1.0.1'

.

.

.

Then install as usual:

$ bundle install

Next, we’ll add a Rake task to create sample users. Rake tasks live in the lib/tasks

directory, and are defined using namespaces (in this case, :db), as seen in Listing 9.30.

(This is a bit advanced, so don’t worry too much about the details.)

Listing 9.30 A Rake task for populating the database with sample users.

lib/tasks/sample_data.rake

namespace :db do

desc "Fill database with sample data"

task populate: :environment do

User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password confirmation: "foobar")

99.times do |n|

name = Faker::Name.name

www.it-ebooks.info

http://www.it-ebooks.info/

404 Chapter 9: Updating, Showing, and Deleting Users

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password confirmation: password)

end

end

end

This defines a task db:populate that creates an example user with name and email

address replicating our previous one, and then makes 99 more. The line

task populate: :environment do

ensures that the Rake task has access to the local Rails environment, including the User

model (and hence User.create!). Here create! is just like the create method,

except it raises an exception (Section 6.1.4) for an invalid user rather than returning

false. This noisier construction makes debugging easier by avoiding silent errors.

With the :db namespace as in Listing 9.30, we can invoke the Rake task as follows:

$ bundle exec rake db:reset

$ bundle exec rake db:populate

$ bundle exec rake db:test:prepare

After running the Rake task, our application has 100 sample users, as seen in

Figure 9.9. (I’ve taken the liberty of associating the first few sample addresses with

photos so that they’re not all the default Gravatar image.)

9.3.3 Pagination

Our original user doesn’t suffer from loneliness any more, but now we have the opposite

problem: Our user has too many companions, and they all appear on the same page.

Right now there are a hundred, which is already a reasonably large number, and on a

real site it could be thousands. The solution is to paginate the users, so that (for example)

only 30 show up on a page at any one time.

There are several pagination methods in Rails; we’ll use one of the simplest and most

robust, called will paginate. To use it, we need to include both the will paginate gem

and bootstrap-will paginate, which configures will paginate to use Bootstrap’s

pagination styles. The updated Gemfile appears in Listing 9.31.

www.it-ebooks.info

http://www.it-ebooks.info/

9.3 Showing All Users 405

Figure 9.9 The user index page /users with 100 sample users.

Listing 9.31 Including will paginate in the Gemfile.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

gem 'bootstrap-sass', '2.0.0'

gem 'bcrypt-ruby', '3.0.1'

gem 'faker', '1.0.1'

gem 'will paginate', '3.0.3'

gem 'bootstrap-will paginate', '0.0.6'

.

.

.

Then run bundle install:

$ bundle install

You should also restart the web server to insure that the new gems are loaded properly.

www.it-ebooks.info

http://www.it-ebooks.info/

406 Chapter 9: Updating, Showing, and Deleting Users

Because the will paginate gem is in wide use, there’s no need to test it

thoroughly, so we’ll take a lightweight approach. First, we’ll test for a div with CSS

class ‘‘pagination’’, which is what gets output by will paginate. Then we’ll verify

that the correct users appear on the first page of results. This requires the use of the

paginate method, which we’ll cover shortly.

As before, we’ll use Factory Girl to simulate users, but immediately we have a

problem: User email addresses must be unique, which would appear to require creating

more than 30 users by hand—a terribly cumbersome job. In addition, when testing for

user listings it would be convenient for them all to have different names. Fortunately,

Factory Girl anticipates this issue, and provides sequences to solve it. Our original factory

(Listing 7.8) hard-coded the name and email address:

FactoryGirl.define do

factory :user do

name "Michael Hartl"

email "michael@example.com"

password "foobar"

password confirmation "foobar"

end

end

Instead, we can arrange for a sequence of names and email addresses using the sequence

method:

factory :user do

sequence(:name) { |n| "Person #{n}" }

sequence(:email) { |n| "person #{n}@example.com"}

.

.

.

Here sequence takes a symbol corresponding to the desired attribute (such as :name)

and a block with one variable, which we have called n. Upon successive invocations of

the FactoryGirl method,

FactoryGirl.create(:user)

The block variable n is automatically incremented, so that the first user has name

‘‘Person 1’’ and email address ‘‘person 1@example.com’’, the second user has name

‘‘Person 2’’ and email address ‘‘person 2@example.com’’, and so on. The full code

appears in Listing 9.32.

www.it-ebooks.info

http://www.it-ebooks.info/

9.3 Showing All Users 407

Listing 9.32 Defining a Factory Girl sequence.

spec/factories.rb

FactoryGirl.define do

factory :user do

sequence(:name) { |n| "Person #{n}" }

sequence(:email) { |n| "person #{n}@example.com"}

password "foobar"

password confirmation "foobar"

end

end

Applying the idea of factory sequences, we can make 30 users in our test, which (as

we will see) will be sufficient to invoke pagination:

before(:all) { 30.times { FactoryGirl.create(:user) } }

after(:all) { User.delete all }

Note here the use of before(:all), which ensures that the sample users are created

once, before all the tests in the block. This is an optimization for speed, as creating 30

users can be slow on some systems. We use the complementary method after(:all)

to delete the users once we’re done.

The tests for the appearance of the pagination div and the right users appears

in Listing 9.33. Note the replacement of the User.all array from Listing 9.23 with

User.paginate(page: 1), which (as we’ll see momentarily) is how to pull out the

first page of users from the database. Note also that Listing 9.33 uses before(:each)

to emphasize the contrast with before(:all).

Listing 9.33 Tests for pagination.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

subject { page }

describe "index" do

let(:user) { FactoryGirl.create(:user) }

before(:each) do

sign in user

visit users path

end

www.it-ebooks.info

http://www.it-ebooks.info/

408 Chapter 9: Updating, Showing, and Deleting Users

it { should have selector('title', text: 'All users') }

it { should have selector('h1', text: 'All users') }

describe "pagination" do

it { should have selector('div.pagination') }

it "should list each user" do

User.paginate(page: 1).each do |user|

page.should have selector('li', text: user.name)

end

end

end

end

.

.

.

end

To get pagination working, we need to add some code to the index view telling Rails

to paginate the users, and we need to replace User.all in the index action with an

object that knows about pagination. We’ll start by adding the special will_paginate

method in the view (Listing 9.34); we’ll see in a moment why the code appears both

above and below the user list.

Listing 9.34 The user index with pagination.

app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<%= will paginate %>

<ul class="users">

<% @users.each do |user| %>

<%= gravatar for user, size: 52 %>

<%= link to user.name, user %>

<% end %>

<%= will paginate %>

www.it-ebooks.info

http://www.it-ebooks.info/

9.3 Showing All Users 409

The will_paginatemethod is a little magical; inside a users view, it automatically

looks for an @users object, then displays pagination links to access other pages. The

view in Listing 9.34 doesn’t work yet, though, because currently @users contains the

results of User.all (Listing 9.24), which is of class Array, whereas will_paginate

expects an object of class ActiveRecord::Relation. Happily, this is just the kind

of object returned by the paginate method added by the will paginate gem to all

Active Record objects:

$ rails console

>> User.all.class

=> Array

>> User.paginate(page: 1).class

=> ActiveRecord::Relation

Note that paginate takes a hash argument with key :page and value equal to the

page requested. User.paginate pulls the users out of the database one chunk at a time

(30 by default), based on the :page parameter. So, for example, page 1 is users 1–30,

page 2 is users 31–60, etc. If the page is nil, paginate simply returns the first page.

Using the paginate method, we can paginate the users in the sample application

by using paginate in place of all in the index action (Listing 9.35). Here the

:page parameter comes from params[:page], which is generated automatically by

will_paginate.

Listing 9.35 Paginating the users in the index action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

before filter :signed in user, only: [:index, :edit, :update]

.

.

.

def index

@users = User.paginate(page: params[:page])

end

.

.

.

end

The user index page should now be working, appearing as in Figure 9.10. (On some

systems, you may have to restart the Rails server at this point.) Because we included

www.it-ebooks.info

http://www.it-ebooks.info/

410 Chapter 9: Updating, Showing, and Deleting Users

Figure 9.10 The user index page /users with pagination.

will_paginate both above and below the user list, the pagination links appear in both

places.

If you now click on either the 2 link or Next link, you’ll get the second page of

results, as shown in Figure 9.11.

You should also verify that the tests are passing:

$ bundle exec rspec spec/

9.3.4 Partial Refactoring

The paginated user index is now complete, but there’s one improvement I can’t resist

including: Rails has some incredibly slick tools for making compact views, and in

this section we’ll refactor the index page to use them. Because our code is well-tested,

we can refactor with confidence, assured that we are unlikely to break our site’s

functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

9.3 Showing All Users 411

Figure 9.11 Page 2 of the user index (/users?page=2).

The first step in our refactoring is to replace the user li from Listing 9.34 with a

render call (Listing 9.36).

Listing 9.36 The first refactoring attempt at the index view.

app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<%= will paginate %>

<ul class="users">

<% @users.each do |user| %>

<%= render user %>

<% end %>

<%= will paginate %>

www.it-ebooks.info

http://www.it-ebooks.info/

412 Chapter 9: Updating, Showing, and Deleting Users

Here we call render not on a string with the name of a partial, but rather on a user

variable of class User;6 in this context, Rails automatically looks for a partial called

_user.html.erb, which we must create (Listing 9.37).

Listing 9.37 A partial to render a single user.

app/views/users/_user.html.erb

<%= gravatar for user, size: 52 %>

<%= link to user.name, user %>

This is a definite improvement, but we can do even better: We can call render

directly on the @users variable (Listing 9.38).

Listing 9.38 The fully refactored user index.

app/views/users/index.html.erb

<% provide(:title, 'All users') %>

<h1>All users</h1>

<%= will paginate %>

<ul class="users">

<%= render @users %>

<%= will paginate %>

Here Rails infers that @users is a list of User objects; moreover, when called with

a collection of users, Rails automatically iterates through them and renders each one

with the _user.html.erb partial. The result is the impressively compact code in

Listing 9.38. As with any refactoring, you should verify that the test suite is still green

after changing the application code:

$ bundle exec rspec spec/

6. The name user is immaterial—we could have written @users.each do |foobar| and then used render

foobar. The key is the class of the object—in this case, User.

www.it-ebooks.info

http://www.it-ebooks.info/

9.4 Deleting Users 413

9.4 Deleting Users

Now that the user index is complete, there’s only one canonical REST action left:

destroy. In this section, we’ll add links to delete users, as mocked up in Figure 9.12,

and define the destroy action necessary to accomplish the deletion. But first, we’ll

create the class of administrative users authorized to do so.

9.4.1 Administrative Users

We will identify privileged administrative users with a boolean admin attribute in the

User model, which, as we’ll see, will automatically lead to an admin? boolean method

to test for admin status. We can write tests for this attribute as in Listing 9.39.

Figure 9.12 A mockup of the user index with delete links.

www.it-ebooks.info

http://www.it-ebooks.info/

414 Chapter 9: Updating, Showing, and Deleting Users

Listing 9.39 Tests for an admin attribute.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

it { should respond to(:admin) }

it { should respond to(:authenticate) }

it { should be valid }

it { should not be admin }

describe "with admin attribute set to 'true'" do

before { @user.toggle!(:admin) }

it { should be admin }

end

.

.

.

end

Here we’ve used the toggle! method to flip the admin attribute from false to true.

Also note that the line

it { should be admin }

implies (via the RSpec boolean convention) that the user should have an admin?

boolean method.

As usual, we add the admin attribute with a migration, indicating the boolean

type on the command line:

$ rails generate migration add admin to users admin:boolean

The migration simply adds the admin column to the users table (Listing 9.40),

yielding the data model in Figure 9.13.

www.it-ebooks.info

http://www.it-ebooks.info/

9.4 Deleting Users 415

Figure 9.13 The User model with an added admin boolean attribute.

Listing 9.40 The migration to add a boolean admin attribute to users.

db/migrate/[timestamp]_add_admin_to_users.rb

class AddAdminToUsers < ActiveRecord::Migration

def change

add column :users, :admin, :boolean, default: false

end

end

Note that we’ve added the argument default: false to add_column in Listing 9.40,

which means that users will not be administrators by default. (Without the default:

false argument, admin will be nil by default, which is still false, so this step is not

strictly necessary. It is more explicit, though, and communicates our intentions more

clearly both to Rails and to readers of our code.)

Finally, we migrate the development database and prepare the test database:

$ bundle exec rake db:migrate

$ bundle exec rake db:test:prepare

As expected, Rails figures out the boolean nature of the admin attribute and

automatically adds the question-mark method admin?:

$ rails console --sandbox

>> user = User.first

>> user.admin?

=> false

www.it-ebooks.info

http://www.it-ebooks.info/

416 Chapter 9: Updating, Showing, and Deleting Users

>> user.toggle!(:admin)

=> true

>> user.admin?

=> true

As a result, the admin tests should pass:

$ bundle exec rspec spec/models/user spec.rb

As a final step, let’s update our sample data populator to make the first user an

admin by default (Listing 9.41).

Listing 9.41 The sample data populator code with an admin user.

lib/tasks/sample_data.rake

namespace :db do

desc "Fill database with sample data"

task populate: :environment do

admin = User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password confirmation: "foobar")

admin.toggle!(:admin)

.

.

.

end

end

Then reset the database and re-populate the sample data:

$ bundle exec rake db:reset

$ bundle exec rake db:populate

$ bundle exec rake db:test:prepare

Revisiting attr accessible

You might have noticed that Listing 9.41 makes the user an admin with

toggle!(:admin), but why not just add admin: true to the initialization hash?

The answer is, it won’t work, and this is by design: Only attr_accessible attributes

can be assigned through mass assignment, and the admin attribute isn’t accessible.

Listing 9.42 reproduces the most recent list of attr_accessible attributes—note that

:admin is not on the list.

www.it-ebooks.info

http://www.it-ebooks.info/

9.4 Deleting Users 417

Listing 9.42 The attr_accessible attributes for the User model without an :admin attribute.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email, :password, :password confirmation

.

.

.

end

Explicitly defining accessible attributes is crucial for good site security. If we omitted

the attr_accessible list in the User model (or foolishly added :admin to the list), a

malicious user could send a PUT request as follows:7

put /users/17?admin=1

This request would make user 17 an admin, which would be a potentially serious

security breach, to say the least. Because of this danger, it is a good practice to define

attr_accessible for every model. In fact, it’s a good idea to write a test for any

attribute that isn’t accessible; writing such a test for the admin attribute is left as an

exercise (Section 9.6).

9.4.2 The destroy Action

The final step needed to complete the Users resource is to add delete links and a

destroy action. We’ll start by adding a delete link for each user on the user index page,

restricting access to administrative users.

To write tests for the delete functionality, it’s helpful to be able to have a factory to

create admins. We can accomplish this by adding an :admin block to our factories, as

shown in Listing 9.43.

Listing 9.43 Adding a factory for administrative users.

spec/factories.rb

FactoryGirl.define do

factory :user do

sequence(:name) { |n| "Person #{n}" }

sequence(:email) { |n| "person #{n}@example.com"}

password "foobar"

password confirmation "foobar"

7. Command-line tools such as curl can issue PUT requests of this form.

www.it-ebooks.info

http://www.it-ebooks.info/

418 Chapter 9: Updating, Showing, and Deleting Users

factory :admin do

admin true

end

end

end

With the code in Listing 9.43, we can now use FactoryGirl.create(:admin) to

create an administrative user in our tests.

Our security model requires that ordinary users not see delete links:

it { should not have link('delete') }

But administrative users should see such links, and by clicking on a delete link we expect

an admin to delete the user, i.e., to change the User count by -1:

it { should have link('delete', href: user path(User.first)) }

it "should be able to delete another user" do

expect { click link('delete') }.to change(User, :count).by(-1)

end

it { should not have link('delete', href: user path(admin)) }

Note that we have added a test to verify that the admin does not see a link to delete

himself. The full set of delete link tests appears in Listing 9.44.

Listing 9.44 Tests for delete links.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

subject { page }

describe "index" do

let(:user) { FactoryGirl.create(:user) }

before do

sign in user

visit users path

end

it { should have selector('title', text: 'All users') }

it { should have selector('h1', text: 'All users') }

www.it-ebooks.info

http://www.it-ebooks.info/

9.4 Deleting Users 419

describe "pagination" do

.

.

.

end

describe "delete links" do

it { should not have link('delete') }

describe "as an admin user" do

let(:admin) { FactoryGirl.create(:admin) }

before do

sign in admin

visit users path

end

it { should have link('delete', href: user path(User.first)) }

it "should be able to delete another user" do

expect { click link('delete') }.to change(User, :count).by(-1)

end

it { should not have link('delete', href: user path(admin)) }

end

end

end

end

The application code links to "delete" if the current user is an admin

(Listing 9.45). Note the method: :delete argument, which arranges for the link

to issue the necessary DELETE request. We’ve also wrapped each link inside an if

statement so that only admins can see them. The result for our admin user appears in

Figure 9.14.

Listing 9.45 User delete links (viewable only by admins).

app/views/users/_user.html.erb

<%= gravatar for user, size: 52 %>

<%= link to user.name, user %>

<% if current user.admin? && !current user?(user) %>

| <%= link to "delete", user, method: :delete, confirm: "You sure?" %>

<% end %>

Web browsers can’t send DELETE requests natively, so Rails fakes them with

JavaScript. This means that the delete links won’t work if the user has JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

420 Chapter 9: Updating, Showing, and Deleting Users

Figure 9.14 The user index /users with delete links.

disabled. If you must support non-JavaScript-enabled browsers you can fake a DELETE

request using a form and a POST request, which works even without JavaScript; see the

RailsCast on ‘‘Destroy Without JavaScript’’ for details.

To get the delete links to work, we need to add a destroy action (Table 7.1),

which finds the corresponding user and destroys it with the Active Record destroy

method, finally redirecting to the user index, as seen in Listing 9.46. Note that we also

add :destroy to the signed_in_user before filter.

Listing 9.46 Adding a working destroy action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

before filter :signed in user, only: [:index, :edit, :update, :destroy]

before filter :correct user, only: [:edit, :update]

.

.

.

def destroy

User.find(params[:id]).destroy

www.it-ebooks.info

http://www.it-ebooks.info/

9.4 Deleting Users 421

flash[:success] = "User destroyed."

redirect to users path

end

.

.

.

end

Note that the destroy action uses method chaining to combine the find and destroy

into one line:

User.find(params[:id]).destroy

As constructed, only admins can destroy users through the web, because only

admins can see the delete links. Unfortunately, there’s still a terrible security hole: Any

sufficiently sophisticated attacker could simply issue DELETE requests directly from the

command line to delete any user on the site. To secure the site properly, we also need

access control on the destroy action, so our tests should check not only that admins

can delete users, but also that other users can’t. The results appear in Listing 9.47. Note

that, in analogy with the put method from Listing 9.11, we use delete to issue a

DELETE request directly to the specified URI (in this case, the user path, as required by

Table 7.1).

Listing 9.47 A test for protecting the destroy action.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "authorization" do

.

.

.

describe "as non-admin user" do

let(:user) { FactoryGirl.create(:user) }

let(:non admin) { FactoryGirl.create(:user) }

before { sign in non admin }

describe "submitting a DELETE request to the Users#destroy action" do

before { delete user path(user) }

www.it-ebooks.info

http://www.it-ebooks.info/

422 Chapter 9: Updating, Showing, and Deleting Users

specify { response.should redirect to(root path) }

end

end

end

end

In principle, there’s still a minor security hole, which is that an admin could delete

himself by issuing a DELETE request directly. One might argue that such an admin is

only getting what he deserves, but it would be nice to prevent such an occurrence, and

doing so is left as an exercise (Section 9.6).

As you might suspect by now, the application code uses a before filter, this time to

restrict access to the destroy action to admins. The resulting admin_user before filter

appears in Listing 9.48.

Listing 9.48 A before filter restricting the destroy action to admins.

app/controllers/users_controller.rb

class UsersController < ApplicationController

before filter :signed in user, only: [:index, :edit, :update, :destroy]

before filter :correct user, only: [:edit, :update]

before filter :admin user, only: :destroy

.

.

.

private

.

.

.

def admin user

redirect to(root path) unless current user.admin?

end

end

At this point, all the tests should be passing, and the Users resource—with its

controller, model, and views—is functionally complete.

$ bundle exec rspec spec/

9.5 Conclusion

We’ve come a long way since introducing the Users controller way back in Section 5.4.

Those users couldn’t even sign up; now users can sign up, sign in, sign out, view their

www.it-ebooks.info

http://www.it-ebooks.info/

9.5 Conclusion 423

profiles, edit their settings, and see an index of all users—and some can even destroy

other users.

The rest of this book builds on the foundation of the Users resource (and associated

authorization system) to make a site with Twitter-like microposts (Chapter 10) and a

status feed of posts from followed users (Chapter 11). These chapters will introduce

some of the most powerful features of Rails, including data modeling with has_many

and has_many through.

Before moving on, be sure to merge all the changes into the master branch:

$ git add .

$ git commit -m "Finish user edit, update, index, and destroy actions"

$ git checkout master

$ git merge updating-users

You can also deploy the application and even populate the production database with

sample users (using the pg:reset task to reset the production database):

$ git push heroku

$ heroku pg:reset SHARED DATABASE --confirm <name-heroku-gave-to-your-app>

$ heroku run rake db:migrate

$ heroku run rake db:populate

(If you forgot the name of the Heroku app, just run heroku pg:reset SHARED_

DATABASE by itself and Heroku will remind you.)

It’s also worth noting that this chapter saw the last of the necessary gem installations.

For reference, the final Gemfile is shown in Listing 9.49.

Listing 9.49 The final Gemfile for the sample application.

source 'https://rubygems.org'

gem 'rails', '3.2.3'

gem 'bootstrap-sass', '2.0.0'

gem 'bcrypt-ruby', '3.0.1'

gem 'faker', '1.0.1'

gem 'will paginate', '3.0.3'

gem 'bootstrap-will paginate', '0.0.6'

group :development do

gem 'sqlite3', '1.3.5'

gem 'annotate', '˜> 2.4.1.beta'

end

www.it-ebooks.info

http://www.it-ebooks.info/

424 Chapter 9: Updating, Showing, and Deleting Users

Gems used only for assets and not required

in production environments by default.

group :assets do

gem 'sass-rails', '3.2.4'

gem 'coffee-rails', '3.2.2'

gem 'uglifier', '1.2.3'

end

gem 'jquery-rails', '2.0.0'

group :test, :development do

gem 'rspec-rails', '2.10.0'

gem 'guard-rspec', '0.5.5'

gem 'guard-spork', '0.3.2'

gem 'spork', '0.9.0'

end

group :test do

gem 'capybara', '1.1.2'

gem 'factory girl rails', '1.4.0'

gem 'cucumber-rails', '1.2.1', require: false

gem 'database cleaner', '0.7.0'

end

group :production do

gem 'pg', '0.12.2'

end

9.6 Exercises

1. Following the model in Listing 10.8, add a test to verify that the User admin

attribute isn’t accessible. Be sure to get first to Red, and then to Green. (Hint: Your

first step should be to add admin to the accessible list.)

2. Arrange for the Gravatar ‘‘change’’ link in Listing 9.3 to open in a new window

(or tab). Hint: Search the web; you should find one particularly robust method

involving something called _blank.

3. The current authentication tests check that navigation links such as ‘‘Profile’’ and

‘‘Settings’’ appear when a user is signed in. Add tests to make sure that these links

don’t appear when a user isn’t signed in.

4. Use the sign_in test helper from Listing 9.6 in as many places as you can find.

5. Remove the duplicated form code by refactoring the new.html.erb and edit.

html.erb views to use the partial in Listing 9.50. Note that you will have to pass

the form variable f explicitly as a local variable, as shown in Listing 9.51. You will

www.it-ebooks.info

http://www.it-ebooks.info/

9.6 Exercises 425

also have to update the tests, as the forms aren’t currently exactly the same; identify

the slight difference and update the tests accordingly.

6. Signed-in users have no reason to access the new and create actions in the Users

controller. Arrange for such users to be redirected to the root URL if they do try to

hit those pages.

7. Learn about the request object by inserting some of the methods listed in the

Rails API8 into the site layout. (Refer to Listing 7.1 if you get stuck.)

8. Write a test to make sure that the friendly forwarding only forwards to the given

URI the first time. On subsequent signin attempts, the forwarding URI should

revert to the default (i.e., the profile page). See Listing 9.52 for a hint (and, by a

hint, I mean the solution).

9. Modify the destroy action to prevent admin users from destroying themselves.

(Write a test first.)

Listing 9.50 A partial for the new and edit form fields.

app/views/users/_fields.html.erb

<%= render 'shared/error messages' %>

<%= f.label :name %>

<%= f.text field :name %>

<%= f.label :email %>

<%= f.text field :email %>

<%= f.label :password %>

<%= f.password field :password %>

<%= f.label :password confirmation, "Confirm Password" %>

<%= f.password field :password confirmation %>

Listing 9.51 The new user view with partial.

app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<div class="row">

<div class="span6 offset3">

8. http://api.rubyonrails.org/v3.2.0/classes/ActionDispatch/Request.html.

www.it-ebooks.info

http://api.rubyonrails.org/v3.2.0/classes/ActionDispatch/Request.html
http://www.it-ebooks.info/

426 Chapter 9: Updating, Showing, and Deleting Users

<%= form for(@user) do |f| %>

<%= render 'fields', f: f %>

<%= f.submit "Create my account", class: "btn btn-large btn-primary" %>

<% end %>

</div>

</div>

Listing 9.52 A test for forwarding to the default page after friendly forwarding.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "authorization" do

describe "for non-signed-in users" do

.

.

.

describe "when attempting to visit a protected page" do

before do

visit edit user path(user)

fill in "Email", with: user.email

fill in "Password", with: user.password

click button "Sign in"

end

describe "after signing in" do

it "should render the desired protected page" do

page.should have selector('title', text: 'Edit user')

end

describe "when signing in again" do

before do

visit signin path

fill in "Email", with: user.email

fill in "Password", with: user.password

click button "Sign in"

end

www.it-ebooks.info

http://www.it-ebooks.info/

9.6 Exercises 427

it "should render the default (profile) page" do

page.should have selector('title', text: user.name)

end

end

end

end

end

.

.

.

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

User Microposts

Chapter 9 saw the completion of the REST actions for the Users resource, so the time

has finally come to add a second full resource: user microposts.1 These are short messages

associated with a particular user, first seen in larval form in Chapter 2. In this chapter,

we will make a full-strength version of the sketch from Section 2.3 by constructing the

Micropost data model, associating it with the User model using the has_many and

belongs_to methods, and then making the forms and partials needed to manipulate

and display the results. In Chapter 11, we’ll complete our tiny Twitter clone by adding

the notion of following users in order to receive a feed of their microposts.

If you’re using Git for version control, I suggest making a topic branch as usual:

$ git checkout -b user-microposts

10.1 A Micropost Model

We begin the Microposts resource by creating a Micropost model, which captures

the essential characteristics of microposts. What follows builds on the work from

Section 2.3; as with the model in that section, our new Micropost model will include

data validations and an association with the User model. Unlike that model, the present

Micropost model will be fully tested and will also have a default ordering and automatic

destruction if its parent user is destroyed.

1. Technically, we treated sessions as a resource in Chapter 8, but sessions are not saved to the database the
way users and microposts are.

429

www.it-ebooks.info

http://www.it-ebooks.info/

430 Chapter 10: User Microposts

10.1.1 The Basic Model

The Micropost model needs only two attributes: a content attribute to hold the

micropost’s content,2 and a user_id to associate a micropost with a particular user.

As with the case of the User model (Listing 6.1), we generate it using generate

model:

$ rails generate model Micropost content:string user id:integer

This produces a migration to create a microposts table in the database (List-

ing 10.1); compare it to the analogous migration for the users table from Listing 6.2.

Listing 10.1 The Micropost migration. (Note the index on user_id and created_at.)

db/migrate/[timestamp]_create_microposts.rb

class CreateMicroposts < ActiveRecord::Migration

def change

create table :microposts do |t|

t.string :content

t.integer :user id

t.timestamps

end

add index :microposts, [:user id, :created at]

end

end

Note that, since we expect to retrieve all the microposts associated with a given user id

in reverse order of creation, Listing 10.1 adds an index (Box 6.2) on the user_id and

created_at columns:

add index :microposts, [:user id, :created at]

By including both the user_id and created_at columns as an array, we arrange for

Rails to create a multiple key index, which means that Active Record uses both keys at the

same time. Note also the t.timestamps line, which (as mentioned in Section 6.1.1)

adds the magic created_at and updated_at columns. We’ll put the created_at

column to work in Section 10.1.4 and Section 10.2.1.

2. The content attribute will be a string, but, as noted briefly in Section 2.1.2, for longer text fields you
should use the text data type.

www.it-ebooks.info

http://www.it-ebooks.info/

10.1 A Micropost Model 431

We’ll start with some minimal tests for the Micropost model based on the analogous

tests for the User model (Listing 6.8). In particular, we verify that a micropost object

responds to the content and user_id attributes, as shown in Listing 10.2.

Listing 10.2 The initial Micropost spec.

spec/models/micropost_spec.rb

require 'spec helper'

describe Micropost do

let(:user) { FactoryGirl.create(:user) }

before do

This code is wrong!

@micropost = Micropost.new(content: "Lorem ipsum", user id: user.id)

end

subject { @micropost }

it { should respond to(:content) }

it { should respond to(:user id) }

end

We can get these tests to pass by running the microposts migration and preparing

the test database:

$ bundle exec rake db:migrate

$ bundle exec rake db:test:prepare

The result is a Micropost model with the structure shown in Figure 10.1.

You should verify that the tests pass:

$ bundle exec rspec spec/models/micropost spec.rb

Even though the tests are passing, you might have noticed this code:

Figure 10.1 The Micropost data model.

www.it-ebooks.info

http://www.it-ebooks.info/

432 Chapter 10: User Microposts

let(:user) { FactoryGirl.create(:user) }

before do

This code is wrong!

@micropost = Micropost.new(content: "Lorem ipsum", user id: user.id)

end

The comment indicates that the code in the before block is wrong. See if you can

guess why. We’ll see the answer in the next section.

10.1.2 Accessible Attributes and the First Validation

To see why the code in the before block is wrong, we first start with validation

tests for the Micropost model (Listing 10.3). (Compare with the User model tests in

Listing 6.11.)

Listing 10.3 Tests for the validity of a new micropost.

spec/models/micropost_spec.rb

require 'spec helper'

describe Micropost do

let(:user) { FactoryGirl.create(:user) }

before do

This code is wrong!

@micropost = Micropost.new(content: "Lorem ipsum", user id: user.id)

end

subject { @micropost }

it { should respond to(:content) }

it { should respond to(:user id) }

it { should be valid }

describe "when user id is not present" do

before { @micropost.user id = nil }

it { should not be valid }

end

end

This code requires that the micropost be valid and tests for the presence of the user_id

attribute. We can get these tests to pass with the simple presence validation shown in

Listing 10.4.

www.it-ebooks.info

http://www.it-ebooks.info/

10.1 A Micropost Model 433

Listing 10.4 A validation for the micropost’s user_id.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

attr accessible :content, :user id

validates :user id, presence: true

end

Now we’re prepared to see why

@micropost = Micropost.new(content: "Lorem ipsum", user id: user.id)

is wrong. The problem is that by default (as of Rails 3.2.3) all of the attributes for our

Micropost model are accessible. As discussed in Section 6.1.2 and Section 9.4.1, this

means that anyone could change any aspect of a micropost object simply by using a

command-line client to issue malicious requests. For example, a malicious user could

change the user_id attributes on microposts, thereby associating microposts with the

wrong users. This means that we should remove :user_id from the attr_accessible

list, and once we do, the code above will fail. We’ll fix this issue in Section 10.1.3.

10.1.3 User/Micropost Associations

When constructing data models for web applications, it is essential to be able to

make associations between individual models. In the present case, each micropost

is associated with one user, and each user is associated with (potentially) many

microposts—a relationship seen briefly in Section 2.3.3 and shown schematically in

Figure 10.2 and Figure 10.3. As part of implementing these associations, we’ll write

tests for the Micropost model that, unlike Listing 10.2, are compatible with the use of

attr_accessible in Listing 10.7.

Figure 10.2 The belongs_to relationship between a micropost and its user.

www.it-ebooks.info

http://www.it-ebooks.info/

434 Chapter 10: User Microposts

Figure 10.3 The has_many relationship between a user and its microposts.

Using the belongs_to/has_many association defined in this section, Rails con-

structs the methods shown in Table 10.1.

Note from Table 10.1 that instead of

Micropost.create

Micropost.create!

Micropost.new

we have

user.microposts.create

user.microposts.create!

user.microposts.build

Table 10.1 A summary of user/micropost association methods.

Method Purpose

micropost.user Return the User object associated with the micropost.

user.microposts Return an array of the user’s microposts.

user.microposts.create(arg) Create a micropost (user_id = user.id).

user.microposts.create!(arg) Create a micropost (exception on failure).

user.microposts.build(arg) Return a new Micropost object

(user_id = user.id).

www.it-ebooks.info

http://www.it-ebooks.info/

10.1 A Micropost Model 435

This pattern is the canonical way to make a micropost: through its association with a

user. When a new micropost is made in this way, its user_id is automatically set to the

right value, which fixes the issue noted in Section 10.1.2. In particular, we can replace

the code

let(:user) { FactoryGirl.create(:user) }

before do

This code is wrong!

@micropost = Micropost.new(content: "Lorem ipsum", user id: user.id)

end

from Listing 10.3 with

let(:user) { FactoryGirl.create(:user) }

before { @micropost = user.microposts.build(content: "Lorem ipsum") }

Once we define the proper associations, the resulting @micropost variable will auto-

matically have user_id equal to its associated user.

Building the micropost through the User association doesn’t fix the security problem

of having an accessible user_id, and because this is such an important security concern

we’ll add a failing test to catch it, as shown in Listing 10.5.

Listing 10.5 A test to ensure that the user_id isn’t accessible.

spec/models/micropost_spec.rb

require 'spec helper'

describe Micropost do

let(:user) { FactoryGirl.create(:user) }

before { @micropost = user.microposts.build(content: "Lorem ipsum") }

subject { @micropost }

.

.

.

describe "accessible attributes" do

it "should not allow access to user id" do

expect do

Micropost.new(user id: user.id)

end.should raise error(ActiveModel::MassAssignmentSecurity::Error)

end

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

436 Chapter 10: User Microposts

This test verifies that calling Micropost.new with a nonempty user_id raises a mass

assignment security error exception. This behavior is on by default as of Rails 3.2.3, but

previous versions had it off, so you should make sure that your application is configured

properly, as shown in Listing 10.6.

Listing 10.6 Ensuring that Rails throws errors on invalid mass assignment.

config/application.rb

.

.

.

module SampleApp

class Application < Rails::Application

.

.

.

config.active record.whitelist attributes = true

.

.

.

end

end

In the case of the Micropost model, there is only one attribute that needs to

be editable through the web, namely, the content attribute, so we need to remove

:user_id from the accessible list, as shown in Listing 10.7.

Listing 10.7 Making the content attribute (and only the content attribute) accessible.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

attr accessible :content

validates :user id, presence: true

end

As seen in Table 10.1, another result of the user/micropost association is microp-

ost.user, which simply returns the micropost’s user. We can test this with the it and

its methods as follows:

it { should respond to(:user) }

its(:user) { should == user }

The resulting Micropost model tests are shown in Listing 10.8.

www.it-ebooks.info

http://www.it-ebooks.info/

10.1 A Micropost Model 437

Listing 10.8 Tests for the micropost’s user association.

spec/models/micropost_spec.rb

require 'spec helper'

describe Micropost do

let(:user) { FactoryGirl.create(:user) }

before { @micropost = user.microposts.build(content: "Lorem ipsum") }

subject { @micropost }

it { should respond to(:content) }

it { should respond to(:user id) }

it { should respond to(:user) }

its(:user) { should == user }

it { should be valid }

describe "accessible attributes" do

it "should not allow access to user id" do

expect do

Micropost.new(user id: user.id)

end.should raise error(ActiveModel::MassAssignmentSecurity::Error)

end

end

describe "when user id is not present" do

before { @micropost.user id = nil }

it { should not be valid }

end

end

On the User model side of the association, we’ll defer the more detailed tests to

Section 10.1.4; for now, we’ll simply test for the presence of a microposts attribute

(Listing 10.9).

Listing 10.9 A test for the user’s microposts attribute.

spec/models/user_spec.rb

require 'spec helper'

describe User do

before do

@user = User.new(name: "Example User", email: "user@example.com",

password: "foobar", password confirmation: "foobar")

end

www.it-ebooks.info

http://www.it-ebooks.info/

438 Chapter 10: User Microposts

subject { @user }

.

.

.

it { should respond to(:authenticate) }

it { should respond to(:microposts) }

.

.

.

end

After all that work, the code to implement the association is almost comically short:

We can get the tests in both Listing 10.8 and Listing 10.9 to pass by adding just two lines:

belongs_to :user (Listing 10.10) and has_many :microposts (Listing 10.11).

Listing 10.10 A micropost belongs_to a user.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

attr accessible :content

belongs to :user

validates :user id, presence: true

end

Listing 10.11 A user has many microposts.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email, :password, :password confirmation

has secure password

has many :microposts

.

.

.

end

At this point, you should compare the entries in Table 10.1 with the code in

Listing 10.8 and Listing 10.9 to satisfy yourself that you understand the basic nature of

the associations. You should also check that the tests pass:

$ bundle exec rspec spec/models

www.it-ebooks.info

http://www.it-ebooks.info/

10.1 A Micropost Model 439

10.1.4 Micropost Refinements

The test in Listing 10.9 of the has_many association doesn’t test for much—it merely

verifies the existence of a microposts attribute. In this section, we’ll add ordering

and dependency to microposts, while also testing that the user.microposts method

actually returns an array of microposts.

We will need to construct some microposts in the User model test, which means

that we should make a micropost factory at this point. To do this, we need a way to

make an association in Factory Girl. Happily, this is easy, as seen in Listing 10.12.

Listing 10.12 The complete factory file, including a new factory for microposts.

spec/factories.rb

FactoryGirl.define do

factory :user do

sequence(:name) { |n| "Person #{n}" }

sequence(:email) { |n| "person #{n}@example.com"}

password "foobar"

password confirmation "foobar"

factory :admin do

admin true

end

end

factory :micropost do

content "Lorem ipsum"

user

end

end

Here we tell Factory Girl about the micropost’s associated user just by including a user

in the definition of the factory:

factory :micropost do

content "Lorem ipsum"

user

end

As we’ll see in the next section, this allows us to define factory microposts as follows:

FactoryGirl.create(:micropost, user: @user, created at: 1.day.ago)

www.it-ebooks.info

http://www.it-ebooks.info/

440 Chapter 10: User Microposts

Default Scope

By default, using user.microposts to pull a user’s microposts from the database

makes no guarantees about the order of the posts, but (following the convention of

blogs and Twitter) we want the microposts to come out in reverse order of when they

were created, i.e., most recent first. To test this ordering, we first create a couple of

microposts as follows:

FactoryGirl.create(:micropost, user: @user, created at: 1.day.ago)

FactoryGirl.create(:micropost, user: @user, created at: 1.hour.ago)

Here we indicate (using the time helpers discussed in Box 8.1) that the second post was

created more recently, i.e., 1.hour.ago, while the first post was created 1.day.ago.

Note how convenient the use of Factory Girl is: Not only can we assign the user using

mass assignment (since factories bypass attr_accessible), we can also set created_

at manually, which Active Record won’t allow us to do. (Recall that created_at and

updated_at are ‘‘magic’’ columns, automatically set to the proper creation and update

timestamps, so any explicit initialization values are overwritten by the magic.)

Most database adapters (including the one for SQLite) return the microposts in

order of their ids, so we can arrange for an initial test that almost certainly fails using

the code in Listing 10.13. This uses the let! (read ‘‘let bang’’) method in place of let;

the reason is that let variables are lazy, meaning that they only spring into existence

when referenced. The problem is that we want the microposts to exist immediately, so

that the timestamps are in the right order and so that @user.microposts isn’t empty.

We accomplish this with let!, which forces the corresponding variable to come into

existence.

Listing 10.13 Testing the order of a user’s microposts.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

describe "micropost associations" do

before { @user.save }

let!(:older micropost) do

FactoryGirl.create(:micropost, user: @user, created at: 1.day.ago)

end

www.it-ebooks.info

http://www.it-ebooks.info/

10.1 A Micropost Model 441

let!(:newer micropost) do

FactoryGirl.create(:micropost, user: @user, created at: 1.hour.ago)

end

it "should have the right microposts in the right order" do

@user.microposts.should == [newer micropost, older micropost]

end

end

end

The key line here is

@user.microposts.should == [newer micropost, older micropost]

indicating that the posts should be ordered newest first. This should fail because by

default the posts will be ordered by id, i.e., [older_micropost, newer_micropost].

This test also verifies the basic correctness of the has_many association itself, by checking

(as indicated in Table 10.1) that user.microposts is an array of microposts.

To get the ordering test to pass, we use a Rails facility called default_scope

with an :order parameter, as shown in Listing 10.14. (This is our first example of the

notion of scope. We will learn about scope in a more general context in Chapter 11.)

Listing 10.14 Ordering the microposts with default_scope.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

.

.

.

default scope order: 'microposts.created at DESC'

end

The order here is ’microposts.created_at DESC’, where DESC is SQL for ‘‘descend-

ing,’’ i.e., in descending order from newest to oldest.

Dependent: Destroy

Apart from proper ordering, there is a second refinement we’d like to add to microposts.

Recall from Section 9.4 that site administrators have the power to destroy users. It stands

to reason that, if a user is destroyed, the user’s microposts should be destroyed as well.

We can test for this by first destroying a micropost’s user and then verifying that the

associated microposts are no longer in the database (Listing 10.15).

www.it-ebooks.info

http://www.it-ebooks.info/

442 Chapter 10: User Microposts

Listing 10.15 Testing that microposts are destroyed when users are.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

describe "micropost associations" do

before { @user.save }

let!(:older micropost) do

FactoryGirl.create(:micropost, user: @user, created at: 1.day.ago)

end

let!(:newer micropost) do

FactoryGirl.create(:micropost, user: @user, created at: 1.hour.ago)

end

.

.

.

it "should destroy associated microposts" do

microposts = @user.microposts

@user.destroy

microposts.each do |micropost|

Micropost.find by id(micropost.id).should be nil

end

end

end

.

.

.

end

Here we have used Micropost.find_by_id, which returns nil if the record is not

found, whereas Micropost.find raises an exception on failure, which is a bit harder

to test for. (In case you’re curious,

lambda do

Micropost.find(micropost.id)

end.should raise error(ActiveRecord::RecordNotFound)

does the trick in this case.)

The application code to get Listing 10.15 to pass is less than one line; in fact, it’s

just an option to the has_many association method, as shown in Listing 10.16.

www.it-ebooks.info

http://www.it-ebooks.info/

10.1 A Micropost Model 443

Listing 10.16 Ensuring that a user’s microposts are destroyed along with the user.

app/models/user.rb

class User < ActiveRecord::Base

attr accessible :name, :email, :password, :password confirmation

has secure password

has many :microposts, dependent: :destroy

.

.

.

end

Here the option dependent: :destroy in

has many :microposts, dependent: :destroy

arranges for the dependent microposts (i.e., the ones belonging to the given user) to

be destroyed when the user itself is destroyed. This prevents userless microposts from

being stranded in the database when admins choose to remove users from the system.

With that, the final form of the user/micropost association is in place, and all the

tests should be passing:

$ bundle exec rspec spec/

10.1.5 Content Validations

Before leaving the Micropost model, we’ll add validations for the micropost content

(following the example from Section 2.3.2). Like the user_id, the content attribute

must be present, and it is further constrained to be no longer than 140 characters,

making it an honest micropost. The tests generally follow the examples from the User

model validation tests in Section 6.2, as shown in Listing 10.17.

Listing 10.17 Tests for the Micropost model validations.

spec/models/micropost_spec.rb

require 'spec helper'

describe Micropost do

let(:user) { FactoryGirl.create(:user) }

before { @micropost = user.microposts.build(content: "Lorem ipsum") }

.

.

.

www.it-ebooks.info

http://www.it-ebooks.info/

444 Chapter 10: User Microposts

describe "when user id is not present" do

before { @micropost.user id = nil }

it { should not be valid }

end

describe "with blank content" do

before { @micropost.content = " " }

it { should not be valid }

end

describe "with content that is too long" do

before { @micropost.content = "a" * 141 }

it { should not be valid }

end

end

As in Section 6.2, the code in Listing 10.17 uses string multiplication to test the

micropost length validation:

$ rails console

>> "a" * 10

=> "aaaaaaaaaa"

>> "a" * 141

=> "aaa

aa"

The application code is a one-liner:

validates :content, presence: true, length: { maximum: 140 }

The resulting Micropost model is shown in Listing 10.18.

Listing 10.18 The Micropost model validations.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

attr accessible :content

belongs to :user

validates :content, presence: true, length: { maximum: 140 }

validates :user id, presence: true

default scope order: 'microposts.created at DESC'

end

www.it-ebooks.info

http://www.it-ebooks.info/

10.2 Showing Microposts 445

10.2 Showing Microposts

Although we don’t yet have a way to create microposts through the web—that comes

in Section 10.3.2—that won’t stop us from displaying them (and testing that display).

Following Twitter’s lead, we’ll plan to display a user’s microposts not on a separate

microposts index page, but rather directly on the user show page itself, as mocked

up in Figure 10.4. We’ll start with fairly simple ERb templates for adding a micropost

display to the user profile, and then we’ll add microposts to the sample data populator

from Section 9.3.2 so that we have something to display.

As with the discussion of the signin machinery in Section 8.2.1, Section 10.2.1

will often push several elements onto the stack at a time, and then pop them off

one by one. If you start getting bogged down, be patient; there’s some nice payoff in

Section 10.2.2.

Figure 10.4 A mockup of a profile page with microposts.

www.it-ebooks.info

http://www.it-ebooks.info/

446 Chapter 10: User Microposts

10.2.1 Augmenting the User Show Page

We begin with tests for displaying the user’s microposts, which we’ll create in the

request spec for Users. Our strategy is to create a couple of factory microposts asso-

ciated with the user, and then verify that the show page contains each post’s content.

We’ll also verify that, as in Figure 10.4, the total number of microposts also gets

displayed.

We can create the posts with the let method, but as in Listing 10.13 we want the

association to exist immediately so that the posts appear on the user show page. To

accomplish this, we use the let! variant:

let(:user) { FactoryGirl.create(:user) }

let!(:m1) { FactoryGirl.create(:micropost, user: user, content: "Foo") }

let!(:m2) { FactoryGirl.create(:micropost, user: user, content: "Bar") }

before { visit user path(user) }

With the microposts so defined, we can test for their appearance on the profile page

using the code in Listing 10.19.

Listing 10.19 A test for showing microposts on the user show page.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

.

.

.

describe "profile page" do

let(:user) { FactoryGirl.create(:user) }

let!(:m1) { FactoryGirl.create(:micropost, user: user, content: "Foo") }

let!(:m2) { FactoryGirl.create(:micropost, user: user, content: "Bar") }

before { visit user path(user) }

it { should have selector('h1', text: user.name) }

it { should have selector('title', text: user.name) }

describe "microposts" do

it { should have content(m1.content) }

it { should have content(m2.content) }

it { should have content(user.microposts.count) }

end

www.it-ebooks.info

http://www.it-ebooks.info/

10.2 Showing Microposts 447

end

.

.

.

end

Note here that we can use the count method through the association:

user.microposts.count

The association count method is smart and performs the count directly in the database.

In particular, it does not pull all the microposts out of the database and then call length

on the resulting array, as this could become inefficient as the number of microposts

grew. Instead, it asks the database to count the microposts with the given user_id. In

the unlikely event that finding the count is still a bottleneck in your application, you

can make it even faster with a counter cache.

Although the tests in Listing 10.19 won’t pass until Listing 10.21, we’ll get started

on the application code by inserting a list of microposts into the user profile page, as

shown in Listing 10.20.

Listing 10.20 Adding microposts to the user show page.

app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

.

.

.

<aside>

.

.

.

</aside>

<div class="span8">

<% if @user.microposts.any? %>

<h3>Microposts (<%= @user.microposts.count %>)</h3>

<ol class="microposts">

<%= render @microposts %>

<%= will paginate @microposts %>

<% end %>

</div>

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

448 Chapter 10: User Microposts

We will deal with the microposts list momentarily, but there are several other things

to note first. In Listing 10.20, the use of if @user.microposts.any? (a construction

we saw before in Listing 7.23) makes sure that an empty list won’t be displayed when

the user has no microposts.

Also note from Listing 10.20 that we’ve preemptively added pagination for micro-

posts through

<%= will paginate @microposts %>

If you compare this with the analogous line on the user index page, Listing 9.34, you’ll

see that before we had just

<%= will paginate %>

This worked because, in the context of the Users controller, will_paginate assumes

the existence of an instance variable called @users (which, as we saw in Section 9.3.3,

should be of class ActiveRecord::Relation). In the present case, since we are still

in the Users controller but want to paginate microposts instead, we pass an explicit

@microposts variable to will_paginate. Of course, this means that we will have to

define such a variable in the user show action (Listing 10.22).

Finally, note that we have taken this opportunity to add a count of the current

number of microposts:

<h3>Microposts (<%= @user.microposts.count %>)</h3>

As noted, @user.microposts.count is the analogue of the User.count method,

except that it counts the microposts belonging to a given user through the user/micropost

association.

We come finally to the micropost list itself:

<ol class="microposts">

<%= render @microposts %>

This code, which uses the ordered list tag ol, is responsible for generating the list of

microposts, but you can see that it just defers the heavy lifting to a micropost partial.

We saw in Section 9.3.4 that the code

<%= render @users %>

www.it-ebooks.info

http://www.it-ebooks.info/

10.2 Showing Microposts 449

automatically renders each of the users in the @users variable using the _user

.html.erb partial. Similarly, the code

<%= render @microposts %>

does exactly the same thing for microposts. This means that we must define a

_micropost.html.erb partial (along with a micropost views directory), as shown in

Listing 10.21.

Listing 10.21 A partial for showing a single micropost.

app/views/microposts/_micropost.html.erb

<%= micropost.content %>

Posted <%= time ago in words(micropost.created at) %> ago.

This uses the awesome time_ago_in_words helper method, whose effect we will see

in Section 10.2.2.

Thus far, despite defining all the relevant ERb templates, the test in Listing 10.19

should have been failing for want of an @microposts variable. We can get it to pass

with Listing 10.22.

Listing 10.22 Adding an @microposts instance variable to the user show action.

app/controllers/users_controller.rb

class UsersController < ApplicationController

.

.

.

def show

@user = User.find(params[:id])

@microposts = @user.microposts.paginate(page: params[:page])

end

end

Notice here how clever paginate is—it even works through the microposts association,

reaching into the microposts table and pulling out the desired page of microposts.

At this point, we can get a look at our new user profile page in Figure 10.5.

It’s rather . . . disappointing. Of course, this is because there are not currently any

microposts. It’s time to change that.

www.it-ebooks.info

http://www.it-ebooks.info/

450 Chapter 10: User Microposts

Figure 10.5 The user profile page with code for microposts—but no microposts.

10.2.2 Sample Microposts

With all the work making templates for user microposts in Section 10.2.1, the ending

was rather anticlimactic. We can rectify this sad situation by adding microposts to

the sample populator from Section 9.3.2. Adding sample microposts for all the users

actually takes a rather long time, so first we’ll select just the first six users3 using the

:limit option to the User.all method:4

users = User.all(limit: 6)

We then make 50 microposts for each user (plenty to overflow the pagination limit

of 30), generating sample content for each micropost using the Faker gem’s handy

Lorem.sentence method. (Faker::Lorem.sentence returns lorem ipsum text; as

3. (i.e., the five users with custom Gravatars, and one with the default Gravatar)

4. Tail your log/development.log file if you’re curious about the SQL this method generates.

www.it-ebooks.info

http://www.it-ebooks.info/

10.2 Showing Microposts 451

noted in Chapter 6, lorem ipsum has a fascinating back story.) The result is the new

sample data populator shown in Listing 10.23.

Listing 10.23 Adding microposts to the sample data.

lib/tasks/sample_data.rake

namespace :db do

desc "Fill database with sample data"

task populate: :environment do

.

.

.

users = User.all(limit: 6)

50.times do

content = Faker::Lorem.sentence(5)

users.each { |user| user.microposts.create!(content: content) }

end

end

end

Of course, to generate the new sample data we have to run the db:populate Rake task:

$ bundle exec rake db:reset

$ bundle exec rake db:populate

$ bundle exec rake db:test:prepare

With that, we are in a position to enjoy the fruits of our Section 10.2.1 labors

by displaying information for each micropost.5 The preliminary results appear in

Figure 10.6.

The page shown in Figure 10.6 has no micropost-specific styling, so let’s add some

(Listing 10.24) and take a look the resulting pages.6 Figure 10.7, which displays the user

profile page for the first (signed-in) user, while Figure 10.8 shows the profile for a second

user. Finally, Figure 10.9 shows the second page of microposts for the first user, along

with the pagination links at the bottom of the display. In all three cases, observe that

each micropost display indicates the time since it was created (e.g., ‘‘Posted 1 minute

ago.’’); this is the work of the time_ago_in_words method from Listing 10.21. If you

wait a couple minutes and reload the pages, you’ll see how the text gets automatically

updated based on the new time.

5. By design, the Faker gem’s lorem ipsum text is randomized, so the contents of your sample microposts will
differ.

6. For convenience, Listing 10.24 actually has all the CSS needed for this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

452 Chapter 10: User Microposts

Figure 10.6 The user profile (/users/1) with unstyled microposts.

Listing 10.24 The CSS for microposts (including all the CSS for this chapter).

app/assets/stylesheets/custom.css.scss

.

.

.

/* microposts */

.microposts {

list-style: none;

margin: 10px 0 0 0;

li {

padding: 10px 0;

border-top: 1px solid #e8e8e8;

}

}

www.it-ebooks.info

http://www.it-ebooks.info/

10.2 Showing Microposts 453

.content {

display: block;

}

.timestamp {

color: $grayLight;

}

.gravatar {

float: left;

margin-right: 10px;

}

aside {

textarea {

height: 100px;

margin-bottom: 5px;

}

}

Figure 10.7 The user profile (/users/1) with microposts.

www.it-ebooks.info

http://www.it-ebooks.info/

454 Chapter 10: User Microposts

Figure 10.8 The profile of a different user, also with microposts (/users/3).

10.3 Manipulating Microposts

Having finished both the data modeling and display templates for microposts, we now

turn our attention to the interface for creating them through the web. The result will

be our third example of using an HTML form to create a resource—in this case, a

Microposts resource.7 In this section, we’ll also see the first hint of a status feed—a

notion brought to full fruition in Chapter 11. Finally, as with users, we’ll make it

possible to destroy microposts through the web.

There is one break with past convention worth noting: The interface to the

Microposts resource will run principally through the Users and StaticPages controllers,

rather than relying on a controller of its own. This means that the routes for the

Microposts resource are unusually simple, as seen in Listing 10.25. The code in

7. The other two resources are Users in Section 7.2 and Sessions in Section 8.1.

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 455

Figure 10.9 Micropost pagination links (/users/1?page=2).

Listing 10.25 leads in turn to the RESTful routes shown in Table 10.2, which is a small

subset of the full set of routes seen in Table 2.3. Of course, this simplicity is a sign of

being more advanced, not less—we’ve come a long way since our reliance on scaffolding

in Chapter 2, and we no longer need most of its complexity.

Listing 10.25 Routes for the Microposts resource.

config/routes.rb

SampleApp::Application.routes.draw do

resources :users

resources :sessions, only: [:new, :create, :destroy]

resources :microposts, only: [:create, :destroy]

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

456 Chapter 10: User Microposts

Table 10.2 RESTful routes provided by the Microposts resource in Listing 10.25.

HTTP request URI Action Purpose

POST /microposts create create a new micropost

DELETE /microposts/1 destroy delete micropost with id 1

10.3.1 Access Control

We begin our development of the Microposts resource with some access control in the

Microposts controller. The idea is simple: Both the create and destroy actions should

require users to be signed in. The RSpec code to test for this appears in Listing 10.26.

(We’ll test for and add a third protection—ensuring that only a micropost’s user can

destroy it—in Section 10.3.4.)

Listing 10.26 Access control tests for microposts.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "authorization" do

describe "for non-signed-in users" do

let(:user) { FactoryGirl.create(:user) }

.

.

.

describe "in the Microposts controller" do

describe "submitting to the create action" do

before { post microposts path }

specify { response.should redirect to(signin path) }

end

describe "submitting to the destroy action" do

before do

micropost = FactoryGirl.create(:micropost)

delete micropost path(micropost)

end

specify { response.should redirect to(signin path) }

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 457

end

end

.

.

.

end

end

end

Rather than using the (yet-to-be-built) web interface for microposts, the code

in Listing 10.26 operates at the level of the individual micropost actions, a strat-

egy we first saw in Listing 9.14. In this case, a non-signed-in user is redirected

upon submitting a POST request to /microposts (post microposts_path, which

hits the create action) or submitting a DELETE request to /microposts/1 (delete

micropost_path(micropost), which hits the destroy action).

Writing the application code needed to get the tests in Listing 10.26 to pass requires

a little refactoring first. Recall from Section 9.2.1 that we enforced the signin requirement

using a before filter that called the signed_in_user method (Listing 9.12). At the

time, we only needed that method in the Users controller, but now we find that we

need it in the Microposts controller as well, so we’ll move it into the Sessions helper, as

shown in Listing 10.27.8

Listing 10.27 Moving the signed_in_user method into the Sessions helper.

app/helpers/sessions_helper.rb

module SessionsHelper

.

.

.

def current user?(user)

user == current user

end

def signed in user

unless signed in?

store location

redirect to signin path, notice: "Please sign in."

8. We noted in Section 8.2.1 that helper methods are available only in views by default, but we arranged for
the Sessions helper methods to be available in the controllers as well by adding include SessionsHelper to
the Application controller (Listing 8.14).

www.it-ebooks.info

http://www.it-ebooks.info/

458 Chapter 10: User Microposts

end

end

.

.

.

end

To avoid code repetition, you should also remove signed_in_user from the Users

controller at this time.

With the code in Listing 10.27, the signed_in_user method is now available in

the Microposts controller, which means that we can restrict access to the create and

destroy actions with the before filter shown in Listing 10.28. (Since we didn’t generate

it at the command line, you will have to create the Microposts controller file by hand.)

Listing 10.28 Adding authentication to the Microposts controller actions.

app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before filter :signed in user

def create

end

def destroy

end

end

Note that we haven’t restricted the actions the before filter applies to since it applies

to them both by default. If we were to add, say, an index action accessible even to

non-signed-in users, we would need to specify the protected actions explicitly:

class MicropostsController < ApplicationController

before filter :signed in user, only: [:create, :destroy]

def index

end

def create

end

def destroy

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 459

At this point, the tests should pass:

$ bundle exec rspec spec/requests/authentication pages spec.rb

10.3.2 Creating Microposts

In Chapter 7, we implemented user signup by making an HTML form that issued an

HTTP POST request to the create action in the Users controller. The implementation

of micropost creation is similar; the main difference is that, rather than using a separate

page at /microposts/new, we will (following Twitter’s convention) put the form on the

Home page itself (i.e., the root path /), as mocked up in Figure 10.10.

When we last left the Home page, it appeared as in Figure 5.6—that is, it had

a ‘‘Sign up now!’’ button in the middle. Since a micropost creation form only makes

Figure 10.10 A mockup of the Home page with a form for creating microposts.

www.it-ebooks.info

http://www.it-ebooks.info/

460 Chapter 10: User Microposts

sense in the context of a particular signed-in user, one goal of this section will be to

serve different versions of the Home page depending on a visitor’s signin status. We’ll

implement this in Listing 10.31 below, but we can still write the tests now. As with the

Users resource, we’ll use an integration test:

$ rails generate integration test micropost pages

The micropost creation tests then parallel those for user creation from Listing 7.16;

the result appears in Listing 10.29.

Listing 10.29 Tests for creating microposts.

spec/requests/micropost_pages_spec.rb

require 'spec helper'

describe "Micropost pages" do

subject { page }

let(:user) { FactoryGirl.create(:user) }

before { sign in user }

describe "micropost creation" do

before { visit root path }

describe "with invalid information" do

it "should not create a micropost" do

expect { click button "Post" }.should not change(Micropost, :count)

end

describe "error messages" do

before { click button "Post" }

it { should have content('error') }

end

end

describe "with valid information" do

before { fill in 'micropost content', with: "Lorem ipsum" }

it "should create a micropost" do

expect { click button "Post" }.should change(Micropost, :count).by(1)

end

end

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 461

We’ll start with the create action for microposts, which is similar to its user ana-

logue (Listing 7.25); the principal difference lies in using the user/micropost association

to build the new micropost, as seen in Listing 10.30.

Listing 10.30 The Microposts controller create action.

app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before filter :signed in user

def create

@micropost = current user.microposts.build(params[:micropost])

if @micropost.save

flash[:success] = "Micropost created!"

redirect to root path

else

render 'static pages/home'

end

end

def destroy

end

end

To build a form for creating microposts, we use the code in Listing 10.31, which

serves up different HTML based on whether the site visitor is signed in or not.

Listing 10.31 Adding microposts creation to the Home page (/).

app/views/static_pages/home.html.erb

<% if signed in? %>

<div class="row">

<aside class="span4">

<section>

<%= render 'shared/user info' %>

</section>

<section>

<%= render 'shared/micropost form' %>

</section>

</aside>

</div>

<% else %>

<div class="center hero-unit">

<h1>Welcome to the Sample App</h1>

www.it-ebooks.info

http://www.it-ebooks.info/

462 Chapter 10: User Microposts

<h2>

This is the home page for the

Ruby on Rails Tutorial

sample application.

</h2>

<%= link to "Sign up now!", signup path,

class: "btn btn-large btn-primary" %>

</div>

<%= link to image tag("rails.png", alt: "Rails"), 'http://rubyonrails.org/' %>

<% end %>

Having so much code in each branch of the if-else conditional is a bit messy, and

cleaning it up using partials is left as an exercise (Section 10.5). Filling in the necessary

partials from Listing 10.31 isn’t an exercise, though; we fill in the new Home page

sidebar in Listing 10.32 and the micropost form partial in Listing 10.33.

Listing 10.32 The partial for the user info sidebar.

app/views/shared/_user_info.html.erb

<a href="<%= user path(current user) %>">

<%= gravatar for current user, size: 52 %>

<h1>

<%= current user.name %>

</h1>

<%= link to "view my profile", current user %>

<%= pluralize(current user.microposts.count, "micropost") %>

As in Listing 9.25, the code in Listing 10.32 uses the version of the gravatar_for

helper defined in Listing 7.29.

Note that, as in the profile sidebar (Listing 10.20), the user info in Listing 10.32

displays the total number of microposts for the user. There’s a slight difference in the

display, though; in the profile sidebar, ‘‘Microposts’’ is a label, and showing ‘‘Microposts

(1)’’ makes sense. In the present case, though, saying ‘‘1 microposts’’ is ungrammatical,

so we arrange to display ‘‘1 micropost’’ (but ‘‘2 microposts’’) using pluralize.

We next define the form for creating microposts (Listing 10.33), which is similar

to the signup form in Listing 7.17.

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 463

Listing 10.33 The form partial for creating microposts.

app/views/shared/_micropost_form.html.erb

<%= form for(@micropost) do |f| %>

<%= render 'shared/error messages', object: f.object %>

<div class="field">

<%= f.text area :content, placeholder: "Compose new micropost..." %>

</div>

<%= f.submit "Post", class: "btn btn-large btn-primary" %>

<% end %>

We need to make two changes before the form in Listing 10.33 will work. First, we

need to define @micropost, which (as before) we do through the association:

@micropost = current user.microposts.build

The result appears in Listing 10.34.

Listing 10.34 Adding a micropost instance variable to the home action.

app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

@micropost = current user.microposts.build if signed in?

end

.

.

.

end

The code in Listing 10.34 has the advantage that it will break the test suite if we forget

to require the user to sign in.

The second change needed to get Listing 10.33 to work is to redefine the error

messages partial so that

<%= render 'shared/error messages', object: f.object %>

works. You may recall from Listing 7.22 that the error messages partial references the

@user variable explicitly, but in the present case we have an @micropost variable

instead. We should define an error messages partial that works regardless of the kind of

www.it-ebooks.info

http://www.it-ebooks.info/

464 Chapter 10: User Microposts

object passed to it. Happily, the form variable f can access the associated object through

f.object, so that in

form for(@user) do |f|

f.object is @user, and in

form for(@micropost) do |f|

f.object is @micropost.

To pass the object to the partial, we use a hash with value equal to the object and

key equal to the desired name of the variable in the partial, which is what this code

accomplishes:

<%= render 'shared/error messages', object: f.object %>

In other words, object: f.object creates a variable called object in the error_mes-

sages partial. We can use this object to construct a customized error message, as shown

in Listing 10.35.

Listing 10.35 Updating the error-messages partial from Listing 7.23 to work with other objects.

app/views/shared/_error_messages.html.erb

<% if object.errors.any? %>

<div id="error explanation">

<div class="alert alert-error">

The form contains <%= pluralize(object.errors.count, "error") %>.

</div>

<% object.errors.full messages.each do |msg| %>

* <%= msg %>

<% end %>

</div>

<% end %>

As this point, the tests in Listing 10.29 should be passing:

$ bundle exec rspec spec/requests/micropost pages spec.rb

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 465

Unfortunately, the User request spec is now broken because the signup and edit forms

use the old version of the error messages partial. To fix them, we’ll update them with

the more general version, as shown in Listing 10.36 and Listing 10.37. (Note: Your

code will differ if you implemented Listing 9.50 and Listing 9.51 from the exercises in

Section 9.6. Mutatis mutandis.)

Listing 10.36 Updating the rendering of user signup errors.

app/views/users/new.html.erb

<% provide(:title, 'Sign up') %>

<h1>Sign up</h1>

<%= form for(@user) do |f| %>

<%= render 'shared/error messages', object: f.object %>

.

.

.

<% end %>

Listing 10.37 Updating the errors for editing users.

app/views/users/edit.html.erb

<% provide(:title, "Edit user") %>

<h1>Update your profile</h1>

<%= form for(@user) do |f| %>

<%= render 'shared/error messages', object: f.object %>

.

.

.

<% end %>

<%= gravatar for(@user) %>

change

At this point, all the tests should be passing:

$ bundle exec rspec spec/

Additionally, all the HTML in this section should render properly, showing the form as

in Figure 10.11, and a form with a submission error as in Figure 10.12. You are invited

www.it-ebooks.info

http://www.it-ebooks.info/

466 Chapter 10: User Microposts

Figure 10.11 The Home page (/) with a new micropost form.

Figure 10.12 The Home page with form errors.

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 467

at this point to create a new post for yourself and verify that everything is working—but

you should probably wait until after Section 10.3.3.

10.3.3 A Proto-feed

The comment at the end of Section 10.3.2 alluded to a problem: The current Home

page doesn’t display any microposts. If you like, you can verify that the form shown

in Figure 10.11 is working by submitting a valid entry and then navigating to the

profile page to see the post, but that’s rather cumbersome. It would be far better to have

a feed of microposts that includes the user’s own posts, as mocked up in Figure 10.13.

(In Chapter 11, we’ll generalize this feed to include the microposts of users being

followed by the current user.)

Figure 10.13 A mockup of the Home page with a proto-feed.

www.it-ebooks.info

http://www.it-ebooks.info/

468 Chapter 10: User Microposts

Since each user should have a feed, we are led naturally to a feed method in

the User model. Eventually, we will test that the feed returns the microposts of the

users being followed, but for now we’ll just test that the feed method includes the

current user’s microposts but excludes the posts of a different user. We can express these

requirements in code with Listing 10.38.

Listing 10.38 Tests for the (proto-)status feed.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

it { should respond to(:microposts) }

it { should respond to(:feed) }

.

.

.

describe "micropost associations" do

before { @user.save }

let!(:older micropost) do

FactoryGirl.create(:micropost, user: @user, created at: 1.day.ago)

end

let!(:newer micropost) do

FactoryGirl.create(:micropost, user: @user, created at: 1.hour.ago)

end

.

.

.

describe "status" do

let(:unfollowed post) do

FactoryGirl.create(:micropost, user: FactoryGirl.create(:user))

end

its(:feed) { should include(newer micropost) }

its(:feed) { should include(older micropost) }

its(:feed) { should not include(unfollowed post) }

end

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 469

These tests introduce (via the RSpec boolean convention) the array include? method,

which simply checks if an array includes the given element:9

$ rails console

>> a = [1, "foo", :bar]

>> a.include?("foo")

=> true

>> a.include?(:bar)

=> true

>> a.include?("baz")

=> false

This example shows just how flexible the RSpec boolean convention is; even though

include is already a Ruby keyword (used to include a module, as seen in, e.g.,

Listing 8.14), in this context RSpec correctly guesses that we want to test array

inclusion.

We can arrange for an appropriate micropost feed method by selecting all the

microposts with user_id equal to the current user’s id, which we accomplish using the

where method on the Micropost model, as shown in Listing 10.39.10

Listing 10.39 A preliminary implementation for the micropost status feed.

app/models/user.rb

class User < ActiveRecord::Base

.

.

.

def feed

This is preliminary. See "Following users" for the full implementation.

Micropost.where("user id = ?", id)

end

.

.

.

end

9. Learning about methods such as include? is one reason why, as noted in Section 1.1.1, I recommend
reading a pure Ruby book after finishing this one.

10. See the Rails Guide on the Active Record Query Interface for more on where and the like.

www.it-ebooks.info

http://www.it-ebooks.info/

470 Chapter 10: User Microposts

The question mark in

Micropost.where("user id = ?", id)

ensures that id is properly escaped before being included in the underlying SQL query,

thereby avoiding a serious security hole called SQL injection. The id attribute here is

just an integer, so there is no danger in this case, but always escaping variables injected

into SQL statements is a good habit to cultivate.

Alert readers might note at this point that the code in Listing 10.39 is essentially

equivalent to writing

def feed

microposts

end

We’ve used the code in Listing 10.39 instead because it generalizes much more naturally

to the full status feed needed in Chapter 11.

To test the display of the status feed, we first create a couple of microposts and then

verify that a list element (li) appears on the page for each one (Listing 10.40).

Listing 10.40 A test for rendering the feed on the Home page.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "Static pages" do

subject { page }

describe "Home page" do

.

.

.

describe "for signed-in users" do

let(:user) { FactoryGirl.create(:user) }

before do

FactoryGirl.create(:micropost, user: user, content: "Lorem ipsum")

FactoryGirl.create(:micropost, user: user, content: "Dolor sit amet")

sign in user

visit root path

end

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 471

it "should render the user's feed" do

user.feed.each do |item|

page.should have selector("li##{item.id}", text: item.content)

end

end

end

end

.

.

.

end

Listing 10.40 assumes that each feed item has a unique CSS id, so that

page.should have selector("li##{item.id}", text: item.content)

will generate a match for each item. (Note that the first # in li##{item.id} is

Capybara syntax for a CSS id, whereas the second # is the beginning of a Ruby string

interpolation #{}.)

To use the feed in the sample application, we add an @feed_items instance

variable for the current user’s (paginated) feed, as in Listing 10.41, and then add a feed

partial (Listing 10.42) to the Home page (Listing 10.44). (Adding tests for pagination

is left as an exercise; see Section 10.5.)

Listing 10.41 Adding a feed instance variable to the home action.

app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

if signed in?

@micropost = current user.microposts.build

@feed items = current user.feed.paginate(page: params[:page])

end

end

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

472 Chapter 10: User Microposts

Listing 10.42 The status feed partial.

app/views/shared/_feed.html.erb

<% if @feed items.any? %>

<ol class="microposts">

<%= render partial: 'shared/feed item', collection: @feed items %>

<%= will paginate @feed items %>

<% end %>

The status feed partial defers the feed item rendering to a feed item partial using

the code

<%= render partial: 'shared/feed item', collection: @feed items %>

Here we pass a :collection parameter with the feed items, which causes render to use

the given partial (’feed_item’ in this case) to render each item in the collection. (We

have omitted the :partial parameter in previous renderings, writing, e.g., render

’shared/micropost’, but with a :collection parameter that syntax doesn’t work.)

The feed item partial itself appears in Listing 10.43.

Listing 10.43 A partial for a single feed item.

app/views/shared/_feed_item.html.erb

<li id="<%= feed item.id %>">

<%= link to gravatar for(feed item.user), feed item.user %>

<%= link to feed item.user.name, feed item.user %>

<%= feed item.content %>

Posted <%= time ago in words(feed item.created at) %> ago.

Listing 10.43 also adds a CSS id for each feed item using

<li id="<%= feed item.id %>">

as required by the test in Listing 10.40.

We can then add the feed to the Home page by rendering the feed partial as

usual (Listing 10.44). The result is a display of the feed on the Home page, as required

(Figure 10.14).

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 473

Listing 10.44 Adding a status feed to the Home page.

app/views/static_pages/home.html.erb

<% if signed in? %>

<div class="row">

.

.

.

<div class="span8">

<h3>Micropost Feed</h3>

<%= render 'shared/feed' %>

</div>

</div>

<% else %>

.

.

.

<% end %>

Figure 10.14 The Home page (/) with a proto-feed.

www.it-ebooks.info

http://www.it-ebooks.info/

474 Chapter 10: User Microposts

Figure 10.15 The Home page after creating a new micropost.

At this point, creating a new micropost works as expected, as seen in Figure 10.15.

There is one subtlety, though: on failed micropost submission, the Home page expects

an @feed_items instance variable, so failed submissions currently break (as you should

be able to verify by running your test suite). The easiest solution is to suppress the feed

entirely by assigning it an empty array, as shown in Listing 10.45.11

Listing 10.45 Adding an (empty) @feed_items instance variable to the create action.

app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

.

.

.

def create

@micropost = current user.microposts.build(params[:micropost])

if @micropost.save

11. Unfortunately, returning a paginated feed doesn’t work in this case. Implement it and click on a pagination
link to see why.

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 475

flash[:success] = "Micropost created!"

redirect to root path

else

@feed items = []

render 'static pages/home'

end

end

.

.

.

end

At this point, the proto-feed should be working, and the test suite should pass:

$ bundle exec rspec spec/

10.3.4 Destroying Microposts

The last piece of functionality to add to the Microposts resource is the ability to destroy

posts. As with user deletion (Section 9.4.2), we accomplish this with ‘‘delete’’ links,

as mocked up in Figure 10.16. Unlike that case, which restricted user destruction to

admin users, the delete links will work only for microposts created by the current user.

Our first step is to add a delete link to the micropost partial as in Listing 10.43, and

while we’re at it we’ll add a similar link to the feed item partial from Listing 10.43. The

results appear in Listing 10.46 and Listing 10.47. (The two cases are almost identical,

and eliminating this duplication is left as an exercise (Section 10.5).)

Listing 10.46 Adding a delete link to the micropost partial.

app/views/microposts/_micropost.html.erb

<%= micropost.content %>

Posted <%= time ago in words(micropost.created at) %> ago.

<% if current user?(micropost.user) %>

<%= link to "delete", micropost, method: :delete,

confirm: "You sure?",

title: micropost.content %>

<% end %>

www.it-ebooks.info

http://www.it-ebooks.info/

476 Chapter 10: User Microposts

Figure 10.16 A mockup of the proto-feed with micropost delete links.

Listing 10.47 The feed item partial with added delete link.

app/views/shared/_feed_item.html.erb

<li id="<%= feed item.id %>">

<%= link to gravatar for(feed item.user), feed item.user %>

<%= link to feed item.user.name, feed item.user %>

<%= feed item.content %>

Posted <%= time ago in words(feed item.created at) %> ago.

<% if current user?(feed item.user) %>

<%= link to "delete", feed item, method: :delete,

confirm: "You sure?",

title: feed item.content %>

<% end %>

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Manipulating Microposts 477

The test for destroying microposts uses Capybara to click the ‘‘delete’’ link and

expects the Micropost count to decrease by 1 (Listing 10.48).

Listing 10.48 Tests for the Microposts controller destroy action.

spec/requests/micropost_pages_spec.rb

require 'spec helper'

describe "Micropost pages" do

.

.

.

describe "micropost destruction" do

before { FactoryGirl.create(:micropost, user: user) }

describe "as correct user" do

before { visit root path }

it "should delete a micropost" do

expect { click link "delete" }.should change(Micropost, :count).by(-1)

end

end

end

end

The application code is also analogous to the user case in Listing 9.48; the main

difference is that, rather than using an admin_user before filter, in the case of

microposts we have a correct_user before filter to check that the current user actually

has a micropost with the given id. The code appears in Listing 10.49, and the result of

destroying the second-most-recent post appears in Figure 10.17.

Listing 10.49 The Microposts controller destroy action.

app/controllers/microposts_controller.rb

class MicropostsController < ApplicationController

before filter :signed in user, only: [:create, :destroy]

before filter :correct user, only: :destroy

.

.

.

def destroy

@micropost.destroy

redirect back or root path

end

www.it-ebooks.info

http://www.it-ebooks.info/

478 Chapter 10: User Microposts

private

def correct user

@micropost = current user.microposts.find by id(params[:id])

redirect to root path if @micropost.nil?

end

end

In the correct_user before filter, note that we find microposts through the association:

current user.microposts.find by id(params[:id])

This automatically ensures that we find only microposts belonging to the current user.

In this case, we use find_by_id instead of find because the latter raises an exception

when the micropost doesn’t exist instead of returning nil. By the way, if you’re

comfortable with exceptions in Ruby, you could also write the correct_user filter

like this:

def correct user

@micropost = current user.microposts.find(params[:id])

rescue

redirect to root path

end

It might occur to you that we could implement the correct_user filter using the

Micropost model directly, like this:

@micropost = Micropost.find by id(params[:id])

redirect to root path unless current user?(@micropost.user)

This would be equivalent to the code in Listing 10.49, but, as explained by Wolfram

Arnold in the blog post Access Control 101 in Rails and the Citibank Hack, for security

purposes it is a good practice always to run lookups through the association.

With the code in this section, our Micropost model and interface are complete,

and the test suite should pass:

$ bundle exec rspec spec/

www.it-ebooks.info

http://www.it-ebooks.info/

10.4 Conclusion 479

Figure 10.17 The user Home page after deleting the second-most-recent micropost.

10.4 Conclusion

With the addition of the Microposts resource, we are nearly finished with our sample

application. All that remains is to add a social layer by letting users follow each other.

We’ll learn how to model such user relationships and see the implications for the status

feed in Chapter 11.

Before proceeding, be sure to commit and merge your changes if you’re using Git

for version control:

$ git add .

$ git commit -m "Add user microposts"

$ git checkout master

$ git merge user-microposts

$ git push

www.it-ebooks.info

http://www.it-ebooks.info/

480 Chapter 10: User Microposts

You can also push the app up to Heroku at this point. Because the data model has

changed through the addition of the microposts table, you will also need to migrate

the production database:

$ git push heroku

$ heroku pg:reset SHARED DATABASE --confirm <name-heroku-gave-to-your-app>

$ heroku run rake db:migrate

$ heroku run rake db:populate

10.5 Exercises

We’ve covered enough material now that there is a combinatorial explosion of possible

extensions to the application. Below are just a few of the many possibilities.

1. Add tests for the sidebar micropost counts (including proper pluralization).

2. Add tests for micropost pagination.

Figure 10.18 The (broken) site layout with a particularly long word.

www.it-ebooks.info

http://www.it-ebooks.info/

10.5 Exercises 481

3. Refactor the Home page to use separate partials for the two branches of the if-else

statement.

4. Write a test to make sure delete links do not appear for microposts not created by

the current user.

5. Using partials, eliminate the duplication in the delete links from Listing 10.46 and

Listing 10.47.

6. Very long words currently break our layout, as shown in Figure 10.18. Fix this

problem using the wrap helper defined in Listing 10.50. Note the use of the raw

method to prevent Rails from escaping the resulting HTML, together with the

sanitize method needed to prevent cross-site scripting. This code also uses the

strange-looking but useful ternary operator (Box 10.1).

7. (challenging) Add a JavaScript display to the Home page to count down from 140

characters.

Listing 10.50 A helper to wrap long words.

app/helpers/microposts_helper.rb

module MicropostsHelper

def wrap(content)

sanitize(raw(content.split.map{ |s| wrap long string(s) }.join(' ')))

end

private

def wrap long string(text, max width = 30)

zero width space = "​"

regex = /.{1,#{max width}}/

(text.length < max width) ? text :

text.scan(regex).join(zero width space)

end

end

Box 10.1 Ten Types of People

There are ten kinds of people in the world: Those who like the ternary operator,

those who don’t, and those who don’t know about it. (If you happen to be in the

third category, soon you won’t be any longer.)

www.it-ebooks.info

http://www.it-ebooks.info/

482 Chapter 10: User Microposts

When you do a lot of programming, you quickly learn that one of the most

common bits of control flow goes something like this:

if boolean?

do one thing

else

do something else end

Ruby, like many other languages (including C/C++, Perl, PHP, and Java), allows you

to replace this with a much more compact expression using the ternary operator (so

called because it consists of three parts):

boolean? ? do one thing : do something else

You can also use the ternary operator to replace assignment:

if boolean?

var = foo

else

var = bar

end

becomes

var = boolean? ? foo : bar

Another common use is in a function’s return value:

def foo

do stuff

boolean? ? "bar" : "baz" end

Since Ruby implicitly returns the value of the last expression in a function, here the

foo method returns "bar" or "baz" depending on the value of boolean?. It is

this final construction that appears in Listing 10.50.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Following Users

In this chapter, we will complete the core sample application by adding a social layer

that allows users to follow (and unfollow) other users, resulting in each user’s Home

page displaying a status feed of the followed users’ microposts. We will also make views

to display both a user’s followers and the users each user is following. We will learn

how to model relationships between users in Section 11.1, then make the web interface

in Section 11.2 (including an introduction to Ajax). Finally, we’ll end by developing a

fully functional status feed in Section 11.3.

This final chapter contains some of the most challenging material in the tutorial,

including some Ruby/SQL trickery to make the status feed. Through these examples,

you will see how Rails can handle even rather intricate data models, which should

serve you well as you go on to develop your own applications with their own specific

requirements. To help with the transition from tutorial to independent development,

Section 11.4 contains suggested extensions to the core sample application, along with

pointers to more advanced resources.

As usual, Git users should create a new topic branch:

$ git checkout -b following-users

Because the material in this chapter is particularly challenging, before writing any

code, we’ll pause for a moment and take a tour of the interface. As in previous chapters,

at this early stage we’ll represent pages using mockups.1 The full page flow runs as

follows: A user (John Calvin) starts at his profile page (Figure 11.1) and navigates to

1. The photographs in the mockup tour are from www.flickr.com/photos/john lustig/2518452221 and
www.flickr.com/photos/30775272@N05/2884963755.

483

www.it-ebooks.info

www.flickr.com/photos/john_lustig/2518452221
www.flickr.com/photos/30775272@N05/2884963755
http://www.it-ebooks.info/

484 Chapter 11: Following Users

Figure 11.1 The current user’s profile.

the Users page (Figure 11.2) to select a user to follow. Calvin navigates to the profile

of a second user, Thomas Hobbes (Figure 11.3), clicking on the ‘‘Follow’’ button to

follow that user. This changes the ‘‘Follow’’ button to ‘‘Unfollow’’ and increments

Hobbes’s ‘‘followers’’ count by one (Figure 11.4). Navigating to his Home page, Calvin

now sees an incremented ‘‘following’’ count and finds Hobbes’s microposts in his

status feed (Figure 11.5). The rest of this chapter is dedicated to making this page flow

actually work.

11.1 The Relationship Model

Our first step in implementing following users is to construct a data model, which is not

as straightforward as it seems. Naı̈vely, it seems that a has_many relationship should

do: A user has_many followed users and has_many followers. As we will see, there is a

problem with this approach, and we’ll learn how to fix it using has_many through.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 The Relationship Model 485

Figure 11.2 Finding a user to follow.

It’s likely that many of the ideas in this section won’t seem obvious at first, and it may

take a while for the rather complicated data model to sink in. If you find yourself getting

confused, try pushing forward to the end, then read the section a second time through

to see if things are clearer.

11.1.1 A Problem with the Data Model (and a Solution)

As a first step toward constructing a data model for following users, let’s examine a

typical case. For instance, consider a user who follows a second user: We could say that,

e.g., Calvin is following Hobbes, and Hobbes is followed by Calvin, so that Calvin is

the follower and Hobbes is followed. Using Rails’ default pluralization convention, the

set of all users following a given user is that user’s followers, and user.followers is

an array of those users. Unfortunately, the reverse doesn’t work: By default, the set of

all followed users would be called the followeds, which is ungrammatical and clumsy.

www.it-ebooks.info

http://www.it-ebooks.info/

486 Chapter 11: Following Users

Figure 11.3 The profile of a user to follow, with a follow button.

We could call them following, but that’s ambiguous: In normal English, a ‘‘following’’

is the set of people following you, i.e., your followers—exactly the opposite of the

intended meaning. Although we will use ‘‘following’’ as a label, as in ‘‘50 following,

75 followers,’’ we’ll use ‘‘followed users’’ for the users themselves, with a corresponding

user.followed_users array.2

This discussion suggests modeling the followed users as in Figure 11.6, with a

followed_users table and a has_many association. Since user.followed_users

should be an array of users, each row of the followed_users table would need to be

a user, as identified by the followed_id, together with the follower_id to establish

2. The first edition of this book used the user.following terminology, which even I found confusing at
times. Thanks to reader Cosmo Lee for convincing me to change the terminology and for offering suggestions
on how to make it clearer. (I didn’t follow his exact advice, though, so if it’s still confusing he bears none of
the blame.)

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 The Relationship Model 487

Figure 11.4 A profile with an unfollow button and incremented followers count.

the association.3 In addition, since each row is a user, we would need to include the

user’s other attributes, including the name, password, etc.

The problem with the data model in Figure 11.6 is that it is terribly redundant:

Each row contains not only each followed user’s id, but all their other information as

well—all of which are already in the users table. Even worse, to model user followers we

would need a separate, similarly redundant followers table. Finally, this data model is

a maintainability nightmare: Each time a user changed (say) his name, we would need

to update not just the user’s record in the users table but also every row containing that

user in both the followed_users and followers tables.

The problem here is that we are missing an underlying abstraction. One way to

find the proper abstraction is to consider how we might implement the act of following

3. For simplicity, Figure 11.6 suppresses the followed_users table’s id column.

www.it-ebooks.info

http://www.it-ebooks.info/

488 Chapter 11: Following Users

Figure 11.5 The Home page with status feed and incremented following count.

in a web application. Recall from Section 7.1.2 that the REST architecture involves

resources that are created and destroyed. This leads us to ask two questions: When a user

follows another user, what is being created? When a user unfollows another user, what

is being destroyed?

Figure 11.6 A naı̈ve implementation of user following.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 The Relationship Model 489

Upon reflection, we see that in these cases the application should either create or

destroy a relationship between two users. A user then has_many :relationships,

and has many followed_users (or followers) through these relationships. Indeed,

Figure 11.6 already contains most of the implementation: Since each followed user

is uniquely identified by followed_id, we could convert followed_users to a

relationships table, omit the user details and use followed_id to retrieve the

followed user from the users table. Moreover, by considering reverse relationships, we

could use the follower_id column to extract an array of user’s followers.

To make a followed_users array of users, it would be possible to pull out an

array of followed_id attributes and then find the user for each one. As you might

expect, though, Rails has a way to make this procedure more convenient, and the

relevant technique is known as has_many through. As we will see in Section 11.1.4,

Rails allows us to say that a user is following many users through the relationships table,

using the succinct code

has many :followed users, through: :relationships, source: "followed id"

This code automatically populates user.followed_users with an array of followed

users. A diagram of the data model appears in Figure 11.7.

Figure 11.7 A model of followed users through user relationships.

www.it-ebooks.info

http://www.it-ebooks.info/

490 Chapter 11: Following Users

To get started with the implementation, we first generate a Relationship model as

follows:

$ rails generate model Relationship follower id:integer followed id:integer

Since we will be finding relationships by follower_id and by followed_id, we

should add an index on each column for efficiency, as shown in Listing 11.1.

Listing 11.1 Adding indices for the relationships table.

db/migrate/[timestamp]_create_relationships.rb

class CreateRelationships < ActiveRecord::Migration

def change

create table :relationships do |t|

t.integer :follower id

t.integer :followed id

t.timestamps

end

add index :relationships, :follower id

add index :relationships, :followed id

add index :relationships, [:follower id, :followed id], unique: true

end

end

Listing 11.1 also includes a composite index that enforces uniqueness of pairs of

(follower_id, followed_id), so that a user can’t follow another user more than once:

add index :relationships, [:follower id, :followed id], unique: true

(Compare to the email uniqueness index from Listing 6.22.) As we’ll see starting in

Section 11.1.4, our user interface won’t allow this to happen, but adding a unique

index arranges to raise an error if a user tries to create duplicate relationships anyway

(using, e.g., a command-line tool such as curl). We could also add a uniqueness

validation to the Relationship model, but because it is always an error to create duplicate

relationships, the unique index is sufficient for our purposes.

To create the relationships table, we migrate the database and prepare the test

database as usual:

$ bundle exec rake db:migrate

$ bundle exec rake db:test:prepare

The result is the Relationship data model shown in Figure 11.8.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 The Relationship Model 491

Figure 11.8 The Relationship data model.

11.1.2 User/Relationship Associations

Before implementing followed users and followers, we first need to establish the

association between users and relationships. A user has_many relationships, and—since

relationships involve two users—a relationship belongs_to both a follower and a

followed user.

As with microposts in Section 10.1.3, we will create new relationships using the

user association, with code such as

user.relationships.build(followed id: ...)

We start with some tests, shown in Listing 11.2, which make a relationship variable,

checks that it is valid, and ensures that the follower_id isn’t accessible. (If the test for

accessible attributes doesn’t fail, be sure that your application.rb has been updated

in accordance with Listing 10.6.)

Listing 11.2 Testing Relationship creation and attributes.

spec/models/relationship_spec.rb

require 'spec helper'

describe Relationship do

let(:follower) { FactoryGirl.create(:user) }

let(:followed) { FactoryGirl.create(:user) }

let(:relationship) { follower.relationships.build(followed id: followed.id) }

subject { relationship }

it { should be valid }

describe "accessible attributes" do

it "should not allow access to follower id" do

expect do

www.it-ebooks.info

http://www.it-ebooks.info/

492 Chapter 11: Following Users

Relationship.new(follower id: follower.id)

end.should raise error(ActiveModel::MassAssignmentSecurity::Error)

end

end

end

Note that, unlike the tests for the User and Micropost models, which use @user and

@micropost, respectively, Listing 11.2 uses let in preference to an instance variable.

The differences rarely matter,4 but I consider let to be cleaner than using an instance

variable. We originally used instance variables both because instance variables are

important to introduce early and because let is a little more advanced.

We should also test the User model for a relationships attribute, as shown in

Listing 11.3.

Listing 11.3 Testing for the user.relationships attribute.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

it { should respond to(:feed) }

it { should respond to(:relationships) }

.

.

.

end

At this point, you might expect application code as in Section 10.1.3, and it’s

similar, but there is one critical difference: In the case of the Micropost model, we

could say

class Micropost < ActiveRecord::Base

belongs to :user

.

.

.

end

4. See the discussion on when to use let at Stack Overflow for more information.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 The Relationship Model 493

and

class User < ActiveRecord::Base

has many :microposts

.

.

.

end

because the microposts table has a user_id attribute to identify the user (Section

10.1.1). An id used in this manner to connect two database tables is known as a

foreign key, and when the foreign key for a User model object is user_id, Rails

infers the association automatically: By default, Rails expects a foreign key of the form

<class>_id, where <class> is the lowercase version of the class name.5 In the present

case, although we are still dealing with users, they are now identified with the foreign

key follower_id, so we have to tell that to Rails, as shown in Listing 11.4.6

Listing 11.4 Implementing the user/relationships has_many association.

app/models/user.rb

class User < ActiveRecord::Base

.

.

.

has many :microposts, dependent: :destroy

has many :relationships, foreign key: "follower id", dependent: :destroy

.

.

.

end

Since destroying a user should also destroy that user’s relationships, we’ve gone

ahead and added dependent: :destroy to the association; writing a test for this is

left as an exercise (Section 11.5).

As with the Micropost model, the Relationship model has a belongs_to relation-

ship with users; in this case, a relationship object belongs to both a follower and a

followed user, which we test for in Listing 11.5.

5. Technically, Rails uses the underscore method to convert the class name to an id. For example,
"FooBar".underscore is "foo_bar", so the foreign key for a FooBar object would be foo_bar_id.
(Incidentally, the inverse of underscore is camelize, which converts "camel_case" to "CamelCase".)

6. If you’ve noticed that followed_id also identifies a user and are concerned about the asymmetric treatment
of followed and follower, you’re ahead of the game. We’ll deal with this issue in Section 11.1.5.

www.it-ebooks.info

http://www.it-ebooks.info/

494 Chapter 11: Following Users

Listing 11.5 Testing the user/relationships belongs_to association.

spec/models/relationship_spec.rb

describe Relationship do

.

.

.

describe "follower methods" do

it { should respond to(:follower) }

it { should respond to(:followed) }

its(:follower) { should == follower }

its(:followed) { should == followed }

end

end

To write the application code, we define the belongs_to relationship as usual. Rails

infers the names of the foreign keys from the corresponding symbols (i.e., follower_id

from :follower, and followed_id from :followed), but since there is neither a

Followed nor a Follower model we need to supply the class name User. The result is

shown in Listing 11.6. Note that, unlike the default generate Relationship model, in

this case only the followed_id is accessible.

Listing 11.6 Adding the belongs_to associations to the Relationship model.

app/models/relationship.rb

class Relationship < ActiveRecord::Base

attr accessible :followed id

belongs to :follower, class name: "User"

belongs to :followed, class name: "User"

end

The followed association isn’t actually needed until Section 11.1.5, but the parallel

follower/followed structure is clearer if we implement them both at the same time.

At this point, the tests in Listing 11.2 and Listing 11.3 should pass.

$ bundle exec rspec spec/

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 The Relationship Model 495

11.1.3 Validations

Before moving on, we’ll add a couple of Relationship model validations for completeness.

The tests (Listing 11.7) and application code (Listing 11.8) are straightforward.

Listing 11.7 Testing the Relationship model validations.

spec/models/relationship_spec.rb

describe Relationship do

.

.

.

describe "when followed id is not present" do

before { relationship.followed id = nil }

it { should not be valid }

end

describe "when follower id is not present" do

before { relationship.follower id = nil }

it { should not be valid }

end

end

Listing 11.8 Adding the Relationship model validations.

app/models/relationship.rb

class Relationship < ActiveRecord::Base

attr accessible :followed id

belongs to :follower, class name: "User"

belongs to :followed, class name: "User"

validates :follower id, presence: true

validates :followed id, presence: true

end

11.1.4 Followed users

We come now to the heart of the Relationship associations: followed_users and

followers. We start with followed_users, as shown Listing 11.9.

www.it-ebooks.info

http://www.it-ebooks.info/

496 Chapter 11: Following Users

Listing 11.9 A test for the user.followed_users attribute.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

it { should respond to(:relationships) }

it { should respond to(:followed users) }

.

.

.

end

The implementation uses has_many through for the first time: A user has many

following through relationships, as illustrated in Figure 11.7. By default, in a has_many

through association Rails looks for a foreign key corresponding to the singular version

of the association; in other words, code like

has many :followeds, through: :relationships

would assemble an array using the followed_id in the relationships table. But, as

noted in Section 11.1.1, user.followeds is rather awkward; far more natural is to use

‘‘followed users’’ as a plural of ‘‘followed,’’ and write instead user.followed_users

for the array of followed users. Naturally, Rails allows us to override the default, in this

case using the :source parameter (Listing 11.10), which explicitly tells Rails that the

source of the followed_users array is the set of followed ids.

Listing 11.10 Adding the User model followed_users association.

app/models/user.rb

class User < ActiveRecord::Base

.

.

.

has many :microposts, dependent: :destroy

has many :relationships, foreign key: "follower id", dependent: :destroy

has many :followed users, through: :relationships, source: :followed

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 The Relationship Model 497

To create a following relationship, we’ll introduce a follow! utility method so that

we can write user.follow!(other_user). (This follow! method should always

work, so, as with create! and save!, we indicate with an exclamation point that an

exception will be raised on failure.) We’ll also add an associated following? boolean

method to test if one user is following another.7 The tests in Listing 11.11 show how

we expect these methods to be used in practice.

Listing 11.11 Tests for some ‘‘following’’ utility methods.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

it { should respond to(:followed users) }

it { should respond to(:following?) }

it { should respond to(:follow!) }

.

.

.

describe "following" do

let(:other user) { FactoryGirl.create(:user) }

before do

@user.save

@user.follow!(other user)

end

it { should be following(other user) }

its(:followed users) { should include(other user) }

end

end

In the application code, the following? method takes in a user, called

other_user, and checks to see if a followed user with that id exists in the database; the

follow! method calls create! through the relationships association to create the

following relationship. The results appear in Listing 11.12.

7. Once you have a lot of experience modeling a particular domain, you can often guess such utility methods in
advance, and even when you can’t, you’ll often find yourself writing them to make the tests cleaner. In this case,
though, it’s OK if you wouldn’t have guessed them. Software development is usually an iterative process—you
write code until it starts getting ugly, and then you refactor it—but for brevity the tutorial presentation is
streamlined a bit.

www.it-ebooks.info

http://www.it-ebooks.info/

498 Chapter 11: Following Users

Listing 11.12 The following? and follow! utility methods.

app/models/user.rb

class User < ActiveRecord::Base

.

.

.

def feed

.

.

.

end

def following?(other user)

relationships.find by followed id(other user.id)

end

def follow!(other user)

relationships.create!(followed id: other user.id)

end

.

.

.

end

Note that in Listing 11.12 we have omitted the user itself, writing just

relationships.create!(...)

instead of the equivalent code

self.relationships.create!(...)

Whether to include the explicit self is largely a matter of taste.

Of course, users should be able to unfollow other users as well as follow them, which

leads to the somewhat predictable unfollow! method, as shown in Listing 11.13.8

8. The unfollow! method doesn’t raise an exception on failure—in fact, I don’t even know how Rails indicates
a failed destroy—but we use an exclamation point to maintain the symmetry with follow!.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 The Relationship Model 499

Listing 11.13 A test for unfollowing a user.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

it { should respond to(:follow!) }

it { should respond to(:unfollow!) }

.

.

.

describe "following" do

.

.

.

describe "and unfollowing" do

before { @user.unfollow!(other user) }

it { should not be following(other user) }

its(:followed users) { should not include(other user) }

end

end

end

The code for unfollow! is straightforward: Just find the relationship by followed id

and destroy it (Listing 11.14).

Listing 11.14 Unfollowing a user by destroying a user relationship.

app/models/user.rb

class User < ActiveRecord::Base

.

.

.

def following?(other user)

relationships.find by followed id(other user.id)

end

def follow!(other user)

relationships.create!(followed id: other user.id)

end

www.it-ebooks.info

http://www.it-ebooks.info/

500 Chapter 11: Following Users

def unfollow!(other user)

relationships.find by followed id(other user.id).destroy

end

.

.

.

end

11.1.5 Followers

The final piece of the relationships puzzle is to add a user.followers method

to go with user.followed_users. You may have noticed from Figure 11.7 that

all the information needed to extract an array of followers is already present in the

relationships table. Indeed, the technique is exactly the same as for user following,

with the roles of follower_id and followed_id reversed. This suggests that, if we

could somehow arrange for a reverse_relationships table with those two columns

reversed (Figure 11.9), we could implement user.followers with little effort.

We begin with the tests, having faith that the magic of Rails will come to the rescue

(Listing 11.15).

Figure 11.9 A model for user followers using a reverse Relationship model.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 The Relationship Model 501

Listing 11.15 Testing for reverse relationships.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

it { should respond to(:relationships) }

it { should respond to(:followed users) }

it { should respond to(:reverse relationships) }

it { should respond to(:followers) }

.

.

.

describe "following" do

.

.

.

it { should be following(other user) }

its(:followed users) { should include(other user) }

describe "followed user" do

subject { other user }

its(:followers) { should include(@user) }

end

.

.

.

end

end

Notice how we switch subjects using the subject method, replacing @user with

other_user, allowing us to test the follower relationship in a natural way:

subject { other user }

its(:followers) { should include(@user) }

As you probably suspect, we will not be making a whole database table just to

hold reverse relationships. Instead, we will exploit the underlying symmetry between

followers and followed users to simulate a reverse_relationships table by passing

www.it-ebooks.info

http://www.it-ebooks.info/

502 Chapter 11: Following Users

followed_id as the primary key. In other words, where the relationships association

uses the follower_id foreign key,

has many :relationships, foreign key: "follower id"

the reverse_relationships association uses followed_id:

has many :reverse relationships, foreign key: "followed id"

The followers association then gets built through the reverse relationships, as shown

in Listing 11.16.

Listing 11.16 Implementing user.followers using reverse relationships.

app/models/user.rb

class User < ActiveRecord::Base

.

.

.

has many :reverse relationships, foreign key: "followed id",

class name: "Relationship",

dependent: :destroy

has many :followers, through: :reverse relationships, source: :follower

.

.

.

end

(As with Listing 11.4, the test for dependent :destroy is left as an exercise

[Section 11.5].) Note that we actually have to include the class name for this asso-

ciation, i.e.,

has many :reverse relationships, foreign key: "followed id",

class name: "Relationship"

because otherwise Rails would look for a ReverseRelationship class, which doesn’t

exist.

It’s also worth noting that we could actually omit the :source key in this case,

using simply

has many :followers, through: :reverse relationships

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 503

since, in the case of a :followers attribute, Rails will singularize ‘‘followers’’ and

automatically look for the foreign key follower_id in this case. I’ve kept the

:source key to emphasize the parallel structure with the has_many :followed_users

association, but you are free to leave it off.

With the code in Listing 11.16, the following/follower associations are complete,

and all the tests should pass:

$ bundle exec rspec spec/

This section has placed rather heavy demands on your data modeling skills, and

it’s fine if it takes a while to soak in. In fact, one of the best ways to understand the

associations is to use them in the web interface, as seen in the next section.

11.2 A Web Interface for Following Users

In the introduction to this chapter, we saw a preview of the page flow for user following.

In this section, we will implement the basic interface and following/unfollowing

functionality shown in those mockups. We will also make separate pages to show

the user following and followers arrays. In Section 11.3, we’ll complete our sample

application by adding the user’s status feed.

11.2.1 Sample Following Data

As in previous chapters, we will find it convenient to use the sample data Rake task to

fill the database with sample relationships. This will allow us to design the look and feel

of the web pages first, deferring the back-end functionality until later in this section.

When we last left the sample data populator in Listing 10.23, it was getting rather

cluttered, so we begin by defining separate methods to make users and microposts, and

then add sample relationship data using a new make_relationships method. The

results are shown in Listing 11.17.

Listing 11.17 Adding following/follower relationships to the sample data.

lib/tasks/sample_data.rake

namespace :db do

desc "Fill database with sample data"

task populate: :environment do

make users

make microposts

make relationships

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

504 Chapter 11: Following Users

def make users

admin = User.create!(name: "Example User",

email: "example@railstutorial.org",

password: "foobar",

password confirmation: "foobar")

admin.toggle!(:admin)

99.times do |n|

name = Faker::Name.name

email = "example-#{n+1}@railstutorial.org"

password = "password"

User.create!(name: name,

email: email,

password: password,

password confirmation: password)

end

end

def make microposts

users = User.all(limit: 6)

50.times do

content = Faker::Lorem.sentence(5)

users.each { |user| user.microposts.create!(content: content) }

end

end

def make relationships

users = User.all

user = users.first

followed users = users[2..50]

followers = users[3..40]

followed users.each { |followed| user.follow!(followed) }

followers.each { |follower| follower.follow!(user) }

end

Here the sample relationships are created using the code

def make relationships

users = User.all

user = users.first

followed users = users[2..50]

followers = users[3..40]

followed users.each { |followed| user.follow!(followed) }

followers.each { |follower| follower.follow!(user) }

end

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 505

We somewhat arbitrarily arrange for the first user to follow users 3 through 51, then

have users 4 through 41 follow that user back. The resulting relationships will be

sufficient for developing the application interface.

To execute the code in Listing 11.17, populate the database as usual:

$ bundle exec rake db:reset

$ bundle exec rake db:populate

$ bundle exec rake db:test:prepare

11.2.2 Stats and a Follow Form

Now that our sample users have both followed user and followers arrays, we need to

update the profile page and Home page to reflect this. We’ll start by making a partial to

display the following and follower statistics on the profile and home pages. We’ll next

add a follow/unfollow form, then make dedicated pages for showing user followed users

and followers.

As noted in Section 11.1.1, the word ‘‘following’’ is ambiguous as an attribute

(where user.following could reasonably mean either the followed users or the user’s

followers), it makes sense as a label, as in ‘‘50 following.’’ Indeed, this is the label used

by Twitter itself, a usage adopted in the mockups starting in Figure 11.1 and shown in

close-up in Figure 11.10.

The stats in Figure 11.10 consist of the number of users the current user is following

and the number of followers, each of which should be a link to its respective dedicated

display page. In Chapter 5, we stubbed out such links with the dummy text ’#’, but

that was before we had much experience with routes. This time, although we’ll defer

the actual pages to Section 11.2.3, we’ll make the routes now, as seen in Listing 11.18.

This code uses the :member method inside a resources block, which we haven’t seen

before, but see if you can guess what it does. (Note: The code in Listing 11.18 should

replace the resources :users.)

Figure 11.10 A mockup of the stats partial.

www.it-ebooks.info

http://www.it-ebooks.info/

506 Chapter 11: Following Users

Listing 11.18 Adding followed_users and followers actions to the Users controller.

config/routes.rb

SampleApp::Application.routes.draw do

resources :users do

member do

get :following, :followers

end

end

.

.

.

end

You might suspect that the URIs will look like /users/1/following and /users/1/followers,

and that is exactly what the code in Listing 11.18 does. Since both pages will be showing

data, we use get to arrange for the URIs to respond to GET requests (as required by

the REST convention for such pages), and the member method means that the routes

respond to URIs containing the user id. The other possibility, collection, works

without the id, so that

resources :users do

collection do

get :tigers

end

end

would respond to the URI /users/tigers (presumably to display all the tigers in our

application). For more details on such routing options, see the Rails Guides article

entitled ‘‘Rails Routing from the Outside In.’’ A table of the routes generated by

Listing 11.18 appears in Table 11.1; note the named routes for the followed user and

followers pages, which we’ll put to use shortly. The unfortunate hybrid usage in the

‘‘following’’ route is forced by our choice to use the unambiguous ‘‘followed users’’

terminology along with the ‘‘following’’ usage from Twitter. Since the former would

lead to routes of the form followed_users_user_path, which sounds strange, we’ve

opted for the latter in the context of Table 11.1, yielding following_user_path.

Table 11.1 RESTful routes provided by the custom rules in resource in Listing 11.18.

HTTP request URI Action Named route

GET /users/1/following following following_user_path(1)

GET /users/1/followers followers followers_user_path(1)

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 507

With the routes defined, we are now in a position to make tests for the stats partial.

(We could have written the tests first, but the named routes would have been hard

to motivate without the updated routes file.) The stats partial will appear on both the

profile page and the Home page; Listing 11.19 opts to test it on the latter.

Listing 11.19 Testing the following/follower statistics on the Home page.

spec/requests/static_pages_spec.rb

require 'spec helper'

describe "StaticPages" do

.

.

.

describe "Home page" do

.

.

.

describe "for signed-in users" do

let(:user) { FactoryGirl.create(:user) }

before do

FactoryGirl.create(:micropost, user: user, content: "Lorem")

FactoryGirl.create(:micropost, user: user, content: "Ipsum")

sign in user

visit root path

end

it "should render the user's feed" do

user.feed.each do |item|

page.should have selector("li##{item.id}", text: item.content)

end

end

describe "follower/following counts" do

let(:other user) { FactoryGirl.create(:user) }

before do

other user.follow!(user)

visit root path

end

it { should have link("0 following", href: following user path(user)) }

it { should have link("1 follower", href: followers user path(user)) }

end

end

end

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

508 Chapter 11: Following Users

The core of this test is the expectation that the following and follower counts appear on

the page, together with the right URIs:

it { should have link("0 following", href: following user path(user)) }

it { should have link("1 follower", href: followers user path(user)) }

Here we have used the named routes shown in Table 11.1 to verify that the links have

the right addresses.

The application code for the stats partial is just a couple of links inside a div, as

shown in Listing 11.20.

Listing 11.20 A partial for displaying follower stats.

app/views/shared/_stats.html.erb

<% @user ||= current user %>

<div class="stats">

<a href="<%= following user path(@user) %>">

<strong id="following" class="stat">

<%= @user.followed users.count %>

following

<a href="<%= followers user path(@user) %>">

<strong id="followers" class="stat">

<%= @user.followers.count %>

followers

</div>

Since we will be including the stats on both the user show pages and the Home page,

the first line of Listing 11.20 picks the right one using

<% @user ||= current user %>

As discussed in Box 8.2, this does nothing when @user is not nil (as on a profile page),

but when it is (as on the Home page) it sets @user to the current user.

Note also that the following/follower counts are calculated through the associations

using

@user.followed users.count

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 509

and

@user.followers.count

Compare these to the microposts count from Listing 10.20, where we wrote

@user.microposts.count

to count the microposts.

One final detail worth noting is the presence of CSS ids on some elements, as in

<strong id="following" class="stat">

...

This is for the benefit of the Ajax implementation in Section 11.2.5, which accesses

elements on the page using their unique ids.

With the partial in hand, including the stats on the Home page is easy, as shown

in Listing 11.21. (This also gets the test in Listing 11.19 to pass.)

Listing 11.21 Adding follower stats to the Home page.

app/views/static_pages/home.html.erb

<% if signed in? %>

.

.

.

<section>

<%= render 'shared/user info' %>

</section>

<section>

<%= render 'shared/stats' %>

</section>

<section>

<%= render 'shared/micropost form' %>

</section>

.

.

.

<% else %>

.

.

.

<% end %>

www.it-ebooks.info

http://www.it-ebooks.info/

510 Chapter 11: Following Users

To style the stats, we’ll add some SCSS, as shown in Listing 11.22 (which contains

all the stylesheet code needed in this chapter). The result appears in Figure 11.11.

Listing 11.22 SCSS for the Home page sidebar.

app/assets/stylesheets/custom.css.scss

.

.

.

/* sidebar */

.

.

.

.stats {

overflow: auto;

a {

float: left;

padding: 0 10px;

border-left: 1px solid $grayLighter;

color: gray;

&:first-child {

padding-left: 0;

border: 0;

}

&:hover {

text-decoration: none;

color: $blue;

}

}

strong {

display: block;

}

}

.user avatars {

overflow: auto;

margin-top: 10px;

.gravatar {

margin: 1px 1px;

}

}

.

.

.

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 511

Figure 11.11 The Home page (/) with follow stats.

We’ll render the stats partial on the profile page in a moment, but first let’s make a

partial for the follow/unfollow button, as shown in Listing 11.23.

Listing 11.23 A partial for a follow/unfollow form.

app/views/users/_follow_form.html.erb

<% unless current user?(@user) %>

<div id="follow form">

<% if current user.following?(@user) %>

<%= render 'unfollow' %>

<% else %>

<%= render 'follow' %>

<% end %>

</div>

<% end %>

This does nothing but defer the real work to follow and unfollow partials, which

need a new routes file with rules for the Relationships resource, which follows the

Microposts resource example (Listing 10.25), as seen in Listing 11.24.

www.it-ebooks.info

http://www.it-ebooks.info/

512 Chapter 11: Following Users

Listing 11.24 Adding the routes for user relationships.

config/routes.rb

SampleApp::Application.routes.draw do

.

.

.

resources :sessions, only: [:new, :create, :destroy]

resources :microposts, only: [:create, :destroy]

resources :relationships, only: [:create, :destroy]

.

.

.

end

The follow/unfollow partials themselves are shown in Listing 11.25 and Listing 11.26.

Listing 11.25 A form for following a user.

app/views/users/_follow.html.erb

<%= form for(current user.relationships.build(followed id: @user.id)) do |f| %>

<div><%= f.hidden field :followed id %></div>

<%= f.submit "Follow", class: "btn btn-large btn-primary" %>

<% end %>

Listing 11.26 A form for unfollowing a user.

app/views/users/_unfollow.html.erb

<%= form for(current user.relationships.find by followed id(@user),

html: { method: :delete }) do |f| %>

<%= f.submit "Unfollow", class: "btn btn-large" %>

<% end %>

These two forms both use form_for to manipulate a Relationship model object;

the main difference between the two is that Listing 11.25 builds a new relationship,

whereas Listing 11.26 finds the existing relationship. Naturally, the former sends a POST

request to the Relationships controller to create a relationship, while the latter sends a

DELETE request to destroy a relationship. (We’ll write these actions in Section 11.2.4.)

Finally, you’ll note that the follow/unfollow form doesn’t have any content other than

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 513

the button, but it still needs to send the followed_id, which we accomplish with the

hidden_field method, which produces HTML of the form

<input id="followed relationship followed id"

name="followed relationship[followed id]"

type="hidden" value="3" />

The ‘‘hidden’’ input tag puts the relevant information on the page without displaying

it in the browser.

We can now include the follow form and the following statistics on the user profile

page simply by rendering the partials, as shown in Listing 11.27. Profiles with follow

and unfollow buttons, respectively, appear in Figure 11.12 and Figure 11.13.

Listing 11.27 Adding the follow form and follower stats to the user profile page.

app/views/users/show.html.erb

<% provide(:title, @user.name) %>

<div class="row">

<aside class="span4">

<section>

<h1>

<%= gravatar for @user %>

<%= @user.name %>

</h1>

</section>

<section>

<%= render 'shared/stats' %>

</section>

</aside>

<div class="span8">

<%= render 'follow form' if signed in? %>

.

.

.

</div>

</div>

We’ll get these buttons working soon enough—in fact, we’ll do it two ways, the

standard way (Section 11.2.4) and using Ajax (Section 11.2.5)—but first we’ll finish

the HTML interface by making the following and followers pages.

www.it-ebooks.info

http://www.it-ebooks.info/

514 Chapter 11: Following Users

Figure 11.12 A user profile with a follow button (/users/2).

Figure 11.13 A user profile with an unfollow button (/users/6).

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 515

11.2.3 Following and Followers Pages

Pages to display followed users and followers will resemble a hybrid of the user profile

page and the user index page (Section 9.3.1), with a sidebar of user information

(including the following stats) and a list of users. In addition, we’ll include a raster of

user profile image links in the sidebar. Mockups matching these requirements appear in

Figure 11.14 (following) and Figure 11.15 (followers).

Our first step is to get the following and followers links to work. We’ll follow

Twitter’s lead and have both pages to require user signin, as tested in Listing 11.28. For

signed-in users, the pages should have links for following and followers, respectively, as

tested in Listing 11.29.

Figure 11.14 A mockup of the user following page.

www.it-ebooks.info

http://www.it-ebooks.info/

516 Chapter 11: Following Users

Figure 11.15 A mockup of the user followers page.

Listing 11.28 Tests for the authorization of the following and followers pages.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "authorization" do

describe "for non-signed-in users" do

let(:user) { FactoryGirl.create(:user) }

describe "in the Users controller" do

.

.

.

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 517

describe "visiting the following page" do

before { visit following user path(user) }

it { should have selector('title', text: 'Sign in') }

end

describe "visiting the followers page" do

before { visit followers user path(user) }

it { should have selector('title', text: 'Sign in') }

end

end

.

.

.

end

.

.

.

end

.

.

.

end

Listing 11.29 Test for the followed_users and followers pages.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

.

.

.

describe "following/followers" do

let(:user) { FactoryGirl.create(:user) }

let(:other user) { FactoryGirl.create(:user) }

before { user.follow!(other user) }

describe "followed users" do

before do

sign in user

visit following user path(user)

end

it { should have selector('title', text: full title('Following')) }

it { should have selector('h3', text: 'Following') }

it { should have link(other user.name, href: user path(other user)) }

end

www.it-ebooks.info

http://www.it-ebooks.info/

518 Chapter 11: Following Users

describe "followers" do

before do

sign in other user

visit followers user path(other user)

end

it { should have selector('title', text: full title('Followers')) }

it { should have selector('h3', text: 'Followers') }

it { should have link(user.name, href: user path(user)) }

end

end

end

The only tricky part of the implementation is realizing that we need to add two

new actions to the Users controller; based on the routes defined in Listing 11.18, we

need to call them following and followers. Each action needs to set a title, find

the user, retrieve either @user.followed_users or @user.followers (in paginated

form), and then render the page. The result appears in Listing 11.30.

Listing 11.30 The following and followers actions.

app/controllers/users_controller.rb

class UsersController < ApplicationController

before filter :signed in user,

only: [:index, :edit, :update, :destroy, :following, :followers]

.

.

.

def following

@title = "Following"

@user = User.find(params[:id])

@users = @user.followed users.paginate(page: params[:page])

render 'show follow'

end

def followers

@title = "Followers"

@user = User.find(params[:id])

@users = @user.followers.paginate(page: params[:page])

render 'show follow'

end

.

.

.

end

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 519

Note here that both actions make an explicit call to render, in this case rendering a

view called show_follow, which we must create. The reason for the common view is

that the ERb is nearly identical for the two cases, and Listing 11.31 covers them both.

Listing 11.31 The show_follow view used to render following and followers.

app/views/users/show_follow.html.erb

<% provide(:title, @title) %>

<div class="row">

<aside class="span4">

<section>

<%= gravatar for @user %>

<h1><%= @user.name %></h1>

<%= link to "view my profile", @user %>

Microposts: <%= @user.microposts.count %>

</section>

<section>

<%= render 'shared/stats' %>

<% if @users.any? %>

<div class="user avatars">

<% @users.each do |user| %>

<%= link to gravatar for(user, size: 30), user %>

<% end %>

</div>

<% end %>

</section>

</aside>

<div class="span8">

<h3><%= @title %></h3>

<% if @users.any? %>

<ul class="users">

<%= render @users %>

<%= will paginate %>

<% end %>

</div>

</div>

With that, the tests should now be passing, and the pages should render as shown

in Figure 11.16 (following) and Figure 11.17 (followers).

11.2.4 A Working Follow Button the Standard Way

Now that our views are in order, it’s time to get the follow/unfollow buttons working.

The tests for these buttons combine many of the testing techniques covered throughout

www.it-ebooks.info

http://www.it-ebooks.info/

520 Chapter 11: Following Users

Figure 11.16 Showing the users being followed by the current user.

Figure 11.17 Showing the current user’s followers.

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 521

this tutorial and make for a good exercise in reading code. Study Listing 11.32 until

you are convinced that you understand what it’s testing and why. (There’s one minor

security omission as well; see if you can spot it. We’ll cover it momentarily.)

Listing 11.32 Tests for the Follow/Unfollow button.

spec/requests/user_pages_spec.rb

require 'spec helper'

describe "User pages" do

.

.

.

describe "profile page" do

let(:user) { FactoryGirl.create(:user) }

.

.

.

describe "follow/unfollow buttons" do

let(:other user) { FactoryGirl.create(:user) }

before { sign in user }

describe "following a user" do

before { visit user path(other user) }

it "should increment the followed user count" do

expect do

click button "Follow"

end.to change(user.followed users, :count).by(1)

end

it "should increment the other user's followers count" do

expect do

click button "Follow"

end.to change(other user.followers, :count).by(1)

end

describe "toggling the button" do

before { click button "Follow" }

it { should have selector('input', value: 'Unfollow') }

end

end

describe "unfollowing a user" do

before do

user.follow!(other user)

visit user path(other user)

end

www.it-ebooks.info

http://www.it-ebooks.info/

522 Chapter 11: Following Users

it "should decrement the followed user count" do

expect do

click button "Unfollow"

end.to change(user.followed users, :count).by(-1)

end

it "should decrement the other user's followers count" do

expect do

click button "Unfollow"

end.to change(other user.followers, :count).by(-1)

end

describe "toggling the button" do

before { click button "Unfollow" }

it { should have selector('input', value: 'Follow') }

end

end

end

end

.

.

.

end

Listing 11.32 tests the following buttons by clicking on them and specifying the

proper behavior. Writing the implementation involves digging a little deeper: Following

and unfollowing involve creating and destroying relationships, which means defining

create and destroy actions in a Relationships controller (which we must create).

Although the following buttons only appear for signed-in users, giving us a superficial

layer of security, the tests in Listing 11.32 miss a lower-level issue, namely, the create

and destroy actions themselves should only be accessible to signed-in users. (This is

the security hole alluded to above.) Listing 11.33 expresses this requirement using the

post and delete methods to hit those actions directly.

Listing 11.33 Tests for the Relationships controller authorization.

spec/requests/authentication_pages_spec.rb

require 'spec helper'

describe "Authentication" do

.

.

.

describe "authorization" do

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 523

describe "for non-signed-in users" do

let(:user) { FactoryGirl.create(:user) }

.

.

.

describe "in the Relationships controller" do

describe "submitting to the create action" do

before { post relationships path }

specify { response.should redirect to(signin path) }

end

describe "submitting to the destroy action" do

before { delete relationship path(1) }

specify { response.should redirect to(signin path) }

end

end

.

.

.

end

end

end

Note that, in order to avoid the overhead of creating a virtually useless Relationship

object, the delete test hard-codes the id 1 in the named route:

before { delete relationship path(1) }

This works because the user should be redirected before the application ever tries to

retrieve the relationship with this id.

The controller code needed to get these tests to pass is remarkably concise: We just

retrieve the user followed or to be followed, then follow or unfollow the user using the

relevant utility method. The full implementation appears in Listing 11.34.

Listing 11.34 The Relationships controller.

app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before filter :signed in user

def create

@user = User.find(params[:relationship][:followed id])

current user.follow!(@user)

redirect to @user

end

www.it-ebooks.info

http://www.it-ebooks.info/

524 Chapter 11: Following Users

def destroy

@user = Relationship.find(params[:id]).followed

current user.unfollow!(@user)

redirect to @user

end

end

We can see from Listing 11.34 why the security issue mentioned above is minor: If an

unsigned-in user were to hit either action directly (e.g., using a command-line tool),

current_user would be nil, and in both cases the action’s second line would raise an

exception, resulting in an error but no harm to the application or its data. It’s best not to

rely on that, though, so we’ve taken the extra step and added an extra layer of security.

With that, the core follow/unfollow functionality is complete, and any user can

follow (or unfollow) any other user, which you should verify both by clicking around

in the sample application and by running the test suite:

$ bundle exec rspec spec/

11.2.5 A Working Follow Button with Ajax

Although our user following implementation is complete as it stands, we have one bit

of polish left to add before starting work on the status feed. You may have noticed

in Section 11.2.4 that both the create and destroy actions in the Relationships

controller simply redirect back to the original profile. In other words, a user starts on a

profile page, follows the user, and is immediately redirected back to the original page.

It is reasonable to ask why the user needs to leave that page at all.

This is exactly the problem solved by Ajax, which allows web pages to send requests

asynchronously to the server without leaving the page.9 Because the practice of adding

Ajax to web forms is quite common, Rails makes Ajax easy to implement. Indeed,

updating the follow/unfollow form partials is trivial: Just change

form for

to

form for ..., remote: true

9. Because it is nominally an acronym for asynchronous JavaScript and XML, Ajax is sometimes misspelled
‘‘AJAX,’’ even though the original Ajax article spells it as ‘‘Ajax’’ throughout.

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 525

and Rails automagically uses Ajax.10 The updated partials appear in Listing 11.35 and

Listing 11.36.

Listing 11.35 A form for following a user using Ajax.

app/views/users/_follow.html.erb

<%= form for(current user.relationships.build(followed id: @user.id),

remote: true) do |f| %>

<div><%= f.hidden field :followed id %></div>

<%= f.submit "Follow", class: "btn btn-large btn-primary" %>

<% end %>

Listing 11.36 A form for unfollowing a user using Ajax.

app/views/users/_unfollow.html.erb

<%= form for(current user.relationships.find by followed id(@user),

html: { method: :delete },

remote: true) do |f| %>

<%= f.submit "Unfollow", class: "btn btn-large" %>

<% end %>

The actual HTML generated by this ERb isn’t particularly relevant, but you might

be curious, so here’s a peek:

<form action="/relationships/117" class="edit relationship" data-remote="true"

id="edit relationship 117" method="post">

.

.

.

</form>

This sets the variable data-remote="true" inside the form tag, which tells Rails to

allow the form to be handled by JavaScript. By using a simple HTML property instead

of inserting the full JavaScript code (as in previous versions of Rails), Rails 3 follows the

philosophy of unobtrusive JavaScript .

Having updated the form, we now need to arrange for the Relationships controller

to respond to Ajax requests. Testing Ajax is quite tricky, and doing it thoroughly is a

large subject in its own right, but we can get started with the code in Listing 11.37.

This uses the xhr method (for ‘‘XmlHttpRequest’’) to issue an Ajax request; compare

to the get, post, put, and delete methods used in previous tests. We then verify that

10. This only works if JavaScript is enabled in the browser, but it degrades gracefully, working exactly as in
Section 11.2.4 if JavaScript is disabled.

www.it-ebooks.info

http://www.it-ebooks.info/

526 Chapter 11: Following Users

the create and destroy actions do the correct things when hit with an Ajax request.

(To write more thorough test suites for Ajax-heavy applications, take a look at Selenium

and Watir.)

Listing 11.37 Tests for the Relationships controller responses to Ajax requests.

spec/controllers/relationships_controller_spec.rb

require 'spec helper'

describe RelationshipsController do

let(:user) { FactoryGirl.create(:user) }

let(:other user) { FactoryGirl.create(:user) }

before { sign in user }

describe "creating a relationship with Ajax" do

it "should increment the Relationship count" do

expect do

xhr :post, :create, relationship: { followed id: other user.id }

end.should change(Relationship, :count).by(1)

end

it "should respond with success" do

xhr :post, :create, relationship: { followed id: other user.id }

response.should be success

end

end

describe "destroying a relationship with Ajax" do

before { user.follow!(other user) }

let(:relationship) { user.relationships.find by followed id(other user) }

it "should decrement the Relationship count" do

expect do

xhr :delete, :destroy, id: relationship.id

end.should change(Relationship, :count).by(-1)

end

it "should respond with success" do

xhr :delete, :destroy, id: relationship.id

response.should be success

end

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 A Web Interface for Following Users 527

The code in Listing 11.37 is our first example of a controller test, which I used to use

extensively (as in the previous edition of this book) but now mainly eschew in favor

of integration tests. In this case, though, the xhr method is (somewhat inexplicably)

not available in integration tests. Although our use of xhr is new, at this point in the

tutorial you should be able to infer from context what the code does:

xhr :post, :create, relationship: { followed id: other user.id }

We see that xhr takes as arguments a symbol for the relevant HTTP method, a symbol

for the action, and a hash representing the contents of params in the controller itself.

As in previous examples, we use expect to wrap the operation in a block and test for

an increment or decrement in the relevant count.

As implied by the tests, the application code uses the same create and destroy

actions to respond to the Ajax requests that it uses to respond to ordinary POST and

DELETE HTTP requests. All we need to do is respond to a normal HTTP request with

a redirect (as in Section 11.2.4) and respond to an Ajax request with JavaScript. The

controller code appears as in Listing 11.38. (See Section 11.5 for an exercise showing

an even more compact way to accomplish the same thing.)

Listing 11.38 Responding to Ajax requests in the Relationships controller.

app/controllers/relationships_controller.rb

class RelationshipsController < ApplicationController

before filter :signed in user

def create

@user = User.find(params[:relationship][:followed id])

current user.follow!(@user)

respond to do |format|

format.html { redirect to @user }

format.js

end

end

def destroy

@user = Relationship.find(params[:id]).followed

current user.unfollow!(@user)

respond to do |format|

format.html { redirect to @user }

format.js

end

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

528 Chapter 11: Following Users

This code uses respond_to to take the appropriate action depending on the kind

of request. (There is no relationship between this respond_to and the respond_to

used in the RSpec examples.) The syntax is potentially confusing, and it’s important to

understand that in

respond to do |format|

format.html { redirect to @user }

format.js

end

only one of the lines gets executed (based on the nature of the request).

In the case of an Ajax request, Rails automatically calls a JavaScript Embedded

Ruby (.js.erb) file with the same name as the action, i.e., create.js.erb or

destroy.js.erb. As you might guess, the files allow us to mix JavaScript and

Embedded Ruby to perform actions on the current page. It is these files that we need

to create and edit in order to update the user profile page upon being followed or

unfollowed.

Inside a JS-ERb file, Rails automatically provides the jQuery JavaScript helpers to

manipulate the page using the Document Object Model (DOM). The jQuery library

provides a large number of methods for manipulating the DOM, but here we will need

only two. First, we will need to know about the dollar-sign syntax to access a DOM

element based in its unique CSS id. For example, to manipulate the follow_form

element, we will use the syntax

$("#follow form")

(Recall from Listing 11.23 that this is a div that wraps the form, not the form itself.)

This syntax, inspired by CSS, uses the # symbol to indicate a CSS id. As you might

guess, jQuery, like CSS, uses a dot . to manipulate CSS classes.

The second method we’ll need is html, which updates the HTML inside the

relevant element with the contents of its argument. For example, to replace the entire

follow form with the string "foobar", we would write

$("#follow form").html("foobar")

Unlike plain JavaScript files, JS-ERb files also allow the use of Embedded Ruby,

which we apply in the create.js.erb file to update the follow form with the unfollow

partial (which is what should show after a successful following) and update the follower

www.it-ebooks.info

http://www.it-ebooks.info/

11.3 The Status Feed 529

count. The result is shown in Listing 11.39. This uses the escape_javascript

function, which is needed to escape out the result when inserting HTML in a

JavaScript file.

Listing 11.39 The JavaScript Embedded Ruby to create a following relationship.

app/views/relationships/create.js.erb

$("#follow form").html("<%= escape javascript(render('users/unfollow')) %>")

$("#followers").html('<%= @user.followers.count %>')

The destroy.js.erb file is analogous (Listing 11.40).

Listing 11.40 The Ruby JavaScript (RJS) to destroy a following relationship.

app/views/relationships/destroy.js.erb

$("#follow form").html("<%= escape javascript(render('users/follow')) %>")

$("#followers").html('<%= @user.followers.count %>')

With that, you should navigate to a user profile page and verify that you can follow and

unfollow without a page refresh, and the test suite should also pass:

$ bundle exec rspec spec/

Using Ajax in Rails is a large and fast-moving subject, so we’ve only been able

to scratch the surface here, but (as with the rest of the material in this tutorial) our

treatment should give you a good foundation for more advanced resources.

11.3 The Status Feed

We come now to the pinnacle of our sample application: the status feed. Appropriately,

this section contains some of the most advanced material in the entire tutorial. The full

status feed builds on the proto-feed from Section 10.3.3 by assembling an array of the

microposts from the users being followed by the current user, along with the current

user’s own microposts. To accomplish this feat, we will need some fairly advanced Rails,

Ruby, and even SQL programming techniques.

Because of the heavy lifting ahead, it’s especially important to review where we’re

going. A recap of the final user status feed, shown in Figure 11.5, appears again in

Figure 11.18.

www.it-ebooks.info

http://www.it-ebooks.info/

530 Chapter 11: Following Users

Figure 11.18 A mockup of a user’s Home page with a status feed.

11.3.1 Motivation and Strategy

The basic idea behind the feed is simple. Figure 11.19 shows a sample microposts

database table and the resulting feed. The purpose of a feed is to pull out the microposts

whose user ids correspond to the users being followed by the current user (and the

current user itself), as indicated by the arrows in the diagram.

Since we need a way to find all the microposts from users followed by a given user,

we’ll plan on implementing a method called from_users_followed_by, which we

will use as follows:

Micropost.from users followed by(user)

Although we don’t yet know how to implement it, we can already write tests for

for its functionality. The key is to check all three requirements for the feed: microposts

for followed users and the user itself should be included in the feed, but a post from an

www.it-ebooks.info

http://www.it-ebooks.info/

11.3 The Status Feed 531

Figure 11.19 The feed for a user (id 1) following users 2, 7, 8, and 10.

unfollowed user should not be included. Two of these requirements already appear in

our tests: Listing 10.38 verifies that a user’s own microposts appear in the feed, while

the micropost from an unfollowed user doesn’t appear. Now that we know how to

follow users, we can add a third type of test, this time checking that the microposts of a

followed user appear in the feed, as shown in Listing 11.41.

Listing 11.41 The final tests for the status feed.

spec/models/user_spec.rb

require 'spec helper'

describe User do

.

.

.

describe "micropost associations" do

before { @user.save }

let!(:older micropost) do

FactoryGirl.create(:micropost, user: @user, created at: 1.day.ago)

end

let!(:newer micropost) do

FactoryGirl.create(:micropost, user: @user, created at: 1.hour.ago)

end

.

.

.

describe "status" do

let(:unfollowed post) do

FactoryGirl.create(:micropost, user: FactoryGirl.create(:user))

end

let(:followed user) { FactoryGirl.create(:user) }

www.it-ebooks.info

http://www.it-ebooks.info/

532 Chapter 11: Following Users

before do

@user.follow!(followed user)

3.times { followed user.microposts.create!(content: "Lorem ipsum") }

end

its(:feed) { should include(newer micropost) }

its(:feed) { should include(older micropost) }

its(:feed) { should not include(unfollowed post) }

its(:feed) do

followed user.microposts.each do |micropost|

should include(micropost)

end

end

end

end

end

Implementing the feed simply defers the hard work to Micropost.from_users_

followed_by, as shown in Listing 11.42.

Listing 11.42 Adding the completed feed to the User model.

app/models/user.rb

class User < ActiveRecord::Base

.

.

.

def feed

Micropost.from users followed by(self)

end

.

.

.

end

11.3.2 A First Feed Implementation

Now it’s time to implement Micropost.from_users_followed_by, which for sim-

plicity we’ll just refer to as ‘‘the feed.’’ Since the final result is rather intricate, we’ll build

up to the final feed implementation by introducing one piece at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

11.3 The Status Feed 533

The first step is to think of the kind of query we’ll need. What we want to do is

select from the microposts table all the microposts with ids corresponding to the users

being followed by a given user (or the user itself). We might write this schematically as

follows:

SELECT * FROM microposts

WHERE user id IN (<list of ids>) OR user id = <user id>

In writing this code, we’ve guessed that SQL supports an IN keyword that allows us to

test for set inclusion. (Happily, it does.)

Recall from the proto-feed in Section 10.3.3 that Active Record uses the where

method to accomplish the kind of select shown above, as illustrated in Listing 10.39.

There, our select was very simple; we just picked out all the microposts with user id

corresponding to the current user:

Micropost.where("user id = ?", id)

Here, we expect it to be more complicated, something like

where("user id in (?) OR user id = ?", following ids, user)

(Here we’ve used the Rails convention of user instead of user.id in the condition;

Rails automatically uses the id. We’ve also omitted the leading Micropost. since we

expect this method to live in the Micropost model itself.)

We see from these conditions that we’ll need an array of ids corresponding to the

users being followed. One way to do this is to use Ruby’s map method, available on

any ‘‘enumerable’’ object, i.e., any object (such as an Array or a Hash) that consists of a

collection of elements.11 We saw an example of this method in Section 4.3.2; it works

like this:

$ rails console

>> [1, 2, 3, 4].map { |i| i.to s }

=> ["1", "2", "3", "4"]

11. The main requirement is that enumerable objects must implement an each method to iterate through the
collection.

www.it-ebooks.info

http://www.it-ebooks.info/

534 Chapter 11: Following Users

Situations like the one illustrated above, where the same method (e.g., to_s) gets

called on each element, are common enough that there’s a shorthand notation using an

ampersand & and a symbol corresponding to the method:12

>> [1, 2, 3, 4].map(&:to s)

=> ["1", "2", "3", "4"]

Using the join method (Section 4.3.1), we can create a string composed of the ids by

joining them on comma-space :

>> [1, 2, 3, 4].map(&:to s).join(', ')

=> "1, 2, 3, 4"

We can use the above method to construct the necessary array of followed user ids

by calling id on each element in user.followed_users. For example, for the first

user in the database this array appears as follows:

>> User.first.followed users.map(&:id)

=> [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51]

In fact, because this sort of construction is so useful, Active Record provides it by

default:

>> User.first.followed user ids

=> [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51]

Here the followed_user_ids method is synthesized by Active Record based on

the has_many :followed_users association (Listing 11.10); the result is that we

need only append _ids to the association name to get the ids corresponding to the

user.followed_users collection. A string of followed user ids then appears as follows:

>> User.first.followed user ids.join(', ')

=> "4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51"

12. This notation actually started as an extension Rails made to the core Ruby language; it was so useful that it
has now been incorporated into Ruby itself. How cool is that?

www.it-ebooks.info

http://www.it-ebooks.info/

11.3 The Status Feed 535

When inserting into an SQL string, though, you don’t need to do this; the ?

interpolation takes care of it for you (and in fact eliminates some database-dependent

incompatibilities). This means we can use

user.followed user ids

by itself.

At this point, you might guess that code like

Micropost.from users followed by(user)

will involve a class method in the Micropost class (a construction mentioned briefly in

Section 4.4.1). A proposed implementation along these lines appears in Listing 11.43.

Listing 11.43 A first cut at the from_users_followed_by method.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

.

.

.

def self.from users followed by(user)

followed user ids = user.followed user ids

where("user id IN (?) OR user id = ?", followed user ids, user)

end

end

Although the discussion leading up to Listing 11.43 was couched in hypothetical

terms, it actually works! You can verify this yourself by running the test suite, which

should pass:

$ bundle exec rspec spec/

In some applications, this initial implementation might be good enough for most

practical purposes. But it’s not the final implementation; see if you can make a guess

about why not before moving on to the next section. (Hint: What if a user is following

5,000 other users?)

11.3.3 Subselects

As hinted at in the last section, the feed implementation in Section 11.3.2 doesn’t scale

well when the number of microposts in the feed is large, as would likely happen if a user

www.it-ebooks.info

http://www.it-ebooks.info/

536 Chapter 11: Following Users

were following, say, 5000 other users. In this section, we’ll reimplement the status feed

in a way that scales better with the number of followed users.

The problem with the code in Section 11.3.2 is that

followed user ids = user.followed user ids

pulls all the followed users’ ids into memory and creates an array the full length of the

followed users array. Since the condition in Listing 11.43 actually just checks inclusion

in a set, there must be a more efficient way to do this, and indeed SQL is optimized for

just such set operations. The solution involves pushing the finding of followed user ids

into the database using a subselect.

We’ll start by refactoring the feed with the slightly modified code in Listing 11.44

Listing 11.44 Improving from_users_followed_by.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

.

.

.

Returns microposts from the users being followed by the given user.

def self.from users followed by(user)

followed user ids = user.followed user ids

where("user id IN (:followed user ids) OR user id = :user id",

followed user ids: followed user ids, user id: user)

end

end

As preparation for the next step, we have replaced

where("user id IN (?) OR user id = ?", followed user ids, user)

with the equivalent

where("user id IN (:followed user ids) OR user id = :user id",

followed user ids: followed user ids, user id: user)

The question mark syntax is fine, but when we want the same variable inserted in more

than one place the second syntax is more convenient.

www.it-ebooks.info

http://www.it-ebooks.info/

11.3 The Status Feed 537

The above discussion mentions that we will be adding a second occurrence of

user_id in the SQL query. In particular, we can replace the Ruby code

followed user ids = user.followed user ids

with the SQL snippet

followed user ids = "SELECT followed id FROM relationships

WHERE follower id = :user id"

This code contains a SQL subselect, and internally the entire select for user 1 would look

something like this:

SELECT * FROM microposts

WHERE user id IN (SELECT followed id FROM relationships

WHERE follower id = 1)

OR user id = 1

This subselect arranges for all the set logic to be pushed into the database, which is more

efficient.13

With this foundation, we are ready for an efficient feed implementation, as seen

in Listing 11.45. Note that, because it is now raw SQL, followed_user_ids is

interpolated, not escaped. (It actually works either way, but logically it makes more sense

to interpolate in this context.)

Listing 11.45 The final implementation of from_users_followed_by.

app/models/micropost.rb

class Micropost < ActiveRecord::Base

attr accessible :content

belongs to :user

validates :user id, presence: true

validates :content, presence: true, length: { maximum: 140 }

default scope order: 'microposts.created at DESC'

13. For a more advanced way to create the necessary subselect, see the blog post ‘‘Hacking a subselect in
ActiveRecord.’’

www.it-ebooks.info

http://www.it-ebooks.info/

538 Chapter 11: Following Users

def self.from users followed by(user)

followed user ids = "SELECT followed id FROM relationships

WHERE follower id = :user id"

where("user id IN (#{followed user ids}) OR user id = :user id",

user id: user.id)

end

end

This code has a formidable combination of Rails, Ruby, and SQL, but it does the job,

and does it well. (Of course, even the subselect won’t scale forever. For bigger sites, you

would probably need to generate the feed asynchronously using a background job. Such

scaling subtleties are beyond the scope of this tutorial, but the Scaling Rails screencasts

are a good place to start.)

11.3.4 The New Status Feed

With the code in Listing 11.45, our status feed is complete. As a reminder, the code

for the Home page appears in Listing 11.46; this code creates a paginated feed of

the relevant microposts for use in the view, as seen in Figure 11.20.14 Note that the

paginate method actually reaches all the way into the Micropost model method in

Listing 11.45, arranging to pull out only 30 microposts at a time from the database.

(You can verify this by examining the SQL statements in the development server

log file.)

Listing 11.46 The home action with a paginated feed.

app/controllers/static_pages_controller.rb

class StaticPagesController < ApplicationController

def home

if signed in?

@micropost = current user.microposts.build

@feed items = current user.feed.paginate(page: params[:page])

end

end

.

.

.

end

14. In order to make a prettier feed for Figure 11.20, I’ve added a few extra microposts by hand using the Rails
console.

www.it-ebooks.info

http://www.it-ebooks.info/

11.4 Conclusion 539

Figure 11.20 The Home page with a working status feed.

11.4 Conclusion

With the addition of the status feed, we’ve finished the core sample application for

the Rails Tutorial. This application includes examples of all the major features of Rails,

including models, views, controllers, templates, partials, filters, validations, callbacks,

has_many/belongs_to and has_many through associations, security, testing, and

deployment. Despite this impressive list, there is still much to learn about Rails. As a

first step in this process, this section contains some suggested extensions to the core

application, as well as suggestions for further learning.

Before moving on to tackle any of the application extensions, it’s a good idea to

merge in your changes:

$ git add .

$ git commit -m "Add user following"

$ git checkout master

$ git merge following-users

www.it-ebooks.info

http://www.it-ebooks.info/

540 Chapter 11: Following Users

As usual, you can also push the code and deploy the application if you want:

$ git push

$ git push heroku

$ heroku pg:reset SHARED DATABASE --confirm <name-heroku-gave-to-your-app>

$ heroku run rake db:migrate

$ heroku run rake db:populate

11.4.1 Extensions to the Sample Application

The proposed extensions in this section are mostly inspired either by general features

common to web applications, such as password reminders and email confirmation, or

features specific to our type of sample application, such as search, replies, and messaging.

Implementing one or more of these application extensions will help you make the

transition from following a tutorial to writing original applications of your own.

Don’t be surprised if it’s tough going at first; the blank slate of a new feature

can be quite intimidating. To help get you started, I can give two pieces of general

advice. First, before adding any feature to a Rails application, take a look at the

RailsCasts archive to see if Ryan Bates has already covered the subject.15 If he has,

watching the relevant RailsCast first will often save you a ton of time. Second, always

do extensive Google searches on your proposed feature to find relevant blog posts and

tutorials. Web application development is hard, and it helps to learn from the experience

(and mistakes) of others.

Many of the following features are quite challenging, and I have given some hints

about the tools you might need to implement them. Even with hints, they are much

more difficult than the book’s end-of-chapter exercises, so don’t be discouraged if you

can’t solve them without considerable effort. Due to time constraints, I am not available

for one-on-one assistance, but if there is sufficient interest I might release standalone

article/screencast bundles on some of these extensions in the future; go to the main

Rails Tutorial website at http://railstutorial.org and subscribe to the news feed to get

the latest updates.

15. Note that RailsCasts usually omit the tests, which is probably necessary to keep the episodes nice and short,
but you could get the wrong idea about the importance of testing. Once you’ve watched the relevant RailsCast
to get a basic idea of how to proceed, I suggest writing the new feature using test-driven development. (In this
context, I recommend taking a look at the RailsCast on ‘‘How I test.’’ You’ll see that Ryan Bates himself often
uses TDD for real-life development, and in fact his testing style is similar to style used in this tutorial.)

www.it-ebooks.info

http://railstutorial.org
http://www.it-ebooks.info/

11.4 Conclusion 541

Replies

Twitter allows users to make ‘‘@replies’’, which are microposts whose first characters

are the user’s login preceded by the @ sign. These posts only appear in the feed of the

user in question or users following that user. Implement a simplified version of this,

restricting @replies to appear only in the feeds of the recipient and the sender. This

might involve adding an in_reply_to column in the microposts table and an extra

including_replies scope to the Micropost model.

Since our application lacks unique user logins, you will also have to decide on a way

to represent users. One option is to use a combination of the id and the name, such as

@1-michael-hartl. Another is to add a unique username to the signup process and

then use it in @replies.

Messaging

Twitter supports direct (private) messaging by prefixing a micropost with the letter ‘‘d.’’

Implement this feature for the sample application. The solution will probably involve a

Message model and a regular expression match on new microposts.

Follower Notifications

Implement a feature to send each user an email notification when they gain a new

follower. Then make the notification optional, so that users can opt out if desired.

Among other things, adding this feature requires learning how to send mail with Rails.

To get started, I suggest viewing the RailsCast on Action Mailer in Rails 3.

Password Reminders

Currently, if our application’s users forget their passwords, they have no way to retrieve

them. Because of the one-way secure password hashing in Chapter 6, our application

can’t email the user’s password, but it can send a link to a reset form. Follow the steps

in the RailsCast on Remember Me & Reset Password to fix this omission.

Signup Confirmation

Apart from an email regular expression, the sample application currently has no way

to verify the validity of a user’s email address. Add an email address verification step

to confirm a user’s signup. The new feature should create users in an inactive state,

email the user an activation URI, then change the user to an active state when the URI

gets hit. You might want to read up on state machines in Rails to help you with the

inactive/active transition.

www.it-ebooks.info

http://www.it-ebooks.info/

542 Chapter 11: Following Users

RSS Feed

For each user, implement an RSS feed for their microposts. Then implement an RSS

feed for each status feed, optionally restricting access to that feed using an authentication

scheme. The RailsCast on generating RSS feeds will help get you started.

REST API

Many websites expose an Application Programmer Interface (API) so that third-party

applications can get, post, put, and delete the application’s resources. Implement such

a REST API for the sample application. The solution will involve adding respond_to

blocks (Section 11.2.5) to many of the application’s controller actions; these should

respond to requests for XML. Be careful about security; the API should only be accessible

to authorized users.

Search

Currently, there is no way for users to find each other, apart from paging through

the user index or viewing the feeds of other users. Implement a search feature to

remedy this. Then add another search feature for microposts. The RailsCast on

simple search forms will help get you started. If you deploy using a shared host or a

dedicated server, I suggest using Thinking Sphinx (following the RailsCast on Thinking

Sphinx). If you deploy on Heroku, you should follow the Heroku full text search

instructions.

11.4.2 Guide to Further Resources

There are a wealth of Rails resources in stores and on the web—indeed, the supply is

so rich that it can be overwhelming. The good news is that, having gotten this far,

you’re ready for almost anything else out there. Here are some suggestions for further

learning:

• The Rails Tutorial screencasts: I have prepared a full-length screencast course based

on this book. In addition to covering all the material in the book, the screencasts

are filled with tips, tricks, and the kind of see-how-it’s-done demos that are hard to

capture in print. They are available for purchase through the Rails Tutorial website.

(Note: The screencasts for the second edition are currently in preparation.

They will be a paid upgrade, but current customers will receive a substantial

discount.)

www.it-ebooks.info

http://www.it-ebooks.info/

11.5 Exercises 543

• RailsCasts: It’s hard to overemphasize what a great resource the RailsCasts are. I

suggest starting by visiting the RailsCasts episode archive and clicking on subjects

that catch your eye.

• Scaling Rails: One topic we’ve hardly covered in the Rails Tutorial book is

performance, optimization, and scaling. Luckily, most sites will never run into

serious scaling issues, and using anything beyond plain Rails is probably premature

optimization. If you do run into performance issues, the Scaling Rails series from

Gregg Pollack of Envy Labs is a good place to start. I also recommend investigating

the site monitoring applications Scout and New Relic.16 And, as you might suspect

by now, there are RailsCasts on many scaling subjects, including profiling, caching,

and background jobs.

• Ruby and Rails books: As mentioned in Chapter 1, I recommend Beginning Ruby by

Peter Cooper, The Well-Grounded Rubyist by David A. Black, and The Ruby Way

by Hal Fulton for further Ruby learning, and The Rails 3 Way by Obie Fernandez

and Rails 3 in Action (wait for the second edition) by Ryan Bigg and Yehuda Katz

for more about Rails.

• PeepCode and Code School: The screencasts at PeepCode and interactive courses

at Code School are consistently high-quality, and I warmly recommend them.

11.5 Exercises

1. Add tests for destroying relationships associated with a given user (i.e., as imple-

mented by dependent :destroy in Listing 11.4 and Listing 11.16). Hint: Follow

the example in Listing 10.15.

2. The respond_to method seen in Listing 11.38 can actually be hoisted out of the

actions into the Relationships controller itself, and the respond_to blocks can be

replaced with a Rails method called respond_with. Prove that the resulting code,

shown in Listing 11.47, is correct by verifying that the test suite still passes. (For

details on this method, do a Google search on ‘‘rails respond with’’.)

3. Refactor Listing 11.31 by adding partials for the code common to the following/

followers pages, the Home page, and the user show page.

4. Following the model in Listing 11.19, write tests for the stats on the profile page.

16. In addition to being a clever phrase—new relic being a contradiction in terms—New Relic is also an
anagram for the name of the company’s founder, Lew Cirne.

www.it-ebooks.info

http://www.it-ebooks.info/

544 Chapter 11: Following Users

Listing 11.47 A compact refactoring of Listing 11.38.

class RelationshipsController < ApplicationController

before filter :signed in user

respond to :html, :js

def create

@user = User.find(params[:relationship][:followed id])

current user.follow!(@user)

respond with @user

end

def destroy

@user = Relationship.find(params[:id]).followed

current user.unfollow!(@user)

respond with @user

end

end

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Note: Page numbers in italics indicate figures, those with t indicate tables, and those

with n indicate footnotes.

Symbols
" (double quote character), 135
(hash symbol), 21
/ (forward slash), 8
|| = construction, 354–355
! (not) operator, 139
&& (and) operator, 139
+ (plus) operator, 135
|| (or) operator, 139

A
About page

about route, adding (Listing 3.14), 100–101
about view, adding, 101–102
adding, 99–103
adding code to test contents of (Listing 3.13),

99
code for (Listing 3.16), 102
footer partial with links for (Listing 5.25), 206
with HTML structure (Listing 3.21), 108
with HTML structure removed (Listing 3.28),

113
new, 102
refactoring, 103
StaticPages controller with added about action

(Listing 3.15), 101

tests for static pages (Listing 5.27), 210
view for, with Embedded Ruby title

(Listing 3.24), 110–111
writing a failing test for, 99–100

abstraction layers, 226n4
access control, 456–459
access control in manipulating Microposts,

456–459
accessible attributes and first validation, 432–433
accessible attributes in model file, 230
actions, 85–86
Active Record, 222

callback, 253
count method, 295
creating user objects, 230–233
finding user objects, 233–235
updating user objects, 235–236
See also Validations

adding files, in Git, 30–31
administrative users, 413–417

attr accessible, 416–417
attr accessible attributes for User model

without :admin attribute (Listing 9.42),
417

deleting, 413–417
migration to add boolean admin attribute to

users (Listing 9.40), 415

545

www.it-ebooks.info

http://www.it-ebooks.info/

546 Index

administrative users (continued)
sample data populator code with admin user

(Listing 9.41), 416
tests for admin attribute (Listing 9.39), 414
user delete links (viewable by admins)

(Listing 9.45), 419
User model with admin boolean attribute, 415

administrative users, deleting, 413–417
Ajax

follow button with, 524–529
form for following a user using (Listing 11.35),

525
form for unfollowing a user using

(Listing 11.36), 525
JavaScript Embedded Ruby to create following

relationship (Listing 11.39), 529
problem solved by, 524
Ruby JavaScript to destroy following

relationship (Listing 11.40), 529
Ajax requests, responding to, 525–529

JS-ERb, 528–529
in Relationships controller (Listing 11.38), 527
tests for Relationships controller

(Listing 11.37), 526
ampersand (&), 534
anchor tag, 97
annotate, 229–230
annotated User model (Listing 6.5), 229–230
ApplicationController class with inheritance

(Listing 2.16), 72
Application Programmer Interface (API), 542
application root, 9, 28–29, 125, 161
Architectural Styles and the Design of Network-based

Software Architectures (Fielding), 60n4
arrays, in Ruby data structures, 142–145
asset directory in asset pipeline, 187–188
asset pipeline, Sass and, 187–190

asset directory, 187–188
efficiency in production, 189–190
manifest files, 188–189
preprocessor engines, 189

assignment, 352
See also Mass assignment

associations
Micropost resource, 68–70
user/micropost, 433–438
user/relationship, 491–494

associative arrays, 148
asynchronous JavaScript and XML. See Ajax
attr accessible

administrative users, 416–417
attributes for User model without :admin

attribute (Listing 9.42), 417
making name and email attributes accessible

(Listing 6.6), 230
to prevent mass assignment, 230, 416–417

attribute accessors, 162
authenticate method

has secure password, 264, 338
moving the authenticate method into the

Sessions helper (Listing 10.27), 457–458
test for (Listing 6.29), 262–263

authentication, 260–263
adding authentication to Microposts controller

actions (Listing 10.28), 458
vs. authorization, 385
sessions and, 325–326
signin failure, 325–343
signin success, 343–363
See also Authenticate method

authenticity token, 301
authorization, 385–396

vs. authentication, 385
of following and followers pages, tests for

(Listing 11.28), 516–517
friendly forwarding, 392–396
for relationships controller, tests for

(Listing 11.33), 522–523
requiring right user, 390–392
requiring signed-in users, 386–389

automated testing, 77
Automattic, 286
avatar, 286n7

B
Bates, Ryan, 6, 7, 540
BCrypt cost factor in test environment, redefining

(Listing 7.11), 286
before filters, 373

adding a signed in user before filter
(Listing 9.12), 387

applied to every action in controller, 387
correct user before filter in microposts,

477–478

www.it-ebooks.info

http://www.it-ebooks.info/

Index 547

correct user before filter to protect edit/update
pages (Listing 9.15), 391

current user boolean method, 391–392
in requiring right user, 390–392
restricting destroy action to admins

(Listing 9.48), 422
Beginning Ruby (Cooper), 4, 5, 129, 543
Black, David A., 6, 543
blocks, in Ruby data structures, 146–148
Booleans, 133, 138–139, 142
Bootstrap

adding bootstrap-sass gem to (Listing 5.3), 175
adding to application.js (Listing 8.25), 358
and custom CSS in layout structure, 175–186
framework, 176, 317

browsers, 11–12
built-in Ruby classes, modifying, 158–159
bundle exec, eliminating, 118–119

binstubs, 119
RVM Bundler integration, 118–119

Bundler, 19–23
business logic, 25

C
callback, 253, 346–348
Capybara, 79

in Cucumber step files, 367
integration tests, 93
signin tests, 330
signup tests, 294
syntax for CSS id, 471
in test-driven development, 94–95
test for destroying microposts, 477
tests for user update action (Listing 9.9), 383

cascading style sheets (CSS), 152–153, 190–197
asset directory, 187–188
Bootstrap framework, 176, 317
Capybara syntax for CSS id, 471
custom CSS, 175–186
efficiency in production, 189–190
HTML source produced by CSS includes

(Listing 4.7), 153
layout links, 197–211
manifest files, 188–189
for microposts (Listing 10.24), 452–453
mixins, 274–275
nesting, 190–192

partials, 181–186
preprocessor engines, 189
in Ruby data structures, 152–153
Sass, 187–197
site navigation, 169–175
structure, adding, 167–186
for styling error messages (Listing 7.24), 311
for user index (Listing 9.26), 400
user signup, 211–215
variables, 193–197

Celadon Cedar Stack, 40
chaining, 139, 421
checkout command, 28, 32
Chrome, 11–12, 103, 170
classes, 153–163

built-in, modifying, 158–159
code for example user (Listing 4.9), 161
constructor, 153–154
container class, 172
controller, 159–161
defining Word class in console (Listing 4.8),

156
inheritance, 155–157
user, 161–163

class methods, 154–155
class name converted to id, 493n5
Code School, 6, 543
command lines, 10, 11
comments, 134–135
commit command, in Git, 31
config directory, 9, 88, 89
constructor classes, 153–154
Contact page

action for (Listing 5.18), 199
adding, 197–199
adding route for (Listing 5.17), 199
footer partial with links for (Listing 5.25), 206
for sample app, 114–117
tests for (Listing 5.16), 198
tests for static pages (Listing 5.27), 210
view for (Listing 5.19), 199

container class, 172
content validations, Micropost model, 443–444
controller classes, 159–161
cookies, 349–351

expiring 20 years in the future, 350
remember token added to, 379

www.it-ebooks.info

http://www.it-ebooks.info/

548 Index

cookies (continued)
remember token removed from, 363
used as a hash, 349–351

Cooper, Peter, 4, 5, 543
correct user before filter

in microposts, 477–478
to protect edit/update pages (Listing 9.15), 391

counting columns, 105n12
count method, 295
create action

adding (empty) @feed items instance variable
to (Listing 10.45), 474–475

completed, 313
completed Sessions controller create action (not

yet working) (Listing 8.13), 343
handling signup failure (but not success)

(Listing 7.21), 305
for microposts, 461
Microposts controller create action

(Listing 10.30), 461
preliminary version of sessions create action

(Listing 8.9), 337
for Sessions controller, 326, 336–338, 343,

395
Sessions create action with friendly forwarding

(Listing 9.20), 395
in signup failure, 304–305
strategy for using, 304
tests for post-save behavior in (Listing 7.32),

323
user create action with save and redirect

(Listing 7.25), 314
for Users controller, 425, 459

creating microposts, 459–467
adding micropost instance variable to home

action (Listing 10.34), 463
adding microposts creation to Home page

(Listing 10.31), 461
form partial for creating microposts

(Listing 10.33), 463
Microposts controller create action

(Listing 10.30), 461
partial for user info sidebar (Listing 10.32), 462
tests for (Listing 10.29), 460
updating error-messages partial from

Listing 7.23 to work with other objects
(Listing 10.35), 464

updating errors for editing users
(Listing 10.37), 465

updating rendering of user signup errors
(Listing 10.36), 465

cross-site request forgery (CSRF), 301
cross-site scripting attack, 481
CSS. See Cascading style sheets (CSS)
CSS: The Missing Manual (McFarland), 5
Cucumber, 363–371

adding cucumber-rails gem to Gemfile
(Listing 8.31), 364

adding helper method and custom RSpec
matcher (Listing 8.34), 371

features and steps, 365–368
features to test user signin (Listing 8.32), 366
installation and setup, 364–365
RSpec examples, equivalent, 368–371
signin tests using, 363–371
steps needed to get signin features to pass

(Listing 8.33), 368
current user, 351–355

defining assignment to (Listing 8.20), 352
definition for (Listing 8.21), 353
finding, using remember token (Listing 8.22),

353
non-nil, 356
in signin success, 351–355

current user? boolean method, 391–392

D
database indices, 254
database migration. See Migration
data model

defined, 47
micropost, 48–49
user, 47–48

debug
adding code for debug box, including Sass

mixin (Listing 7.2), 274
information, adding to site layout (Listing 7.1),

273–274
information, restricting to development

environment, 276
information in sign up, 271–276
output, 275
in Rails environments, 276

default Rails directory structure, 19t

www.it-ebooks.info

http://www.it-ebooks.info/

Index 549

default Rails page, 24
with the app environment, 25

default scope in Micropost model refinements,
440–441

demo app, 45–75
conclusion, 74–75
Microposts resource, 63–74
planning the application, 45–49
Users resource, 49–63

demo app, deploying, 73–74
dependent refinements in Micropost model,

441–443
deploying Rails, 39–42
destroy action

adding factory for administrative users
(Listing 9.43), 417–418

adding working destroy action (Listing 9.46),
420–421

in deleting users, 417–422
before filter restricting destroy action to admins

(Listing 9.48), 422
test for protecting destroy action (Listing 9.47),

421–422
tests for delete links (Listing 9.44), 418–419
user index /users with delete links, 420

destroying microposts
ensuring that user’s microposts are destroyed

along with user (Listing 10.16), 443
feed item partial with added delete link

(Listing 10.47), 476
Microposts controller destroy action

(Listing 10.49), 477–478
mockup of proto-feed with micropost delete

links, 476
testing that microposts are destroyed when

users are (Listing 10.15), 442
tests for Microposts controller destroy action

(Listing 10.48), 477
user home page after deleting

second-most-recent micropost, 479
development environment, 9–27

browsers, 11–12
command lines, 10, 11
IDEs, 10
terminals, 11
text editors, 10, 11
time learning tools, 12

development log, 231–232, 450n4
directories

standard directory and file structure, 18
summary of default Rails directory structure,

19t
div tags, 171
doctype, 84
Document Object Model (DOM), 528
domain logic, 25
domain-specific language (DSL), 3, 94, 283
drb option, 125
duplication, eliminating, 103, 111–113
dynamic pages. See Slightly dynamic pages

E
each method, 146, 151, 245, 399, 533n11
edit form, in updating users, 374–380
edits in updating users, successful, 382–384
edits in updating users, unsuccessful, 380–382
Emacs, 29
Embedded Ruby

instance variables and, 162
JavaScript, to create following relationship

(Listing 11.39), 529
slightly dynamic pages, 108–111

Embedded Ruby title
view for About page with (Listing 3.24),

110–111
view for Help page with (Listing 3.23), 110
view for Home page with (Listing 3.22), 109

empty? method, 138, 139, 310
encrypted passwords, 255–257
Engine Yard, 13, 16
Engine Yard Cloud, 39
environment loading, adding to Spork.prefork

block (Listing 3.36), 124
equality comparison operator, 144
ERb. See Embedded Ruby
error messages, signup, 308–312

code to display error messages on signup form
(Listing 7.22), 309

CSS for styling error messages (Listing 7.24),
311

failed signup with error messages, 312
partial for displaying form submission error

messages (Listing 7.23), 309
exceptions, 234n8

www.it-ebooks.info

http://www.it-ebooks.info/

550 Index

F
factories

complete factory file, including new factory for
microposts (Listing 10.12), 439

to simulate User model objects (Listing 7.8),
284

test for user show page (Listing 7.9),
285

testing user show page with, 282–286
Factory Girl, 283–286

adding to Gemfile (Listing 7.7), 284
in micropost refinements, 439–440
sequence, defining (Listing 9.32),

407
sequence, solving problems in, 406
slow nature of running, 285–286

Faker gem, 403
adding to Gemfile (Listing 9.29), 403
lorem ipsum text, 450–451, 451n5

feed, 429
proto-, 467–475
RSS, 542
status, 529–539

Fernandez, Obie, 6, 142n5, 543
Fielding, Roy, 60
Files

standard directory and file structure, 18
summary of default Rails directory structure,

19t
Firebug, 12, 301
Firefox, 11–12, 89, 170
first feed implementation, 532–535
flash, 315–317

adding contents of flash variable to site layout
(Listing 7.26), 315–316

adding flash message to user signup
(Listing 7.27), 317

ERb in site layout using content tag
(Listing 7.33), 324

vs. flash.now, 316n11
message for failed signin, 339–343, 340

flash.now, 316n11, 342
follow and unfollow buttons, 519–529

with Ajax, 524–529
current user’s followers, 520
profile of user to follow, with follow button,

486

profile with unfollow button and incremented
followers count, 487

Relationships controller (Listing 11.34),
523–524

tests for (Listing 11.32), 521–522
tests for relationships controller authorization

(Listing 11.33), 522–523
user profile with follow button, 514
users being followed by current user, 520
working follow button, 519–524

followed users in relationship model, 495–500
follower notifications, 541
followers, 500–503

implementing user.followers using reverse
relationships (Listing 11.16), 502

model for user followers using reverse
Relationship model, 500

testing for reverse relationships (Listing 11.15),
501

followers relationship model, 500–503
follow form, 505–514

adding followed users and followers actions
to Users controller (Listing 11.18),
506

adding follow form and follower stats to user
profile page (Listing 11.27), 513

for following a user using (Listing 11.35), 525
form for following user (Listing 11.25), 512
form for unfollowing user (Listing 11.26), 512
partial for follow/unfollow form

(Listing 11.23), 511
RESTful routes provided by custom rules in

resource, 506t
routes added for user relationships

(Listing 11.24), 512
for unfollowing a user using (Listing 11.36),

525
following

adding following/follower relationships to
sample data (Listing 11.17), 503–504

following? and follow! utility methods
(Listing 11.12), 498

problem with the data model (and a solution),
485–490

relationship model, 484–503
sample following data, 503–505
user/relationship associations, 491–494

www.it-ebooks.info

http://www.it-ebooks.info/

Index 551

users, 503–544
utility methods, tests for (Listing 11.11), 497

following and followers pages, 515–519
following and followers actions (Listing 11.30),

518
mockups of, 515–516
show follow view used to render following and

followers (Listing 11.31), 519
test for followed users and followers pages

(Listing 11.29), 517–518
tests for authorization of (Listing 11.28),

516–517
following data, sample, 503–505
following? method, 497–500
follow! method, 497–500
forgery, 112
format, validating, 245–248
form for, 297–300
form tag, 303, 334, 372
forward slash (/), 8
Fowler, Martin, 222n1
friendly forwarding, 392–396

adding store location to signed-in user before
filter (Listing 9.19), 394–395

code to implement (Listing 9.18), 394
Sessions create action with (Listing 9.20), 395
test for friendly forwarding (Listing 9.17), 393

full-table scan, 254
Fulton, Hal, 6, 543
functions, 91

G
gem configuration file

creating (Listing 1.1), 16
suppressing ri and rdoc documentation in

(Listing 1.2), 16
Gemfile

adding annotate gem to (Listing 6.4), 229
adding bcrypt-ruby to (Listing 6.24), 255
adding bootstrap-sass gem to (Listing 5.3), 175
adding cucumber-rails gem to (Listing 8.31),

364
adding Factory Girl to (Listing 7.7), 284
adding Faker gem to (Listing 9.29), 403
default, in the first app directory (Listing 1.4),

20

default Gemfile in the first app directory
(Listing 1.4), 20

for demo app (Listing 2.1), 46
with explicit version of each Ruby gem

(Listing 1.5), 21–22
including will paginate in (Listing 9.31),

405
needed to use PostgreSQL instead of SQLite

(Listing 3.31), 117
for sample app (Listing 3.1), 78
for sample app (Listing 3.35), 123
for sample app, final (Listing 9.49), 423–424
for sample app including Guard (Listing 3.33),

120
gems, 14
gemsets, 14–15
generated code, scaffolding and, 3
generate script, 49, 86, 94
GET, 89–90
Git, 27–39

adding files in, 30–31
benefit of using, 31–32
branches, 35–36
commit command, 31
committing, 36–37
editing, 36
first-time repository setup, 28–30
first-time setup, 27–28
installing, 13
merging, 37–38
pushing, 38–39
README file, 34–35, 35
README file, README.md (Listing 1.8),

36
README file formatted with Markdown, 39
status command, 30

GitHub, 32–34
creating first app repository at, 33
creating sample app repository at, 81
initial README file for project at, 35
repository page, 34

.gitignore
augmented .gitignore file (Listing 1.7),

29–30
default .gitignore created by rails command

(Listing 1.6), 29
Goia, Mircea, 14

www.it-ebooks.info

http://www.it-ebooks.info/

552 Index

Gravatar, 286–291
adding sidebar to user show view (Listing 7.14),

290
defining gravatar for helper method

(Listing 7.13), 288
editing, 382–384
SCSS for styling user show page, including

sidebar (Listing 7.15), 290–291
in sign up, 286–291
user profile page /users/1 with default Gravatar,

289
user show page /users/1 with sidebar and CSS,

291
user show page with custom Gravatar, 289
user show view with name and (Listing 7.12),

287
Guard

automated tests with, 120–122
Gemfile for sample app including

(Listing 3.33), 120
Spork with Guard, 126–127

gVim, 28

H
Hansson, David Heinemeier, 2, 4
hashes, 337

nested (Listing 4.6), 151
in Ruby data structures, 148–152

hash symbol, 21
has secure password

authenticate method, 264, 338
User, 263–265

have selector method, 104
Head First HTML, 5
Help page

code added to test (Listing 3.11), 98
generated view for (Listing 3.8), 92
with HTML structure (Listing 3.20), 107
with HTML structure removed (Listing 3.27),

113
tests for static pages (Listing 5.27), 210
view for, with Embedded Ruby title

(Listing 3.23), 110
Heroku

commands, 41–42
creating a new application at (Listing 1.9), 40
deployment, 40–41
setup, 39–40

hierarchies, inheritance, 70–73, 73
Home page

adding follower stats to (Listing 11.21), 509
adding microposts creation to (Listing 10.31),

461–462
with follow stats, 511
generated view for (Listing 3.7), 92
with HTML structure (Listing 3.19), 107
with HTML structure removed (Listing 3.26),

113
with link to signup page (Listing 5.2), 173
mockup with form for creating microposts,

459
mockup with proto-feed, 467
SCSS for Home page sidebar (Listing 11.22),

510
with status feed, mockup of, 530
with status feed and incremented following

count, 488
testing following/follower statistics on

(Listing 11.19), 507
view for, with Embedded Ruby title

(Listing 3.22), 109
view for, with HTML structure (Listing 3.19),

107
with working status feed, 539

href, 97
HTML

About page with HTML structure removed
(Listing 3.28), 113

About page with structure (Listing 3.21), 108
code for signin form (Listing 8.7), 334
for edit form defined in Listing 9.3 and shown

in Figure 9.2. (Listing 9.4), 377
for form in Figure 7.12 (Listing 7.20), 301
initial user edit page with pre-filled name and

email, 377
produced by CSS includes (Listing 4.7), 153
for signin form produced by Listing 8.7, 335
signup form, 301–303, 335
for signup form/signup for new users, 300
typical, with friendly greeting (Listing 3.3), 84
user edit action (Listing 9.2), 375
for user edit form (Listing 9.2), 377

HTTP, 89–90
HTTP verbs, 89, 90
hypertext reference (href), 97
hypertext transfer protocol. See HTTP

www.it-ebooks.info

http://www.it-ebooks.info/

Index 553

I
IDEs, 10
implicit return, 141
index, user. See User index
index action, simplified for demo app

(Listing 2.4), 61
index.html file, 82–84, 83
index page

with 100 sample users, 405
correspondence between pages and URIs for

Users resource, 52t
initial, for Users resource, 52
micropost, 68
with one user, 402
with second user, 55
tests for (Listing 9.23), 398–399
users with pagination, 410

inheritance
ApplicationController class with (Listing 2.16),

72
class, 155–157
classes, 155–157
hierarchies, 70–73, 73
Micropost class with (Listing 2.13), 71
MicropostsController class with (Listing 2.15),

72
User class with (Listing 2.12), 71
UsersController class with (Listing 2.14), 72

inheritance class, 155–157
inheritance hierarchies, 70–73, 73
initialization hash, 231
inspect method, 151
installing Rails, 16–17
instance variables, 61, 162

adding (empty) @feed items to create action
(Listing10.45), 474–475

adding to home action (Listing 10.41), 471
adding to the home action (Listing 10.34),

463
adding to user show action (Listing 10.22),

449
integrated development environments (IDEs), 10
integration tests, 93

See also Tests
interpolation, 136–137

string, 115, 133, 142, 162, 209
IRC client, 14n10
iTerm, 11

J
JavaScript

adding Bootstrap to application.js
(Listing 8.25), 358

to create following relationship (Listing 11.39),
529

to destroy following relationship
(Listing 11.40), 529

unobtrusive, 525
JavaScript Embedded Ruby (JS-ERb), 528–529

to create a following relationship
(Listing 11.39), 529

join method, 145, 534
JS-ERb. See JavaScript Embedded Ruby

(JS-ERb)

K
Katz, Yehuda, 364, 543

L
layout, filling in, 167–219

adding structure, 167–186
asset pipeline, Sass and, 187–190
conclusion, 215–216
exercises, 217–219
layout links, 197–211
stylesheets and, improving with Sass, 190–197
user signup, 211–215

layout files
duplication eliminated with, 103, 111–113
sample application site layout (Listing 3.25),

112
sample application site layout (Listing 4.1), 130
sample application site layout (Listing 4.3),

132
site layout with added structure (Listing 5.1),

169
layout links, 197–211

changing for signed-in users (Listing 8.24),
357–358

named routes, 205–207
Rails routes, 202–205
route tests, 200–202
RSpec, 207–211
test for links on layout (Listing 5.36), 218

layout links, changing, 355–359
adding Bootstrap JavaScript library to

application.js (Listing 8.25), 358

www.it-ebooks.info

http://www.it-ebooks.info/

554 Index

layout links, changing (continued)
the signed in? helper method (Listing 8.23),

356
for signed-in users (Listing 8.24), 357–358
signin success and, 355–359

length validations, 243–244
adding for name attribute (Listing 6.15), 244
constraining micropost characters (Listing 2.9),

67
test name for (Listing 6.14), 244

Linux, 13–14
Linux Mint, 14
Linux Ubuntu, 14
lists, unordered, 172
literal constructor, 153–154
literal strings, 135
Loeffler, David, 10
log, development, 231–232
log files, ignoring, 29

M
Macintosh OS X, 11
MacVim, 28
magic columns, 226, 232
manifest files in asset pipeline, 188–189
map method, 147–148, 533
mapping for site links, 198t
mass assignment

attr accessible used to prevent, 230, 416
invalid, ensuring Rails throws errors on

(Listing 10.6), 436
memoization, 354n7
Merb, merger with Rails, 4
message passing in Ruby, objects and, 138–141
messaging, 541
method chaining, 139, 421
method definitions, 141
micropost associations, 433–438
Micropost class with inheritance (Listing 2.13), 71
micropost data model, 48–49
micropost migration (Listing 10.1), 430
Micropost model, 429–444, 431

accessible attributes and first validation,
432–433

basic model, 430–432
content validations, 443–444
initial Micropost spec (Listing 10.2), 431

micropost migration (Listing 10.1), 430
refinements, 439–443
tests for (Listing 10.17), 443–444
tests for validity of new micropost

(Listing 10.3), 432
user has many microposts (Listing 10.11), 438
user/micropost associations, 433–438
validation for user (Listing 10.4), 433
validations (Listing 10.18), 444

microposts
adding to sample data (Listing 10.23), 451
CSS for (Listing 10.24), 452–453
destroying along with user (Listing 10.16), 443
form partial for creating (Listing 10.33), 463
ordering with default scope (Listing 10.14), 441
partial for showing single micropost

(Listing 10.21), 449
sample microposts, 450–454
summary of user/micropost association

methods, 434t
testing that microposts are destroyed when

users are (Listing 10.15), 442
testing the order of a user’s microposts

(Listing 10.13), 440–441
Microposts, manipulating, 454–479

access control, 456–459
creating microposts, 459–467
destroying microposts, 475–479
micropost pagination links, 455
proto-feed, 467–475

Microposts, showing, 445–454
profile page with microposts, mockup of, 445
sample microposts, 450–454
user show page, augmenting, 446–450

Microposts controller
create action (Listing 10.30), 461
destroy action (Listing 10.49), 477–478
in schematic form (Listing 2.8), 65–66
tests for destroy action (Listing 10.48), 477

MicropostsController class with inheritance
(Listing 2.15), 72

Microposts resource, 63–75
access control, 456–459
associations, 68–70
demo app, deploying, 73–74
error messages for failed micropost creation, 69
inheritance hierarchies, 70–73, 73

www.it-ebooks.info

http://www.it-ebooks.info/

Index 555

length validations, 243–244
micropost belonging to user (Listing 2.11), 69
between microposts and users, 70
microtour, 63–66
Rails routes with new rule (Listing 2.7), 65
RESTful routes provided by, 65t
routes for (Listing 10.25), 455
user has many microposts (Listing 2.10), 68
validations, 66–68

microtour, 63–66
migration

to add boolean admin attribute to users
(Listing 9.40), 415

micropost (Listing 10.1), 430
password, 256–257
Rake used in, 50
user model, 223–228
for User model (to create users table)

(Listing 6.2), 225
mockups, 167–168
model annotation in model file, 228–230
model file, 228–230

accessible attributes, 230
model annotation, 228–230

modeling demo microposts, 48–49
modeling demo users, 47–48
modeling users, 221–269

conclusion, 267
exercises, 268–269
passwords, 254–267
user model, 222–236
user validations, 236–254

model-view-controller (MVC), 25–27
in action, 56–62
in Rails, diagram of, 57
schematic representation of, 26

motivation
in Ruby, 129–133
in status feed, 529–532

MVC. See Model-view-controller (MVC)

N
name attribute

adding length validation for (Listing 6.15), 244
failing test for validation of (Listing 6.11), 241
validating presence of (Listing 6.9), 240

named routes

footer partial with links (Listing 5.25), 206
header partial with links (Listing 5.24),

205–206
namespaces, 403
nested hashes (Listing 4.6), 151
nesting, 190–192
newline, 105n11
new status feed, 538–539
nil, 136
non-nil current user, 356

O
objects and message passing, in Ruby, 138–141
OS X. See Macintosh OS X

P
PagesController. See StaticPages controller
pagination, for showing all users, 404–410

paginating users in index action (Listing 9.35),
409

tests for pagination (Listing 9.33), 407–408
pagination links, micropost, 455
palindrome? method, 155–156, 158
Paperclip gem, 287n8
partial refactoring, for showing all users, 410–412
partials, 181–186

adding CSS for site footer (Listing 5.13),
185–186

for displaying form submission error messages
(Listing 7.23), 309

for HTML shim (Listing 5.9), 183
for the site footer (Listing 5.11), 184
for the site header (Listing 5.10), 184
site layout with footer partial (Listing 5.12),

185
site layout with partials for stylesheets and

header (Listing 5.8), 182–183
updating error-messages (Listing 10.35), 464

passwords, 254–267
adding bcrypt-ruby to Gemfile (Listing 6.24),

255
and confirmation, 257–260
creating a user, 265–267
encrypted, 255–257
ensuring that User object has password digest

column (Listing 6.25), 256

www.it-ebooks.info

http://www.it-ebooks.info/

556 Index

passwords (continued)
migration, 256–257
migration to add password digest column to

users table (Listing 6.26), 256
reminders, 540, 541
secure, adding, 254–260
test for password and password confirmation

(Listing 6.28), 259–260
testing for password and password confirmation

attributes (Listing 6.27), 257
user authentication, 260–263
user has secure password, 263–265
User model with added password digest

attribute, 255
See also Authenticate method

Patterns of Enterprise Application Architecture
(Fowler), 222n1

PeepCode, 6, 543
pending spec, 237
persistence, 223
Phusion Passenger, 39
Pik project, 13
pluralize text helper, 310
PostgreSQLn, 46–47, 115, 117, 223, 253n15
pound sign. See Hash symbol
preprocessor engines in asset pipeline, 189
presence, validating, 239–243
Preston-Werner, Tom, 286
private keyword, 348
production in asset pipeline, efficiency in,

189–190
profile images, 286, 382
profile links, 332
protected page

mockup of, 385
signin form after trying to access, 388

proto-feed, 467–475
adding feed instance variable to home action

(Listing 10.41), 471
adding (empty) @feed items instance

variable to create action (Listing10.45),
474–475

adding status feed to Home page
(Listing 10.44), 473

Home page after creating micropost, 474
Home page with, 473
mockup of Home page with, 467

preliminary implementation for micropost
status feed (Listing 10.39), 469

single feed item partial (Listing 10.43), 472
status feed partial (Listing 10.42), 472
test for rendering feed on Home page

(Listing 10.40), 470–471
tests for (Listing 10.38), 468

public/index.html file, 83
puts method, 136

R
Rails

approach to learning, 4–6
deploying, 39–42
development environment setup, 9–27
environments, 276–277
intermediate-to-advanced resources, 6–7
introduction, 3–9
Merb merger and, 4
Ruby and, importance of, 129–165 (See also

Ruby)
running to generate new application

(Listing 1.3), 17–18
scaling, 7
version control with Git, 27–39

Rails, installing
Git, installing, 13
Rails, installing (Windows), 13, 16–17
Ruby, installing, 13–15
RubyGems, installing, 15–16

The Rails 3 Way (Fernandez), 6, 82n5, 142n5, 543
RailsCasts, 6, 7, 540, 543
Rails command, 17–19

default .gitignore created by (Listing 1.6), 29
to generate new application (Listing 1.3),

17–18
Rails console, 134
Rails Guides, 6, 189, 202, 228, 506, 543
Rails Machine, 39
Rails root, 8–9
Rails routes, 202–205

adding mapping for the (Listing 5.23), 204
adding Users resource to (Listing 7.3), 279
commented-out hint for defining

(Listing 5.22), 204
with new rule for Microposts resource

(Listing 2.7), 65

www.it-ebooks.info

http://www.it-ebooks.info/

Index 557

with rule for Users resource (Listing 2.2), 58
for static pages (Listing 5.21), 202

Rails server, 23–25
The Rails 3 Way (Fernandez), 6, 142n5, 543
Rails Tutorial help page, 9n6
Rake, 50, 51

task for populating database with sample users
(Listing 9.30), 403–404

ranges, 145–146
README file

Git, 34–35, 35
improved, formatted with Markdown (Listing),

39
improved, for sample app (Listing 3.2), 80
initial, for project at GitHub, 35
new README file, README.md

(Listing 1.8), 36
updating, 80

Red, Green, Refactor, 94
Green, 100–102
Red, 99–100
Refactor, 103

refactoring
in adding static pages, 103
compact, of Listing 11.38 (Listing 11.47),

544
first attempt at index view (Listing 9.36), 411
partial, 410–412
refactored following and followers actions

(Listing 11.30), 518
refinements in Micropost model, 439–443

default scope, 440–441
dependent: destroy, 441–443

regular expression (regex), 246
relationship model, 484–503, 491

adding belongs to associations to (Listing 11.6),
494

adding indices for relationships table
(Listing 11.1), 490

adding User model followed users association
(Listing 11.10), 496

followed users, 495–500
of followed users through user relationships,

489
followers, 500–503
following? and follow! utility methods

(Listing 11.12), 498

implementing user.followers using reverse
relationships (Listing 11.16), 502

implementing user/relationships has many
association (Listing 11.4), 493

problem with, 485–491
for reverse relationships, 500–503
test for unfollowing a user (Listing 11.12), 499
test for user.followed users attribute

(Listing 11.9), 496
testing for reverse relationships (Listing 11.15),

501
testing for user.relationships attribute

(Listing 11.3), 492
testing Relationship creation and attributes

(Listing 11.2), 491–492
testing Relationship model validations

(Listing 11.7), 495
testing user/relationships belongs to association

(Listing 11.5), 494
tests for ‘‘following’’ utility methods

(Listing 11.11), 497
unfollowing user by destroying user

relationship (Listing 11.14), 499–500
for user followers using reverse relationship

model, 500
user/relationship associations, 491–494
validations, 495

relationships attribute, 492
Relationships controller

Ajax requests in, responding to (Listing 11.38),
527

follow and unfollow buttons (Listing 11.34),
523–524

responses to Ajax requests, tests for
(Listing 11.37), 526

reload method, 383
remember token, 344

added to cookies, 379
before save callback to create (Listing 8.18),

348–349
cookie in local browser, 360
current user found by using (Listing 8.22), 353
first test for (Listing 8.15), 345
migration to add to users table (Listing 8.16),

346
removed from cookies, 363
test for valid (nonblank) (Listing 8.17), 347

www.it-ebooks.info

http://www.it-ebooks.info/

558 Index

remember token (continued)
User model with added remember token

attribute, 345
render, 183
replies, 541
repository setup, 28–30
request specs. See Tests
resources

advanced Rails, 4, 6
guide to further, 542–543

REST API, 542
REST architecture, 45, 59, 65, 86, 90
RESTful routes

provided by Microposts resource, 65t
provided by Users resource, 65t

reverse relationships, 500–503
followers using reverse relationship model, 500
implementing user.followers using reverse

relationships (Listing 11.16), 502
testing for reverse relationships (Listing 11.15),

501
root, 8–9
routes in layout links

named, 205–207
Rails, 202–205
tests, 200–202

RSpec
adding helper method and custom RSpec

matcher (Listing 8.34), 371
Cucumber equivalent, 368–371
custom matchers, 368–371
layout links, 207–211
request specs, 93, 368

RSS feed, 542
Rubular, 247, 248
Ruby, 129–165

comments, 134–135
conclusion, 164
exercises, 164–165
gems, 14
gemsets, 14–15
installing, 13–15
method defintions, 141
motivation, 129–133
objects and message passing, 138–141
strings, 135–138
title helper, 142

Ruby classes. See Classes
Ruby data structures, 142–153

arrays, 142–145
blocks, 146–148
cascading style sheets, 152–153
hashes and symbols, 148–152
ranges, 145–146

RubyGems, installing, 15–16
Ruby JavaScript (RJS)

to create following relationship (Listing 11.39),
529

to destroy following relationship
(Listing 11.40), 529

RubyMine, 10
Ruby on Rails. See Rails
Ruby Version Manager (RVM), 8, 13, 118
The Ruby Way (Fulton), 6, 129, 543

S
Safari, 11–12, 89, 170
sample application, extensions to, 540–542

follower notifications, 541
messaging, 541
password reminders, 541
replies, 541
REST API, 542
RSS feed, 542
search, 542
signup confirmation, 541

sample users, showing all, 403–404
sandbox, 231, 252, 265
Sass, 187–197

asset pipeline and, 187–190
improving stylesheets with, 190–197

save!, 497
scaffolding, 2–3
scaling Rails, 7
scope, 440–441
screencasts, 538, 542
SCSS

converting to CSS, 192
error messages styled with, 311
for Home page sidebar (Listing 11.22), 510
initial SCSS file converted to use nesting and

variables (Listing 5.15), 195–197
rewriting, 193–194
Sass supported by, 190

www.it-ebooks.info

http://www.it-ebooks.info/

Index 559

for styling user show page, including sidebar
(Listing 7.15), 290–291

search, 542
Secure Sockets Layer (SSL), 318

deploying production with, in signup success,
317–321

Seguin, Wayne E., 13, 14
self, 157, 348
session hijacking attack, 318, 351
sessions

authentication and, 325–326
defined, 325–326
destroying a session (user signout)

(Listing 8.29), 362
preliminary version of sessions create action

(Listing 8.9), 337
sessions create action with friendly forwarding

(Listing 9.20), 395
signin failure and, 325–326
sign out method in Sessions helper module

(Listing 8.30), 363
Sessions controller

adding resource to get standard RESTful
actions for sessions (Listing 8.2), 328

completed Sessions controller create action (not
yet working) (Listing 8.13), 343

create action for, 326, 336–338, 343, 395
signin failure and, 326–329
tests for new session action and view

(Listing 8.1), 327
short-circuit evaluation, 355
showing microposts. See Microposts, showing
sidebar

partial for the user info sidebar (Listing 10.32),
462

SCSS for Home page (Listing 11.22), 510
in SCSS for styling user show page

(Listing 7.15), 290–291
in sign up, 288–291

signed in? helper method (Listing 8.23), 356
signed-in users

authorization of, 386–389
requiring, 386–389

sign in, 325–372
conclusion, 371–372
Cucumber, signin tests using, 363–371
exercises, 372

signin failure, 325–343
flash message, rendering with, 339–343
reviewing from submission, 336–338
sessions, 325–326
Sessions controller, 326–329
signin form, 333–336, 335
signin tests, 330–333

signin form, 333–336, 335
code for (Listing 8.7), 334
HTML for signin form produced by Listing 8.7

(Listing 8.8), 335
initial failed signin, with create as in

Listing 8.9., 336
signin failure and, 333–336

signing out, 361–363
destroying a session (user signout)

(Listing 8.29), 362
sign out method in Sessions helper module

(Listing 8.30), 363
sign in method, signin success and, 349–351
signin success, 343–363

current user, 351–355
layout links, changing, 355–359
remembering user signin status, 343–349
signing out, 361–363
sign in method, 349–351
signin upon signup, 359–361

signin tests
signin failure and, 330–333
using Cucumber, 363–371

signin upon signup, 359–361
sign up, 271–324

conclusion, 321
exercises, 321–324
failure in (See Signup failure)
Rails environments in, 276–277
showing users, 271–291
success in (See Signup success)

signup confirmation, 541
signup failure, 303–312, 306

apartial for displaying form submission
error messages (Listing 7.23),
309

code to display error messages on signup form
(Listing 7.23), 309

create action that can handle (but not success)
(Listing 7.21), 305

www.it-ebooks.info

http://www.it-ebooks.info/

560 Index

signup failure (continued)
CSS for styling error messages (Listing 7.24),

311
debug information, 307
mockup of signup failure page, 304
signup error messages, 308–312, 312
working form, 303–308

signup form, 292–303
adding @user variable to the new action

(Listing 7.18), 299
CSS for (Listing 7.19), 300
filled-in form with text and password fields, 302
form for, using, 297–300
form to sign up new users (Listing 7.17), 298
HTML, 301–303
HTML for form in figure 7.12 (Listing 7.20),

301
for new users, 300
tests for signing up users (Listing 7.16),

296–297
tests for user signup, 293–297
using form for, 297–300

signup page
initial (stub) (Listing 5.33), 214
linking the button to (Listing 5.34), 215
route for (Listing 5.32), 214
signing in user upon signup (Listing 8.27), 361
signin upon signup, 359–361
testing that newly signed-up users are also

signed in (Listing 8.26), 360–361
Users controller, 212

signup success, 312–321
deploying production with SSL, 317–321
finished signup form, 313–315
first signup, 317
flash, 315–319
mockup of, 314

signup URI, in user signup, 213–215
site navigation in filling in layout, 169–175

Home page with link to signup page
(Listing 5.2), 173

site layout with added structure (Listing 5.1),
169

skeleton for a shuffle method attached to the
String class (Listing 4.11), 165

skeleton for a string shuffle function
(Listing 4.10), 164

slightly dynamic pages, 103–113
duplication, eliminating with layouts, 103,

111–113
Embedded Ruby, 108–111
instance variables and Embedded Ruby, 162
passing title tests, 106–108
testing a title change, 103–107
testing title page, 103–106

spike, 93
split method, 143
Spork, 123–127

adding environment loading to Spork.prefork
block (Listing 3.36), 124

configuring RSpec to automatically use
(Listing 3.37), 125

Gemfile for sample app (Listing 3.35), 123
Guardfile updated for Spork (Listing 3.38),

126
Guard with Spork, 126–127
speeding up tests with, 123–127

SQL injection, 470
SQLite Database Browser, 226, 227, 266
Stack Overflow, 301, 492n4
staging area, 30
static pages, 77–128

conclusion, 114
exercises, 114–117
test-driven development, 93–99
testing, 93–103
See also Slightly dynamic pages

static pages, adding, 99–103
green, 100–102
red, 99–100
refactor, 103

static pages, advanced setup, 117–128
bundle exec, eliminating, 118–119
Guard, automated tests with, 120–122
Spork, speeding up tests with, 123–127
Sublime Text, tests inside, 127–128

static pages, making, 82–92
with Rails, 85–92
truly static pages, 82–85
undoing things, 87–88

StaticPages controller
with about action (Listing 3.15), 101
generating (Listing 3.4), 86
inheritance hierarchy for, 160

www.it-ebooks.info

http://www.it-ebooks.info/

Index 561

made by Listing 3.4 (Listing 3.6), 91
routes for home and help actions in

(Listing 3.5), 88
spec with base title (Listing 3.29), 115–116
spec with title tests (Listing 3.18), 105

stats, 505–514
adding follower stats to Home page

(Listing 11.21), 509
adding follow form and follower stats to user

profile page (Listing 11.27), 513
Home page with follow stats, 511
mockup of stats partial, 505
a partial for displaying follower stats

(Listing 11.20), 508
SCSS for Home page sidebar (Listing 11.22),

510
testing following/follower statistics on the

Home page (Listing 11.19), 507
stats form, 505–514
status command, in Git, 30
status feed, 529–539

adding completed feed to User model
(Listing 11.42), 532

final implementation of from users followed by
(Listing 11.45), 537–538

final tests for (Listing 11.41), 531–532
first cut at from users followed by

(Listing 11.43), 535
first feed implementation, 532–535
home action with paginated feed

(Listing 11.46), 538
Home page with working status feed, 539
improving from users followed by

(Listing 11.44), 536
mockup of a user’s Home page with, 530
motivation and strategy, 529–532
new, 538–539
partial for a single feed item (Listing 10.43),

472
preliminary implementation for micropost

(Listing 10.39), 469
subselects, 535–538
for user following users, 531

strategy in status feed, 529–532
string interpolation, 115, 133, 142, 162,

209
string literals, 135

strings
double-quoted, 137–138
printing, 136–137
in Ruby, 135–138
single-quoted, 137–138

structure in filling in layout, 167–186
bootstrap and custom CSS, 175–186
partials, 181–186
site navigation, 169–175

stylesheets. See Cascading style sheets (CSS)
Sublime Text, tests inside, 127–128
Sublime Text 2, 10, 16, 127
subselects in status feed, 535–538
sudo, 8
superclass method, 155
symbols, 148–152
system setups, 27

T
TDD. See Test-driven development (TDD)
terminals, 11
ternary operator, 481, 482
test-driven development (TDD), 5

Green, 100–102
Red, 99–100
Red, Green, Refactor, 94
Refactor, 103
Spork, 123–127
in testing static pages, 93–99

testing tools, 93
tests

for admin attribute (Listing 9.39), 414
for authorization of following and followers

pages (Listing 11.28), 516–517
automated tests with Guard, 120–122
for Contact page (Listing 5.16), 198
for creating microposts (Listing 10.29), 460
for delete links (Listing 9.44), 418–419
for destroy action in Microposts controller

(Listing 10.48), 477
for email format validation (Listing 6.16),

245–246
for follow and unfollow buttons

(Listing 11.32), 521–522
for ‘‘following’’ utility methods (Listing 11.11),

497
for friendly forwarding (Listing 9.17), 393

www.it-ebooks.info

http://www.it-ebooks.info/

562 Index

tests (continued)
for full title helper (Listing 5.37), 219
Guard, automated tests with, 120–122
for index page (Listing 9.23), 398–399
integration tests, 93
for Micropost model (Listing 10.17), 443–444
for Microposts controller destroy action

(Listing 10.48), 477
for micropost’s user association (Listing 10.8),

437
for new session action and view (Listing 8.1),

327
for pagination (Listing 9.33), 407–408
passing title, 106–108
for post-save behavior in (Listing 7.32), 323
for proto-feed (Listing 10.38), 468
for Relationships controller (Listing 11.37),

526
for relationships controller authorization

(Listing 11.33), 522–523
for Relationships controller authorization

(Listing 11.33), 522–523
for responses to Ajax requests (Listing 11.37),

526
for reverse relationships (Listing 11.15),

501
for routes in layout links, 200–202
for showing microposts on user show page

(Listing 10.19), 446
signin, using Cucumber, 363–371
for signin failure, 330–333
for signing up users (Listing 7.16), 296–297
signin tests using Capybara, 294, 330
signin tests using Cucumber, 363–371
spec with title tests (Listing 3.18), 105
speeding up with Spork, 123–127
static pages (Listing 5.27), 210
for static pages, 93–99
for static pages (Listing 5.27), 210
for status feed, final (Listing 11.41), 531–532
Sublime Text, tests inside, 127–128
for title change, 103–106
title test (Listing 3.17), 104
user, initial, 236–239
for user index page (Listing 9.23), 398–399
for user show page (Listing 7.9), 285
for user signup, 293–297

for user’s microposts attribute (Listing 10.9),
437–438

for user update action (Listing 9.9), 383
for user validations, initial, 236–239
for utility methods, (Listing 11.11), 497
for validity of new micropost (Listing 10.3),

432
text editors, 10, 11
TextMate, 10, 28, 105n12
time helpers, 350
timestamps, 225
title change

passing title tests, 106–107
testing, 103–106

title helper, 142
tests for full title helper (Listing 5.37), 219

title test (Listing 3.17), 104
toggle method, 414
tools, learning, 12
Torvalds, Linus, 27

U
underscore method, 493n5
unfollow and follow buttons. See Follow and

unfollow buttons
unfollow form, using Ajax (Listing 11.36),

525
unfollowing a user

by destroying a user relationship
(Listing 11.14), 499–500

test for (Listing 11.13), 499
uniqueness, validating, 249–254
Unix-style command line, 7
unobtrusive JavaScript, 525
unordered list tag, 172
update action. See User update action
updating users, 373–384

edit form, 374–380
successful edits, 382–384
unsuccessful edits, 380–382

URIs
adding to users link (Listing 9.28), 401–402
correspondence between pages and URIs for

Users resource, 52t
defined, 2n1
signup, in user signup, 213–215
test for ‘‘Users’’ link (Listing 9.27), 401

www.it-ebooks.info

http://www.it-ebooks.info/

Index 563

URLs
correspondence between pages and Users

resource, 52t
defined, 2n1

user
administrative, 413–417
creating, 265–267
current user? method (Listing 9.16), 392
destroying, 499–500
has secure password, 263–265
new user view with partial (Listing 9.51), 425
paginating, 404–410
requiring signed-in users, 386–389
requiring the right user, 390–392
sample users, 403–404
showing, 271–291
signin status, remembering, 343–349
stub view for showing user information

(Listing 7.4), 280
summary of user/micropost association

methods/updating, 434t
tests, initial, 236–239

user authentication. See Authentication
user authorization. See Authorization
user class, 161–163
User class with inheritance (Listing 2.12), 71
user data model, 47–48
user edit form

adding test for Settings link (Listing 9.5), 378
HTML for (Listing 9.2), 377
mockup of, 374
partial for new and edit form fields

(Listing 9.50), 425
tests for user update action (Listing 9.9), 383
updating error-messages partial from

Listing 7.23 to work with other objects
(Listing 10.35), 464

updating trendering of user signup errors
(Listing 10.36), 465

user edit action (Listing 9.2), 375
user edit view (Listing 9.3), 376
user update action (Listing 9.10), 384

user.followers method, 500
user has many microposts (Listing 10.11), 438

micropost belongs to user (Listing 2.11), 69
relationship between a user and its microposts,

434

user index, 396–403
adding URI to users link (Listing 9.28),

401–402
CSS for (Listing 9.26), 400
first refactoring attempt at index view

(Listing 9.36), 411
including will paginate in Gemfile

(Listing 9.31), 405
mockup of, 397
paginating users in index action (Listing

9.35), 409
pagination, 404–410
with pagination (Listing 9.34), 408
partial refactoring, 410–412
partial to render single user (Listing 9.37), 412
refactored (Listing 9.38), 412
requiring signed-in user for index action

(Listing 9.22), 398
for showing all users, 396–403
test for ‘‘Users’’ link URI (Listing 9.27), 401
testing that index action is protected

(Listing 9.21), 396–397
tests for pagination (Listing 9.33), 407–408
user index action (Listing 9.24), 399
user index view (Listing 9.25), 400
view (Listing 9.25), 400

user index page
page 2 of, 411
tests for (Listing 9.23), 398–399
users with 100 sample users, 405
users with only one user, 402
users with pagination, 410

user info sidebar, partial for (Listing 10.32),
462

user/micropost associations, 433–438
User microposts, 429–482

conclusion, 479–480
exercises, 480–482
manipulating, 454–479
model, 429–444, 431
resources, 63–74
showing, 445–454

User model, 222–236
accessible attributes, 230
with added password digest attribute, 255
adding annotate gem to Gemfile (Listing 6.4),

229

www.it-ebooks.info

http://www.it-ebooks.info/

564 Index

User model (continued)
annotated User model (Listing 6.5), 229–230
brand new (Listing 6.3), 228
for demo application (Listing 2.5), 61
generating (Listing 6.1), 224
making name and email attributes accessible

(Listing 6.6), 230
migration for (to create a users table)

(Listing 6.2), 225
migrations, 223–228
model file, 228–230
user objects, 230–236

user objects
creating, 230–233
finding, 233–235
updating, 235–236

user profile page, mockup of, 445
user/relationship associations, 491–494

implementing has many association
(Listing 11.4), 493

See also Relationship model
users, deleting, 413–422

administrative users, 413–417
destroy action, 417–422

users, following, 483–544
conclusion, 539–543
current user’s profile, 484
exercises, 543–544
finding a user to follow, 485
Home page with status feed and incremented

following count, 488
implementation of user following, 488
model of followed users through user

relationships, 489
profile of user to follow, with follow button,

486
profile with unfollow button and incremented

followers count, 487
resources, guide to further, 542–543
sample application, extensions to, 540–542
status feed, 529–539
test for unfollowing (Listing 11.13), 499
web interface for, 503–529
See also Relationship model

users, showing all, 396–412
pagination, 404–410
partial refactoring, 410–412

sample users, 403–404
user index, 396–403

users, showing in sign up, 271–291
debug information, 272–276
Gravatar, 286–291
Rails environments, 276–277
sidebar, 288–291
user show page, testing, 282–286
Users resource, 278–281

users, updating, 373–385
edit form, 374–380
successful edits, 382–384
unsuccessful edits, 380–382

Users controller, 212
adding followed users and followers

actions to Users controller (Listing 11.18),
506

class with inheritance (Listing 2.14), 72
create action for, 425, 459
initial, with new action (Listing 5.29), 212
in schematic form (Listing 2.3), 58
with show action (Listing 7.5), 281
testing the user show page with factories,

282–286
in user signup, 212

user show page, 53, 282–286
adding sidebar to user show view (Listing 7.14),

290
adding title and heading for user profile page

(Listing 7.10), 285
defining gravatar for helper method

(Listing 7.13), 288
factories to simulate User model objects

(Listing 7.8), 284
Factory Girl added to Gemfile (Listing 7.7),

284
in Microposts, augmenting, 446–450
recap of initial User pages spec (Listing 7.6),

282–283
redefining BCrypt cost factor in test

environment (Listing 7.11), 286
SCSS for styling, including sidebar

(Listing 7.15), 290–291
tests for (Listing 7.9), 285
user profile page /users/1 with default

Gravatar, 289
at /users/1 after adding Users resource, 282

www.it-ebooks.info

http://www.it-ebooks.info/

Index 565

Users controller with show action
(Listing 7.5), 281

user show page /users/1 with sidebar and CSS,
291

user show page with custom Gravatar, 289
user show view with name and (Listing 7.12),

287
user signup, 211–215

adding flash message to (Listing 7.27), 317
errors, updating rendering of (Listing 10.36),

465
signup URI, 213–215
tests for, 293–297
users controller, 212

Users resource, 49–63
adding to the routes file (Listing 7.3), 279
correspondence between pages and URLs, 52t
MVC in action, 56–62
Rails routes with rule for (Listing 2.2), 58
RESTful routes provided by, 65t
in sign up, 278–281
weaknesses of, 62–63

Users resource tour, 51–56
user update action (Listing 9.10), 384

initial (Listing 9.8), 381
tests for (Listing 9.9), 383

user validations, 236–254
format, 245–248
length, 243–244
presence, 239–243
uniqueness, 249–254
user tests, initial, 236–239

V
validations

commenting out a validation to ensure a failing
test (Listing 6.10), 241

email format with regular expression
(Listing 6.17), 246

format, 245–248
initial user pages spec (Listing 7.6), 282
length, 243–244
length, adding for name attribute

(Listing 6.15), 244
Microposts resource, 66–68
migration for enforcing email uniqueness

(Listing 6.22), 252

of name attribute, failing test for (Listing 6.11),
241

for password attribute (Listing 6.27), 257
practically blank default User spec (Listing 6.7),

237
of presence, 239–243
of presence of name and email attributes

(Listing 6.13), 243
of presence of name attribute (Listing 6.9), 240
Relationship data model, 495
Relationship model, adding (Listing 11.8), 495
in relationship model, 495
test for name length (Listing 6.14), 244
test for presence of email attribute

(Listing 6.12), 243
test for rejection of duplicate email addresses

(Listing 6.18), 249
test for rejection of duplicate email addresses,

insensitive to case (Listing 6.20), 250
testing Relationship model validations

(Listing 11.7), 495
tests for email format validation (Listing 6.16),

245–246
of uniqueness, 249–254
of uniqueness of email addresses

(Listing 6.19), 250
of uniqueness of email addresses, ignoring

case (Listing 6.21), 251
user, 236–254

validations, Micropost model, 432–444
accessible attributes and first, 432–433
content validations, 443–444
first validation, accessible attributes and,

432–433
tests for validity of new micropost

(Listing 10.3), 432
for user (Listing 10.4), 433

variables in improving stylesheets, 193–197
version control. See Git
Vim, 10, 12, 29, 82
virtual attributes, 257

W
web interface for following users, 503–529

adding following/follower relationships to
sample data (Listing 11.17), 503–504

follow button with Ajax, working, 524–529

www.it-ebooks.info

http://www.it-ebooks.info/

566 Index

web interface for following users (continued)
follow form, 505–514
following and followers pages, 515–519
follow/unfollow buttons, working, 519–524
sample following data, 503–505
stats, 505–514

Webrat, 79n1
The Well-Grounded Rubyist (Black), 6, 129, 543
will paginate method, 408
Windows, 11

wireframes, 167
wrapping long words, helper for (Listing 10.50),

481

Y
YAML, 276n3

Z
zero-offset, 143

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents
	Foreword to the First Edition
	Foreword to the First Edition
	Acknowledgments
	About the Author
	Chapter 1 From Zero to Deploy
	1.1 Introduction
	1.1.1 Comments for Various Readers
	1.1.2 "Scaling" Rails
	1.1.3 Conventions in This Book

	1.2 Up and Running
	1.2.1 Development Environments
	1.2.2 Ruby, RubyGems, Rails, and Git
	1.2.3 The First Application
	1.2.4 Bundler
	1.2.5 rails server
	1.2.6 Model-view-controller (MVC)

	1.3 Version Control with Git
	1.3.1 Installation and Setup
	1.3.2 Adding and Committing
	1.3.3 What Good Does Git Do You?
	1.3.4 GitHub
	1.3.5 Branch, Edit, Commit, Merge

	1.4 Deploying
	1.4.1 Heroku Setup
	1.4.2 Heroku Deployment, Step One
	1.4.3 Heroku Deployment, Step Two
	1.4.4 Heroku Commands

	1.5 Conclusion

	Chapter 2 A Demo App
	2.1 Planning the Application
	2.1.1 Modeling Demo Users
	2.1.2 Modeling Demo Microposts

	2.2 The Users Resource
	2.2.1 A User Tour
	2.2.2 MVC in Action
	2.2.3 Weaknesses of this Users Resource

	2.3 The Microposts Resource
	2.3.1 A Micropost Microtour
	2.3.2 Putting the micro in Microposts
	2.3.3 A User has_many Microposts
	2.3.4 Inheritance Hierarchies
	2.3.5 Deploying the Demo App

	2.4 Conclusion

	Chapter 3 Mostly Static Pages
	3.1 Static Pages
	3.1.1 Truly Static Pages
	3.1.2 Static Pages with Rails

	3.2 Our First Tests
	3.2.1 Test-driven Development
	3.2.2 Adding a Page

	3.3 Slightly Dynamic Pages
	3.3.1 Testing a Title Change
	3.3.2 Passing Title Tests
	3.3.3 Embedded Ruby
	3.3.4 Eliminating Duplication with Layouts

	3.4 Conclusion
	3.5 Exercises
	3.6 Advanced Setup
	3.6.1 Eliminating bundle exec
	3.6.2 Automated Tests with Guard
	3.6.3 Speeding up Tests with Spork
	3.6.4 Tests inside Sublime Text

	Chapter 4 Rails-Flavored Ruby
	4.1 Motivation
	4.2 Strings and Methods
	4.2.1 Comments
	4.2.2 Strings
	4.2.3 Objects and Message Passing
	4.2.4 Method Definitions
	4.2.5 Back to the Title Helper

	4.3 Other Data Structures
	4.3.1 Arrays and Ranges
	4.3.2 Blocks
	4.3.3 Hashes and Symbols
	4.3.4 CSS revisited

	4.4 Ruby Classes
	4.4.1 Constructors
	4.4.2 Class Inheritance
	4.4.3 Modifying Built-in Classes
	4.4.4 A Controller Class
	4.4.5 A User Class

	4.5 Conclusion
	4.6 Exercises

	Chapter 5 Filling in the Layout
	5.1 Adding Some Structure
	5.1.1 Site Navigation
	5.1.2 Bootstrap and Custom CSS
	5.1.3 Partials

	5.2 Sass and the Asset Pipeline
	5.2.1 The Asset Pipeline
	5.2.2 Syntactically Awesome Stylesheets

	5.3 Layout Links
	5.3.1 Route Tests
	5.3.2 Rails Routes
	5.3.3 Named Routes
	5.3.4 Pretty RSpec

	5.4 User Signup: A First Step
	5.4.1 Users Controller
	5.4.2 Signup URI

	5.5 Conclusion
	5.6 Exercises

	Chapter 6 Modeling Users
	6.1 User Model
	6.1.1 Database Migrations
	6.1.2 The Model File
	6.1.3 Creating User Objects
	6.1.4 Finding User Objects
	6.1.5 Updating User Objects

	6.2 User Validations
	6.2.1 Initial User Tests
	6.2.2 Validating Presence
	6.2.3 Length Validation
	6.2.4 Format Validation
	6.2.5 Uniqueness Validation

	6.3 Adding a Secure Password
	6.3.1 An Encrypted Password
	6.3.2 Password and Confirmation
	6.3.3 User Authentication
	6.3.4 User Has Secure Password
	6.3.5 Creating a User

	6.4 Conclusion
	6.5 Exercises

	Chapter 7 Sign Up
	7.1 Showing Users
	7.1.1 Debug and Rails Environments
	7.1.2 A Users Resource
	7.1.3 Testing the User Show Page (with Factories)
	7.1.4 A Gravatar Image and a Sidebar

	7.2 Signup Form
	7.2.1 Tests for User Signup
	7.2.2 Using form_for
	7.2.3 The Form HTML

	7.3 Signup Failure
	7.3.1 A Working Form
	7.3.2 Signup Error Messages

	7.4 Signup Success
	7.4.1 The Finished Signup Form
	7.4.2 The Flash
	7.4.3 The First Signup
	7.4.4 Deploying to Production with SSL

	7.5 Conclusion
	7.6 Exercises

	Chapter 8 Sign In, Sign Out
	8.1 Sessions and Signin Failure
	8.1.1 Sessions Controller
	8.1.2 Signin Tests
	8.1.3 Signin Form
	8.1.4 Reviewing Form Submission
	8.1.5 Rendering with a Flash Message

	8.2 Signin Success
	8.2.1 Remember Me
	8.2.2 A Working sign_in Method
	8.2.3 Current User
	8.2.4 Changing the Layout Links
	8.2.5 Signin upon Signup
	8.2.6 Signing Out

	8.3 Introduction to Cucumber (Optional)
	8.3.1 Installation and Setup
	8.3.2 Features and Steps
	8.3.3 Counterpoint: RSpec Custom Matchers

	8.4 Conclusion
	8.5 Exercises

	Chapter 9 Updating, Showing, and Deleting Users
	9.1 Updating Users
	9.1.1 Edit Form
	9.1.2 Unsuccessful Edits
	9.1.3 Successful Edits

	9.2 Authorization
	9.2.1 Requiring Signed-in Users
	9.2.2 Requiring the Right User
	9.2.3 Friendly Forwarding

	9.3 Showing All Users
	9.3.1 User Index
	9.3.2 Sample Users
	9.3.3 Pagination
	9.3.4 Partial Refactoring

	9.4 Deleting Users
	9.4.1 Administrative Users
	9.4.2 The destroy Action

	9.5 Conclusion
	9.6 Exercises

	Chapter 10 User Microposts
	10.1 A Micropost Model
	10.1.1 The Basic Model
	10.1.2 Accessible Attributes and the First Validation
	10.1.3 User/Micropost Associations
	10.1.4 Micropost Refinements
	10.1.5 Content Validations

	10.2 Showing Microposts
	10.2.1 Augmenting the User Show Page
	10.2.2 Sample Microposts

	10.3 Manipulating Microposts
	10.3.1 Access Control
	10.3.2 Creating Microposts
	10.3.3 A Proto-feed
	10.3.4 Destroying Microposts

	10.4 Conclusion
	10.5 Exercises

	Chapter 11 Following Users
	11.1 The Relationship Model
	11.1.1 A Problem with the Data Model (and a Solution)
	11.1.2 User/Relationship Associations
	11.1.3 Validations
	11.1.4 Followed users
	11.1.5 Followers

	11.2 A Web Interface for Following Users
	11.2.1 Sample Following Data
	11.2.2 Stats and a Follow Form
	11.2.3 Following and Followers Pages
	11.2.4 A Working Follow Button the Standard Way
	11.2.5 A Working Follow Button with Ajax

	11.3 The Status Feed
	11.3.1 Motivation and Strategy
	11.3.2 A First Feed Implementation
	11.3.3 Subselects
	11.3.4 The New Status Feed

	11.4 Conclusion
	11.4.1 Extensions to the Sample Application
	11.4.2 Guide to Further Resources

	11.5 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

